
Memory System Performance of
Programs with Intensive l--leap Allocation

AMER DIWAN, DAVID TARDITI, AND ELIOT MOSS

Carnegie Mellon University

Heap allocation with copying garbage collection 1s a general storage management technique for

programming languages. It is believed to have poor memory system performance, To investigate

this, we conducted an in-depth study of the memory system performance of heap allocation for

memory systems found on many machines. We studied the performance of mostly functional

Standard ML programs which made heavy use of heap allocation. We found that most machmes

support heap allocation poorly. However, with the appropriate memory system organization,

heap allocation can have good performance. The memory system property crucial for achieving

good performance was the ability to allocate and initialize a new object into the cache without a

penalty. This can be achieved by having subblock placement with a subblock size of one word

with a write-allocate pohcy, along with fast page-mode writes or a write buffer. For caches with

subblock placement, the data cache overhead was under 9T0 for a 64K or larger data cache;

without subblock placement the overhead was often higher than 50’?o.

Categories and Subject Descriptors: B,3,2 [Memory Structures]: Design Styles —assocmtZue

memories: cache memorzes; B.3.3 [Memory Structures]: Performance Analysis and Design Aids

—szrnzdatzon; C.4 [Computer Systems Organization]: Performance of Systems; D. 1.1 [Pro-

gramming Techniques]: Applicative (Functional) Programming D,3.2 [Programming Lan-

guages]: Language Classification; D.3.3 [Programming Languages]: Language Constructs

and Features—dynam ZCstorage management

General Terms: Experimentation, Languages, Measurement, Performance

Additional Key Words and Phrases: Automatic storage reclamation, copying garbage collection,

garbage collection, generational garbage collection, heap allocation, page mode, subblock place-

ment, write-back, write-buffer, write-miss policy, write-policy, write-through

A paper containing some of the results presented in this article appeared in the 21st Annual

Symposium on Principles of Programming Languages.

This research m sponsored by the Defense Advanced Research Projects Agency, DoD, through

ARPA Order 8313, and monitored by ESD/AVS under contract F19628-91-C-0168. D. Tarditl is

also supported by an AT & T Ph.D. Scholarship.

Views and conclusions in this article are those of the authors and should not be interpreted as

representing the official policies, either expressed or Implied, of the Defense Advanced Research

Project Agency, the United States Government, or AT&T.

Authors’ addresses: A Dlwan and E, Moss, Department of Computer Science, Umversity of

Massachusetts, Amherst, MA 01003-4610; email: {Dlwan; Moss}@cs umass.edu; D. Tarditi, Com-

puter Science Department, Carnegie Mellon Umversity, 5000 Forbes Avenue, Pittsburgh, PA

15213-3891; email: dtarditi@cs.cmu edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use M

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the pubhcatlon, and its date appear, and notice is

given that copying is by permission of ACM, Inc To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee,

01995 ACM 0734-2071/95/0800-0244 $03.50

ACM Transactions on Computer Systems, VOI 13, No 3, August 1995, Pages 244-273.

Performance of Programs with Intensive Heap Allocation . 245

1. INTRODUCTION

Heap allocation with copying garbage collection is widely believed to have

poor memory system performance [Koopman et al. 1992; Peng and Sohi 1989;

Wilson et al. 1990; 1992; Zorn 1991]. To investigate this, we conducted an

extensive study of memory system performance of heap-allocation-intensive

programs on memory system organizations typical of many workstations. The

programs, compiled with the SML/NJ compiler [Appel 1992], do tremendous

amounts of heap allocation, allocating one word every 4 to 10 instructions.

The programs used a generational copying garbage collector to manage their

heaps. To our surprise, we found that for some configurations corresponding

to actual machines, such as the DECStation 5000/200, the memory system

performance was comparable to that of C and Fortran programs [Chen and

Bershad 1993]: programs ran only 3 to 13% slower due to data cache misses

than they would have with an infinitely fast memory. For other configura-

tions, the slowdown due to data cache misses was often higher than 50%.

The memory system features important for achieving good performance

with heap allocation are subblock placement with a subblock size of one word,

combined with write-allocate on write-miss, page-mode writes, and cache

sizes of 32K or larger. Heap allocation performs poorly on machines whose

caches are smaller than the allocation area of the programs (256K or larger

for the benchmarks studied here) and do not have one or more of the features

mentioned above; this includes most of the current workstations.

Our work differs from previous reported work [Koopman et al. 1992; Peng

and Sohi 1989; Wilson et al. 1990; 1992; Zorn 1991] on memory system

performance of heap allocation in two ways. First, previous work used the

overall miss ratio as the performance metric, which is a misleading indicator

of performance. The overall miss ratio neglects the fact that read and write

misses may have different costs. Also, the overall miss ratio does not reflect

the rates of reads and writes, which may affect performance substantially.

We use memory system contribution to cycles per instruction (CPI) as our

performance metric, which accurately reflects the effect of the memory sys-

tem on program running time. Second, previous work did not model the

entire memory system: it concentrated solely on caches. Memory system

features such as write buffers and page-mode writes interact with the costs of

hits and misses in the cache and should be simulated to give a correct picture

of memory system behavior. We simulate the entire memory system.

We did the study by instrumenting programs to produce traces of all

memory references. We fed the references into a memory system simulator

which calculated a performance penalty due to the memory system. We fixed

the architecture to be the MIPS R3000 [Kane and Heinrich 1992] and varied

cache configurations to cover the design space typical of workstations such as

DECStations, SPARCStations, and HP 9000 series 700. We studied eight

substantial programs.

We varied the following memory system parameters: cache size (8K to

512K), cache block size (16 or 32 bytes), write-miss policy (write-allocate or

write-no-allocate), subblock placement (with and without), associativity (one-

ACM Transactions on Computer Systems, Vol. 13, No 3, August 1995

246 . Amer Diwan et al

and two-way), TLB sizes (1 to 64 entries), write-buffer depth (1 to 6 deep),

and page-mode writes (with and without). We simulated only split instruction

and data caches, i.e., no unified caches. We report data only for write-through

caches, but the results extend easily to write-back caches.

Section 2 gives background information. Section 3 describes related work.

Section 4 describes the simulation methods, the benchmarks, and the mem-

ory system performance metrics used. Section 5 presents the simulation

results, analyzes them, validates them, and gives an analytical model that

extends them to programs with different allocation behavior. Section 6 sug-

gests areas for future work. Section 7 concludes.

2. BACKGROUND

The following sections describe memory systems, garbage collection in

SML/NJ, SML, and the SML/NJ compiler.

2.1 Memory Systems

This section describes cache organization for a single level of caching. A cache

is divided into blocks which are grouped into sets. A memory block may

reside in the cache in exactly one set, but may reside in any block within the

set. A cache with sets of size n is said to be n-way associative. If n = 1, the

cache is called direct-mapped. Some caches have valid bits, to indicate what

sections of a block hold valid data. A subblock is the smallest part of a cache

with which a valid bit is associated. In this article, subblock placement

implies a subblock of one word, i.e., valid bits are associated with each word.

Moreover, on a read miss, the whole block is brought into the cache, not just

the subblock that missed. Przybylski [1990] notes that this is a good choice.

A memory access to a location which is resident in the cache is called a hit.

Otherwise, the memory access is a miss. A miss is a compulsory miss if it is

due to a memory block being accessed for the first time. A miss is a capacity

miss if it results from the cache not being large enough to hold all the

memory blocks used by a program. It is a confi!ict miss if it results from two

memory blocks mapping to the same set [Hill 19881.
A read miss is handled by copying the missing block from the main memory

to the cache. A write hit is always written to the cache. There are several

policies for handling a write miss, which differ in their performance penalties.

For each of the policies, the actions taken on a write miss are

(1) Write-no-allocate:
—Do not allocate a block in the cache.
—Send the write to main memory, without putting the write in the cache.

(2) write-allocate, no subblock placement:
—Allocate a block in the cache.

—Fetch the corresponding memory block from main memory.

—Write the word to the cache (and to memory if write-through).

(3) write-allocate, sub block placement:

If the tag matches but the valid bit is off

—Write the word to the cache (and to memory if write-through).

ACM TransactIons on Computer Systems, Vol. 13. No. 3, August 1995

Performance of Programs with Intensive Heap Allocation . 247

If the tag does not match:

—Allocate a block in the cache.

—Write the word to the cache (and to memory if write-through).

—Invalidate the remaining words in the block.

Write-allocate/subblock placement will have a lower write-miss penalty

than write-allocate/no subblock placement since it avoids fetching a memory

block from main memory. In addition, it will have a lower penalty than

write-no-allocate if the written word is read before being evicted from the

cache. See Jouppi [1993] for more information on write-miss policies.

A write buffer may be used to reduce the cost of writes to main memory.

A write buffer is a queue containing writes that are to be sent to main

memory. When the CPU does a write, the write is placed in the write buffer,

and the CPU continues without waiting for the write to finish, The write

buffer retires entries to main memory using free memory cycles. The write

buffer cannot always prevent stalls on writes to main memory. First, if the

CPU writes to a full write buffer, the CPU must wait for an entry to become

available in the write buffer. Second, if the CPU reads a location which is

queued in the write buffer, the CPU may need to wait until the write buffer is

empty. Third, if the CPU issues a read to main memory while a write is in

progress, the CPU must wait for the write to finish.

Main memory is divided into DRAM pages. Page-mode writes reduce the

latency of writes to the same DRAM page when there are no intervening

memory accesses to another DRAM page [Patterson and Hennessy 1990]. For

example, on a DECStation 5000/200, a non-page-mode write takes five

cycles, while a page-mode write takes one cycle, Page-mode writes are

especially effective at handling writes with high spatial locality, such as those

seen when doing sequential allocation.

2.2 Memory System Performance

This section describes two metrics for measuring the performance of memory

systems. One popular metric is the cache miss ratio. The cache miss ratio is

the number of memory accesses which miss, divided by the total number of

memory accesses. Since different kinds of memory accesses usually have

different miss costs, it is useful to have miss ratios for each kind of access.

Cache miss ratios alone do not measure the impact of the memory system

on overall system performance. A metric which better measures this is the

contribution of the memory system to cycles per useful instruction (CPI); all
instructions besides nops (software-controlled pipeline stalls) are considered

useful. CPI is calculated for a program as the number of CPU cycles to

complete the program/total number of useful instructions executed. It mea-

sures how efficiently the CPU is being utilized. The contribution of the

memory system to CPI is calculated as the number of CPU cycles spent

waiting for the memory system /total number of useful instructions executed.

As an example, on a DECStation 5000/200, the lowest CPI possible is 1,
completing one instruction per cycle. If the CPI for a program is 1.5, and the

memory contribution to CPI is 0.3, 20% (0.3/1.5) of the CPU cycles are spent

ACM Transactions on Computer Systems, Vol 13, No. 3, August 1995

248 . Amer Diwan et al.

cmp allot + 12, top Check for heap overflow
branch-lf-gt call-gc
store tag, (allot) ; Store tag

store ra,4(alloc) , Store value

store rd,8(alloc) ; Store pomterto next cell
move alloc+4, result , Save pointer to cell
add alloc,12 Increment allocation pointer

Flg.1. Pseudoassembly code forallocatmg a list cell.

waiting for the memory system (the rest may be due to other causes such as

nops, multicycle instructions like integer division, etc.). CPI is machine

dependent since it is calculated using actual penalties.

2.3 Copying Garbage Collection

A copying garbage collector [Cheney 1970; Fenichel and Yochelson 1969]

reclaims an area of memory by copying all the live (nongarbage) data to

another area of memory. All data in the garbage-collected area becomes

garbage, and the area can be reused. Since memory is reclaimed in large

contiguous areas, objects can be allocated sequentially from such areas in

several instructions. Figure 1 gives an example of pseudoassembly code for

allocating a list cell. ra contains the value to be stored in the list cell; rd
contains the pointer to the next list cell; allot is the address of the next free

word in the allocation area; and top contains the end of the allocation area.

2.4 Garbage Collection in SML / NJ

The SML\NJ compiler uses a simple generational copying garbage collector

[Appel 1989]. Memory is divided into an old generation and an allocation

area. New objects are created in the allocation area; garbage collection copies

the live objects in the allocation area to the old generation, freeing up the

allocation area. Generational garbage collection relies on the fact that most

allocated objects die young; thus most objects (about 99% [Appel 1992, p.

206]) are not copied from the allocation area. This makes the garbage

collector efficient, since it works mostly on an area of memory where it is very

effective at reclaiming space.

The most-important property of a copying collector with respect to memory

system behavior is that allocation sequentially initializes memory which has

not been touched in a long time and is thus unlikely to be in the cache. This is
especially true if the allocation area is large relative to the size of the cache

since allocation will knock everything out of the cache. This means that

caches which cannot hold the allocation area will incur a large number of

write misses.
For example consider the code in Figure 1 for allocating a list cell. Assume

that a cache write miss costs 16 CPU cycles and that the block size is four

words. On average, every fourth word allocated causes a write miss. Thus, the

average memory system cost of allocating a word on the heap is four cycles.

ACM Transactions on Computer Systems, Vol 13, No. 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 249

The average cost for allocating a list cell is seven cycles (at one cycle per

instruction) plus 12 cycles for the memory system overhead. Thus, while

allocation is cheap in terms of instruction counts, it may be expensive in

terms of machine cycle counts.

2.5 Standard ML

Standard ML (SML) [Milner et al. 1990] is a call-by-value, lexically scoped

language with higher-order functions. SML encourages a nonimperative pro-

gramming style. Variables cannot be altered once they are bound, and by

default data structures cannot be altered once they are created. The only

kinds of assignable data structures are ref cells and arrays, which must be

explicitly declared. The implications of this nonimperative programming style

for compilation are clear: SML programs tend to do more allocation and

copying than programs written in imperative languages.

2.6 SML/ NJ Compiler

The SML/NJ compiler [Appel 1992] is a publicly available compiler for SML.

We used version 0.91. The compiler concentrates on making allocation cheap

and function calls fast. Allocation is done inline, except for the allocation of

arrays. Optimizations done by the compiler include inlining, passing function

arguments in registers, register targeting, constant folding, code hoisting,

uncurrying, and instruction scheduling.

The most-controversial design decision in the compiler was to allocate

procedure activation records on the heap instead of the stack [Appel 1987;

Appel and Jim 1989]. In principle, the presence of higher-order functions

means that procedure activation records must be allocated on the heap. With

a suitable analysis, a stack can be used to store most activation records

[Kranz et al. 1986]. However, using only a heap simplifies the compiler, the

run-time system [Appel 1990], and the implementation of first-class continua-

tions [Hieb et al. 1990]. The decision to use only a heap was controversial

because it increases the amount of heap allocation greatly, which is believed

to cause poor memory system performance.

3. RELATED WORK

There have been many studies of the cache behavior of systems using heap

allocation and some form of copying garbage collection. Peng and Sohi [1989]

examined the data cache behavior of small Lisp programs. They used trace-

driven simulation and proposed an ALLOCATE instruction for improving

cache behavior, which allocates a block in the cache without fetching it from

memory. Wilson et al. [1990; 1992] argued that cache performance of pro-

grams with generational garbage collection will improve substantially when

the youngest generation fits in the cache. Koopman et al. [1992] studied the

effect of cache organization on combinator graph reduction, an implementa-

tion technique for lazy functional programming languages. They observed the
importance of a write-allocate policy with subblock placement for improving

heap allocation. Zorn [1991] studied the effect of cache behavior on the

ACM Transactions on Computer Systems, Vol. 13, No 3, August 1995.

250 . Amer Diwan et al.

performance of a Common Lisp system, when stop-and-copy and mark-and-

sweep garbage collection algorithms were used. He concluded that when

programs are run with mark-and-sweep they have substantially better cache

locality than when run with stop-and-copy.

Our work differs from previous work in two ways. First, previous work used

the overall miss ratio as the performance metric, which is a misleading

indicator of performance. The overall miss ratio neglects the fact that read

and write misses may have different costs. Also, the overall miss ratio does

not reflect the rates of reads and writes, which may substantially affect

performance. We use memory system contribution to CPI as our performance

metric, which accurately reflects the effect of the memory system on program

running time. Second, previous work did not model the entire memory

system: it concentrated solely on caches. Memory system features such as

write buffers and page-mode writes interact with the costs of hits and misses

in the cache and should be simulated to give a correct picture of memory

system behavior. We simulate the entire memory system.

Appel [1992] estimated CPI for the SML/NJ system on a single machine

using elapsed time and instruction counts. His CPI differs substantially from

ours. However, Appel has confirmed our measurements by personal commu-

nication and later work [Appel 1993]. The reason for the difference is that

instructions were undercounted in his measurements.

Jouppi [1993] studied the effect of cache write policies on the performance

of C and Fortran programs. Our class of programs is different from his, but

his conclusions support ours: that a write-allocate policy with subblock

placement is a desirable architectural feature. He found that the write-miss

ratio for the programs he studied was comparable to the read-miss ratio, and

that write-allocate with subblock placement eliminated many of the write

misses.

4. METHODOLOGY

We used trace-driven simulations to evaluate the memory system perfor-

mance of programs. For simulations to be useful, there must be an accurate

simulation model and a good selection of benchmarks. Simulations that make

simplifying assumptions about important aspects of the system being mod-

eled can yield misleading results. Toy or unrepresentative benchmarks can be

equally misleading. In this work, much effort has been devoted to addressing

these issues.

Section 4.1 describes our trace generation and simulation tools. Section 4.2
states our assumptions and argues that they are reasonable. Section 4.3

describes and characterizes the benchmark programs used in this study.

Section 4.4 describes the metrics used to present memory system

performance.

4.1 Tools

We extended QPT (Quick Program Profiler and Tracer) [Ball and Larus 1992;

Larus 1990; Larus and Ball 1992] to produce memory traces for SML/NJ

ACM TransactIons on Computer Systems, Vol 13. No. 3. August 1995

Performance of Programs with Intensive Heap Allocation . 251

programs. QPT rewrites an executable program to produce compressed trace

information; QPT also produces a program-specific regeneration program

that expands the compressed trace into a full trace. Because QPT operates on

the executable program, it can trace the SML code and the garbage collector

(which is written in C).

We extended Tycho [Hill and Smith 1989] for the memory system simula-

tions. Our extensions to Tycho include a write-buffer simulator.

We obtained allocation statistics by using an allocation profiler built into

SML\NJ. The profiler instruments intermediate code to increment appropri-

ate elements of a count array on every allocation. We extended this profiler to

count the number of assignments.

4.2 Simplifications and Assumptions

We tried to minimize assumptions which might reduce the validity of our

simulations. This section describes the important assumptions we made.

(1) Simulating Write-Allocate /Subblock Placement with Write-Allocate/No
Subblock Placement. Tycho does not simulate subblock placement so we

approximate it by simulating write-allocate/no sub block and ignoring the

reads from memory that occur on a write miss. This can cause a small

inaccuracy in the CPI numbers. The following example illustrates this.

Suppose that the cache block size is 2 words, that the subblock size is 1

word, that a program writes the first word in a memory block, and that

the write misses. In subblock placement, the word will be written to the

cache, and the second word in the cache block will be invalidated.

However, the simplified model will mark both words as valid after the

write. Subsequently, if the program reads the second word, the read will

incorrectly hit. Thus the CPI reported for caches with subblock placement

can be less than the actual CPI. These incorrect hits, however, occur

rarely since SML programs tend to do few assignments (see Section 4.3)

and since most writes are to sequential locations.

(2) Ignoring the effects of context switches and system calls.

(3) The simulations are driven by virtual addresses. Some machines such as
the SPARCStation 11 have physically indexed caches, and will have

different conflict misses than those reported here.

(4) Placing code in the text segment instead of the heap. This improves

performance over the unmodified SML/NJ system. It reduces garbage

collection costs, since code is never copied, and avoids instruction-cache

flushes after garbage collections.

(5) Used default compilation settings for SML/NJ. Default compilation
settings enable extensive optimization (Section 2.6). Evaluating the im-

pact of these optimizations on cache behavior is beyond the scope of this

article.

(6) Used default garbage collection settings. The preferred ratio of heap size
to live data was set to 5 [Appel 1989]. The softmax, which is the desired

upper limit on the heap size, was set to 20MB; the benchmark programs

ACM TransactIons on Computer Systems, Vol. 13. No 3, August 1995.

252 . Amer Diwan et al.

Table I. Benchmark Programs

Program Description

Cw

Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

The Concurrency Workbench [Cleveland et al. 1993] is a tool for analyzing

networks of finite-state processes expressed in Milner’s Calculus of Commu-

nicating Systems. The input is the sample session from Section 7.5 of

Cleaveland et al. [1993].

An implementation of the Knuth-Bendix completion algorlthm, implemented

by Gerard Huet, processing some axioms of geometry.

A lexical-analyzer generator, implemented by James S Mattson and David R.

Tarditi [Appel et al. 1989], processing the lexical description of Standard ML.

The game of Life, written by Chris Reade [Reade 1989], running 50

generations of a glider gun. It is implemented using hsts.

The Perspective Inversion Algorithm [Waugh et al. 1990] decides the location

of an object in a perspective video image.

A spherical fluld-dynamics program, developed as a “realistic” Fortran

benchmark [Crowley et al. 1978], translated into ID [Ekanadham and

Arvind], and then translated into Standard ML by Lal George.

A Very-Long-Instruction-Word instruction scheduler written by John Dan-

skin.

A LALR(I) parser generator, implemented by David R. Tarditi [Tarditi and

Appel 1990], processing the grammar of Standard ML.

never reached this limit. The initial heap size was lNtB. We did not

investigate the interaction of the sizing strategy and cache size. Under-

standing these tradeoffs is beyond the scope of this article.

(7) MIPS as a prototypical RISC machine. All the traces are for the DEC-
station 5000/200, which uses a MIPS R3000 CPU.

(8) All instructions take one cycle with a perfect memory system. This affects
only write-buffer costs, since multicycle instructions give the write buffer

more time to retire writes. The inaccuracy introduced by this assumption

is negligible, since Section 5.4 shows that write-buffer costs are small.

(9) Assuming CPU cycle time does not vary with memory organization. This
may not be true, since the CPU cycle time depends on the cache access

time, which may differ across cache organizations. For example, a 128K

cache may take longer to access than an 8K cache.

4.3 Benchmarks

Table I describes the benchmark programs. ~ Knuth-Bendix, Lexgen, Life,

Simple, VLIW, and YACC are identical to the benchmarks measured by
Appel [1992]. The description of these benchmarks is copied from Appel

[1992]. Table II gives the following for each benchmark: lines of SML code

excluding comments and empty lines, maximum heap size, compiled-code

size, and user-mode CPU time on a DECStation 5000/200. The code size

includes 207KB for standard libraries, but does not include the garbage

lAvailable from the authors,

ACM TransactIons on Computer Systems, Vol. 13, No 3, August 1995

Performance of Programs with Intensive Heap Allocation . 253

Table II. Sizes of Benchmark Programs

Size Run Time

Program Lines Heap Size (KB) Code Size (KB) Non-gc (see) Gc (see)

Cw
Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

5728

491

1224

111
1454

999

3207

5751

1107

2768

2162

1026

1025

11571

1088

1632

894

251

305

221

291

314

486

580

22.74

13.47

15.07

16.97

6.07

25.58

23.70

4.60

3.09

1.48

1.06

0.19

0.34

4.23

1.91

1.98

Table III. Characteristics of Benchmark Programs

Partial

Read Writes Writes Assignments Nops

Program Inst Fetches (70) (%) (’%) (%) (%)

Cw
Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

523,245,987

312,086,438

328,422,283

413,536,662

122,215,151

604,611,016

399,812,033

133,043,324

17.61

19.66

16,08

12.18

25.27

23.86

17.89

18.49

11.61

22.31

10.44

9.26

16.50

14.06

15.99

14.66

0.01
0.00
0.20
0.00
0.00
0.00
0.10
0.32

0.41

0.00

0.21

0.00

0.00

0.05

0.77

0.38

13.24

5.92

12.33

15.45

8.39

7.58

9.04

11.14

collector and other run-time support code, which is about 60KB. The run

times are the minimum of five runs.

Table III characterizes the benchmark programs according to the number

and kinds of memory references they do. All numbers are reported as a

percentage of instructions. The Reads, Writes, and Partial writes columns

list the reads, full-word writes, and partial-word writes done by the program

and the garbage collector; the assignments column lists the noninitializing

writes done by the program only. The Nops column lists the nops executed by

the program and the garbage collector. All the benchmarks have long traces;

most related works use traces that are an order of magnitude smaller. Also,

the benchmark programs do few assignments; the majority of the writes are

initializing writes.
Table IV gives the allocation statistics for each benchmark program. All

allocation and sizes are reported in words. The Allocation column lists the

total allocation done by the benchmark. The remaining columns break down

the allocation by kind: closures for escaping functions, closures for known

functions, closures for callee-save continuations,2 records, and others (in-

cludes spill records, arrays, strings, vectors, ref cells, store list records, and

z Closures for callee-save continuations can be trivially allocated on a stack in the absence of

first-class continuations.

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

254 . Amer D[wan et al.

Table IV. Allocation Characteristics of Benchmark Programs

Allocation Escaping Known Callee Saved Records Other

Program (words) % Size 70 Size % Size To Size % Size

Cw 56,467,440 4.0 4,12 3.3 15.39 67,2 6.20 19.5 3.01 6.0 4,00

Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05

Lexgen 33,046,349 3.4 6.20 5.4 1296 72.7 6.40 15.1 3.00 3.7 6.97

Life 37,840,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 300 0.0 10.29

PIA 18,841,256 0.4 5.56 28.0 11.99 25.0 4.69 12,7 3.41 339 3.22

Simple 80,761,644 4.0 5,70 1.1 15.33 68.1 6.43 8.3 3.00 185 3.41

VLIW 59,497,132 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60

YACC 17,015,250 2.3 4.83 15.3 15.35 54.8 7.44 23.7 3.04 4.0 10.22

Table V Timings of Memory Operations

Task Tlmmgs (Cycles)

Non-page-mode write

Page-mode write

Partial-word write

Page-mode flush

Read 16 bytes from memory

Read 32 bytes from memory

Refresh period

Refresh time

Write hit or miss (subblocks)

Write hit (16 bytes, no subblocks)

Write hit (32 bytes, no subblocks)

Write miss (16 bytes, no subblocks)

Write miss (32 bytes, no subblocks)

TLB miss

5

1
11

4

15

19

195

5

0

0

0

15

19

28

floating-point numbers). For each allocation kind, the % column gives the

total words allocated for objects of that kind as a percentage of total alloca-

tion, and the Size column gives the average size in words, including the

one-word tag, of an object of that kind.

4.4 Metrics

We state cache performance numbers in cycles per useful instruction (CPI).

All instructions besides nops are considered useful.
Table V lists the timings used in the simulations. These numbers are

derived from the penalties for the DECStation 5000/200, but are similar to

those in other machines of the same class. In addition to the times in Table V,

all reads and writes may also incur write-buffer penalties. In an actual

implementation, there may be a one-cycle penalty for write misses in caches

with subblock placement. This is because a tag needs to be written to the

cache after the miss is detected. This does not change our results, since it

adds at most 0.02–0.05 to the CPI of caches with subblock placement.

ACM TransactIons on Computer Systems, Vol. 13, No. 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 255

We used a DRAM page size of 4K in the simulation of page-mode writes.

Page-mode flush is the number of cycles needed to flush the write pipeline

after a series of page-mode writes.

TLB data is reported as the TLB miss contribution to the CPI. This metric

is used instead of just CPI to allow us to present the measurements for all the

benchmarks in one chart. A virtual memory page size of 4K was used in the

simulations.

5. RESULTS AND ANALYSIS

In Section 5.1 we present a qualitative analysis of the memory behavior of

programs compiled with SML/NJ. In Section 5.2 we list the cache and TLB

configurations simulated and explain why they were selected. In Sections 5.3,

5.4, and 5.5 we present data for memory system performance, write-buffer

performance, and TLB performance. In Section 5.6 we validate the simula-

tions. In Section 5.7 we present an analytical model that extends these

results to programs with different allocation behavior.

5.1 Qualitative Analysis

Recall from Section 2 that SML/NJ uses a copying collector. The most-im-

portant property of a copying collector with respect to memory system

behavior is that allocation initializes memory in an area that has not been

touched since the last garbage collection. This means that for caches that are

not large enough to contain the allocation area there will be many write

misses. The slowdown that these write misses translate to depends on the

memory system organization.

Recall from Section 4.3 that SML/NJ programs have the following impor-

tant properties. First they do few assignments: the majority of the writes are

initializing writes. Second, programs do heap allocation at a furious rate: 0.1

to 0.22 words per instruction. Third, writes come in bunches because they

correspond to initialization of a newly allocated area.

The burstiness of writes combined with the property of copying collectors

mentioned above suggests that an aggressive write policy is necessary. In

particular, writes should not stall the CPU. Memory system organizations

where the CPU has to wait for a write to be written through (or back) to

memory will perform poorly. Even memory systems where the CPU does not

need to wait for writes if they are issued far apart (e.g., two cycles apart in

the HP 9000 series 700) may perform poorly due to the bunching of writes.
This means that the memory system needs two features. First, a write buffer

or fast page-mode writes are essential to avoid waiting for writes to memory.

Second, on a write miss, the memory system must avoid reading a cache

block from memory if it is going to be written before being read. Of course,

this requirement only holds for caches with a write-allocate policy. Subblock

placement [Koopman et al. 1992], a block size of one word, and the ALLO-

CATE instruction [Peng and Sohi 1989] can achieve this. Since the effects on
cache performance of these features are similar, we discuss only subblock

placement. For large caches, when the allocation area fits in the cache and

ACM Transactions on Computer Systems, Vol. 13, No 3, August 1995.

256 . Amer Dlwan et al.

Table VI. Memory System Organizations Studied

Write Write Miss Block Cache Write Page

Policy Policy Subblocks Assoc Size Sizes Buffer mode

through allocate yes 1, 2 16, 32 bytes 8K-512K 1-6 deep yes

through allocate no 1, 2 16, 32 bytes 8K-512K 6 deep no

through no allocate no 1, 2 16, 32 bytes 8K-512K 6 deep no

Table VII. Memory System Organization of Some Popular .Machines

Write Write Miss Write Block Cache

Architecture Policy Policy Buffer Subblocks Assoc Size Size

DS31OO through allocate 4 deep — 1 4 bytes 64K

DS5000/200 through allocate 6 deep yes 1 16 bytes 64K

HP 9000 back allocate none no 1 32 bytes 64K-2M

SPARCStation II through no allocate 4 deep no 1 32 bytes 64K

SPARCStations have unified caches; most HP 9000 series 700 caches are much smaller than 2M:

128K instruction cache and 256K data cache for models 720 and 730, and 256K instruction cache

and 256K data cache for model 750: the DS5000/200 actually has a block size of four bytes with

a fetch size of 16 bytes, This is stronger than subblock placement since it has a full tag on every

“subblock.”

thus there are few write misses, the benefit of subblock placement will be

reduced.

5.2 Cache and TLB Configurations Simulated

The design space for memory systems is enormous. There are many variables

involved, and the dependencies among them are complex. Therefore we could

study only a subset of the memory system design space. In this study, we

restrict ourselves to features found in currently popular RISC workstations

[Cypress 1990; DEC 1990a; 1990b; Slater 1991]. Table VI summarizes the

cache organizations simulated. Table VII lists the memory system organiza-

tions of some popular machines.

We simulated only separate instruction and data caches (i.e., no unified

caches). While many current machines have separate caches (e.g., DECSta-

tions, HP 700 series), there are some exceptions (notably SPARCStations).

We report data only for write-through caches, but the CPI for write-back

caches can be inferred from the data for write-through caches. While write-

through and write-back caches have identical misses, their contribution to
the CPI may differ for two reasons.

First, a write hit or miss in a write-back cache may take one cycle more

than in a write-through cache. A write-back cache must probe the tag before

writing to the cache [Jouppi 1993], unlike a write-through cache. It is easy to

adjust the data for write-through caches for this to obtain the data for

write-back caches. If the program has w writes and n useful instructions,

then the CPI for a write-back cache can be obtained by adding w/n to the

CPI of the write-through cache with the same size and configuration. For

ACM TransactIons on Computer Systems, Vol 13, No, 3, August 1995,

Performance of Programs with Intenswe Heap Allocation . 257

VLIW w\n is 0.18. Second, write-through and write-back caches may have

different write-buffer penalties because they do writes to main memory with

different frequencies and at different points. We expect the write-buffer

penalties for write-back caches to be smaller than those for write-through

caches since writes to main memory are less frequent for write-back caches

than for write-through caches. This difference between write-through and

write-back caches is likely to be negligible since the write-buffer penalty is

small even for write-through caches.

We simulated fully associative, unified TLBs from 1 to 64 entries with an

LRU replacement policy. Some machines (such as the HP 9000 series) have

separate instruction and data TLBs. From Section 5.5 it is clear that for the

benchmarks even small unified TLBs perform well.

Two of the most-important cache parameters are write-allocate versus

write-no-allocate and subblock placement versus no subblock placement. of

these, the combination write-no-allocate/subblock placement offers no im-

provement over write-no-allocate/no subblock placement for cache perfor-

mance. Thus, we did not collect data for the write-no-allocate/subblock

placement configuration.

5.3 Memory System Performance

We present memory system performance in summary graphs and breakdown

graphs. Each summary graph summarizes the performance of one benchmark

program for a range of cache sizes (8K to 512K), write-miss policies (write-al-

locate or write-no-allocate), subblock placement (with or without), and asso-

ciativity (1 or 2). Each curve in a summary graph corresponds to a different

memory system organization. There are two summary graphs for each pro-

gram, one for a block size of 16 bytes and another for a block size of 32 bytes.

Each breakdown graph breaks down the memory system overhead into its

components for one configuration in a summary graph. The write-buffer

depth in these graphs is fixed at six entries.

In this section we present only the summary graphs for VLIW (Figure 2).

The data for other programs are similar and are given in the Appendix.

Figures 3, 4, and 5 are the breakdown graphs for VLIW for the 16-byte block

size configurations; the remaining breakdown graphs for VLIW are similar

and omitted for conciseness. The breakdown graphs for the other benchmarks

are similar (and predictable from the summary graphs) and are thus omitted
for the same reason. The full set of graphs is available from the authors.

In the summary graphs, the nops curve is the base CPI: the total number

of instructions executed divided by the number of useful (not nop) instruc-

tions executed; this corresponds to the CPI for a perfect memory system. For

the breakdown graphs, the nop area is the CPI contribution of nops; read

miss is the CPI contribution of read misses; write miss is the CPI contribu-

tion of write misses (if any); inst fetch miss is the CPI contribution of
instruction fetch misses; write buffer is the CPI contribution of the write

buffer; partial word is the CPI contribution of partial-word writes.

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

258 . Amer Diwan et al.

—.— write-no-allot, no-subblk, assoc=l ‘---* ‘-- write-no-allot, no-subblk, assoc=2

~ write-allot, subblk, assoc=l --- -Cl--- wnte-~l~~, subblk, assoc=2

— ‘— write-allot, no-subblk, assoc= 1 ‘--- ● ‘-- write-allot, no-subblk, assoc=2
—.— nops

3.5

1

(a) Block size = 16 bytes

~

‘:
:,

‘tq\

“y

\
,. ‘b:\

!~ ,A

“Q, \ ‘:, ,

\

‘*::,

‘, “’a:,

‘“> “ .,,

—0

MM~MMMM
w a

MMM M~

.s:~;wz db=
Split I and D Cache sizes Split I and D Cache sizes

Fig. 2. VLIW summary.

9 nop ❑ read miss ❑ inst fetch miss ❑ write buffer W partml word

i\ (b) f%SOC = 2

x+’.j m % ti v-1

Spht I and D cache sizes Split I and D cache sizes

Fig. 3, VLIW breakdown, write-no-allocate, no subblock, block size = 16,

ACM TransactIons on Computer Systems, Vol. 13, No, 3, August 1995,

Performance of Programs with Intensive Heap Allocation . 259

❑ nop ❑ read miss ❑ inst fetch miss ❑ write buffer ❑ partial word

I

3.5 (3.5
I T

c 3

I

(a) Assoc = 1 G 34 (b) fhSOC = 2
0.- 0.+
g s

h

g
~ 2.5

!
~ 2.5 ~

MM MMMM~
cowed

MM MMMMM
. ro$:~z”z%i$:5$

Split I and D cache sizes Split I and D cache sizes

Fig.4. VLIWbreakdown, write-allocate, subblock, block size = 16.

r❑ nop ❑ read miss ❑ instfetch miss ❑ write buffer ❑ partial word I
3.5 :

c 3
0.,..
s
~

~ 2.5
.
~

32
~

-u
G 1,5

1
%L4titi%titi

mz~~~
COQN

Spht I and D cache sizes

Fig.5. VLIWbreakdown, write-allocate, nosubblock, block size = 16.

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995,

3.5

(b) fhsOC = 2

—-——..———_ ——.—___ .
1- ,,

MM MMMMM
ro3~?:COWC4

Split I and D cache sizes

260 . Amer Diwan et al.

The 64K point on the write allot, sub block, assoc = 1 curves corresponds

closely to the DECStation 5000/200 memory system.

In the following subsections we describe the impact of write-miss policy and

subblock placement, associativity, block size, cache size, write buffer, and

partial-word writes on the memory system performance of the benchmark

programs.

5.3.1 Write-Miss Policy and Sub block Placement. From the summary

graphs, it is clear that the best cache organization we studied is write-alloc-

ate/s ubblock placement; it substantially outperforms all other configurations.

For a memory system with 64K direct-mapped write-allocate caches and

four-word blocks, subblock placement reduces the CPI by 0.35 to 0.88, with an

arithmetic mean improvement of 0.55. Surprisingly, for sufficiently large

caches with the write-allocate/subblock placement organization, the memory

system performance of SML/NJ programs is acceptable; the overhead due to

data cache misses ranges from 3 to 13% (arithmetic mean 9%) for 64K

direct-mapped caches and 1 to 1370 (arithmetic mean 97o) for 32K two-way

associative caches. Recall that the 64K direct-mapped configuration corre-

sponds to the DECStation 5000/200 memory system. The memory system

overhead of SML/NJ programs on the DECStation 5000/200 is similar to

that of C and Fortran programs [Chen and Bershad 1993]. It is worth

emphasizing that the memory system performance of SML/NJ programs is

good on some current machines despite the very high miss rates; for a 64K

cache with a block size of 16 bytes, the write-miss and read-miss ratios for

VLIW are 0.23 and 0.02 respectively.

Recall that in Section 5.1 we argued that the benefit of subblock placement

would be substantial, but that the benefit would decrease for larger caches.

The summary graphs indicate that the reduction in benefit is not substantial

even for 128K cache sizes; however, the benefit of subblock placement de-

creases sharply for larger caches for six of the benchmark programs. This

suggests that the allocation area size of six of the benchmark programs is

between 256K and 512K.

The performance of write-allocate/no subblock is almost identical to that

of write-no-allocate/no subblock (Knuth-Bendix is an exception). The differ-

ence between them is so small in most graphs that the two curves overlap.

This suggests that an address is being read soon after being written; even in

an 8K cache, an address is read after being written before it is evicted from

the cache (if it was evicted from the cache before being read, then write -alloe-

ate/no sub block would have inferior performance). The only difference be-

tween these two schemes is when a cache block is read from memory. In one

case, it is brought in on a write miss; in the other, it is brought in on a read

miss. Because SML/NJ programs allocate sequentially and do few assign-

ments, a newly allocated object remains in the cache until the program has

allocated another C bytes, where C is the size of the cache. Since the

programs allocate 0.4–0.9 bytes per instruction, our results suggest that a

read of a block occurs within 9K–20K instructions of its being written.

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995,

Performance of Programs with Intenswe Heap Allocation . 261

The benefit of subblock placement is not limited to strongly functional

languages such as Standard ML. Jouppi [1993] reports that subblock place-

ment combined with an 8K data cache and a 16-byte cache line eliminates

31% of the memory references for C programs. Reinhold [1993] finds that the

memory performance of Scheme programs is good with subblock placement.

5.3.2 Changing Associativity. From Figure 2 we see that increasing asso-

ciativity improves all organizations. The improvement in going from one-way

to two-way set associativity is much smaller than the improvement obtained

from subblock placement. For a memory system with 64K write-allocate

caches and four-word blocks, increasing associativity reduces the CPI by 0.01

to 0.09, with an arithmetic mean improvement of 0.06. The maximum benefit

from higher associativity is obtained for small cache sizes less than 16K.

However, increasing associativity may increase CPU cycle time, and thus the

improvements may not be realized in practice [Hill 1988].

From Figures 3, 4, and 5 we see that higher associativity improves the

instruction cache performance but has little or no impact on data cache

performance. Surprisingly, for direct-mapped caches (Figures 3(a), 4(a), and

5(a)) the instruction cache penalty is substantial for 128K or smaller caches.

For caches with subblock placement, the instruction cache penalty can domi-

nate the penalty for the memory system. The improvement observed in going

to a two-way associative cache suggests that a lot of the penalty from the

instruction cache is due to conflict misses, and that from the data cache is

due to capacity misses. The data cache is simply not large enough to hold the

working set. When the benchmark programs are examined, the performance

of the instruction cache is not surprising: the code consists of small functions

with frequent calls, which lowers the spatial locality. Thus, the chances of

conflicts are greater than if the instructions had strong spatial locality.

5.3.3 Changing Block Size. From Figure 2 we see that increasing block

size from 16 to 32 bytes also improves performance. For a memory system

with 64K direct-mapped write-allocate caches, increasing block size reduces

the CPI by 0.14 to 0.35, with an arithmetic mean improvement of 0.22. For

the write-allocate organizations, doubling the block size can halve the write-

miss rate. Thus, larger block sizes improve performance when there is a

penalty for a write miss [Koopman et al. 1992]. In particular, larger block

sizes have little to offer to caches with write-allocate /sub block placement.

From Figure 2 we see that the write-no-allocate organizations benefit just as

much from larger block size as write-allocate[no subblock placement; this

suggests that the spatial locality of the reads is comparable to that of the

writes.

Note that subblock placement improves performance more than even two-

way associativity and 32-byte blocks combined.

5.3.4 Changing Cache Size. Three distinct regions of performance can be

identified for cache sizes. The first region corresponds to the range of cache

ACM TransactIons on Computer Systems, Vol. 13, No. 3, August 1995.

262 . Amer Diwan et al.

sizes when the allocation area does not fit in the cache (i.e., allocation

happens in an area of memory which is not cache resident). For most of the

benchmarks, this region corresponds to cache sizes of less than 256K (for

Simple and Knuth-Bendix this region extends beyond 512K). In this region,

increasing the cache size uniformly improves performance for all con@-ura-

tions. However, the performance improvement from doubling the cache size is

small.

From the breakdown graphs we see that in the first region the cache size

has little effect on the data cache miss contribution to CPI. Most of the

improvement in CPI that comes from increasing the cache size is due to

improved performance of the instruction cache. As with associativity, cache

sizes have interactions with the cycle time of the CPU: larger caches can take

longer to access. Thus, small improvements due to increasing the cache size

may not be achieved in practice.

The second region ranges from when the allocation area begins to fit in the

cache until the allocation area fits in the cache. For most of the benchmarks

(once again excepting Simple and Knuth-Bendix), this region corresponds to

cache sizes in the range 256K to 512K.3 In this region, increasing the cache

size sharply improves the data cache performance for memory organizations

without subblock placement. However, increasing the cache size in this

region has little to offer for instruction cache performance because the

instruction cache miss penalty is already low at this point.

The third region corresponds to cache sizes when the allocation area fits in

the cache. For five of the benchmarks, this region corresponds to caches

larger than 512K (for Lexgen, Knuth-Bendix, and Simple this region starts at

larger cache sizes). In this range, increasing the cache size has little or no

impact on memory system performance because everything remains cache

resident, and thus there are no capacity misses to eliminate.

5.3.5 Write-Buffer and Partial-Word Write Overheads. From the break-

down graphs we see that the write-buffer and partial-word write contribu-

tions to the CPI are negligible. A six-deep write buffer coupled with page-mode

writes is sufficient to absorb the bursty writes. As expected, memory system
features which reduce the number of misses (such as higher associativity and

larger cache sizes) also reduce the write-buffer overhead.

5.4 Write-Buffer Depth

In Section 5.3.5 we showed that a six-deep write buffer coupled with page-

mode writes was able to absorb the bursty writes in SML/NJ programs. In
this section we explore the impact of write-buffer depth on the write-buffer

contribution to CPI. Since the speed at which the write buffer can retire

writes depends on whether or not the memory system has page-mode writes,

we conducted two sets of experiments: one with and the other without

page-mode writes. We varied the write-buffer depth from 1 to 6. We con-

ducted this study for two of the larger benchmarks: CW and VLIW. We fixed

3For Lexgen this region extends a little beyond 512K.

ACM Transactions on Computer Systems, Vol. 13, No, 3, August 1995

Performance of Programs with Intensive Heap Allocation . 263

I—.—wb depth= 1 ~ wb depth.2 ‘*— wb depth=4 ~ wb depth.6

0.2

0.18

= 0.16
0

% 0.14
~

~ 0.12
.,-1
~ ().1

Z 0.08
>
+ 0.06

G’ 0,04

0.02

0.2 ~

0.18]

0.16

\

(b) ASSOC = 2

0.14 ‘,

\
0.12 K

~ \ ~’\,

0“1 I ‘>\’;\
0.08 +

0.06 t
<~\

0.04 ;

\
?\\\

0.02

0 L.._.+k’

I and D cache size I and D cache size

Fig. 6. Write-buffer CPI contribution for VLIW, with page-mode writes.

the block size at 16 bytes and the write miss policy at write-allocate/subblock

placement.

Figure 6 gives the write-buffer costs for VLIW with caches of associativity

one and two and in a memory system with page-mode writes; Figure 7 does

the same in a memory system without page-mode writes. The graphs plot the

CPI contribution of the write buffer against cache size; there is one curve for

each write-buffer depth. Increasing the cache size or associativity reduces the

number of read and instruction-fetch misses, and thus reduces the number of

main-memory transactions. Reducing the number of main-memory transac-

tions increases the effectiveness of the write buffer since the write buffer fills

up less frequently and has more cycles in which to retire its writes (Section

2.1).

In memory systems with page-mode writes (Figure 6), the difference be-

tween the CPI contribution of a one-deep write buffer and a six-deep write

buffer is less than 0.05. This is surprisingly small considering the burstiness

of the writes. This is due to the effectiveness of page-mode writes. An example

illustrates this.

Suppose that a program is allocating and initializing a four-word object and

that the write buffer is one-deep. Further suppose that the write buffer is

empty and that the instructions doing the allocation all hit in the instruction

cache. The first write does not stall the CPU since the write buffer is empty.

At the next write one cycle later the write buffer is full, and the CPU stalls.

After four cycles (see Table V) the write is placed in the write buffer. This

ACM Transactions on Computer Systems, Vol. 13, No, 3. August 1995,

264 . Amer Diwan et al.

I ‘m— wb depth. 1 ~ wb depth=2 ‘*— wb depth=4 ~ wb deptb=6

0.6

0.5

+=..
‘-m.. (a) Assoc = 1

&

~=. -.= _

---–- +

\
‘b. .

:’%,
-~+

‘\\ ‘ ,+

+ “%,,,’-’’*... ..*_ ____e
k.

-=&,

+ ‘ e-.—-.—+

o ,—.–-+—+

0.6

0.5

f-. ...= _ (b) fhSOC = 2

!

‘“ >....
~..+

‘--+-.D

t
‘ lT___

-C-.—4

I

() L—–-..k— —.

1 and D cache size I and D cache size

Fig. 7. Write-buffer CPI contribution for VLIW, without page-mode writes.

write, however, is likely to be on the same DRAM page as the previous

M
co
c+

write,

since it is to the next address. It will therefore complete in one cycle. All

subsequent writes to initialize this object find an empty write buffer since

they also complete in one cycle due to page-mode writes.

Due to sequential allocation, it is likely that writes to initialize objects

allocated one after another will also be on the same DRAM page. In the best

case, with no read misses and refreshes, a write-buffer-full delay will happen

only once per N words of allocation, where N is the size of the DRAM page.

Thus, the write buffer depth has little effect on the performance of SML/NJ

programs if the memory system has page-mode writes. To confirm this

explanation, we measured the probability of two consecutive writes being

on the same DRAM page. This probability averaged over the benchmarks

was 969Z0.

The small impact of write-buffer depth on performance does not imply that
a write buffer is useless if the memory system has page-mode writes. Instead,

it says that a deep write buffer offers little performance improvement in a

memory system with page-mode writes if the programs have strong spatial

locality in the writes and if the majority of the reads and instruction fetches

hit in the cache. Strong spatial locality means that the probability that two

consecutive writes are to the same DRAM page is high.

Write-buffer depth is important, however, if the memory system does not

have page-mode writes (Figure 7). In this case, a six-deep write buffer

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 265

25
T

2

2 4 8 16 32 64

Numberof TLB enhies

Fig. 8. TLB contribution to CPI.

performs much better than a one-deep write buffer. Note that Figures 6 and 7

have different scales.

5.5 TLB Performance

Figure 8 gives the TLB miss contribution to the CPI for each benchmark

program. We see that the CPI contribution of TL13 misses falls below 0.01 for

all our programs for a 64-entry unified TLB; for half the benchmarks, it is

below 0.01 even for a 32-entry TLB.

5.6 Validation

To validate our simulations, we ran each of the benchmarks five times on a

DECStation 5000/200 (running Mach 2.6) and measured the elapsed user

time for each run. The programs were run on a lightly loaded machine but

not in single-user mode. The simulations with write-allocate/subblock place-

ment, 64K direct-mapped caches, 16-byte blocks, and 64-entry TLB corre-

spond closely to the DE Citation 5000/200 with the following three impor-

tant differences. First, the simulations ignored the effects of context switches

and system calls. Second, the simulations assumed a virtual address =

physical address mapping which can have many fewer conflict misses than

the random mapping used in Mach 2.6 [Kessler and Hill 1992]. Third, the

simulations assume that all instructions take exactly one cycle (plus memory

system overhead).

In order to minimize the memory system effects of the virtual-to-physical
mapping and context switches, we took the minimum CPI of the five runs for

each program and compared it to the CPI obtained via simulations. We

present our findings in Table VIII; Measured (see) is the user time of the

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

266 . Amer Diwan et al.

Table VIII. Measured versus Simulated

Measured Measured Simulated Multicycle Discrepancy

Promam (see) CPI CPI CPI (?6)

Cw

Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

2583

14.95

16.13

17.16

6.41

29.81

25.61

6.58

142

1,27

1.40

1.23

1.43

1.33

1.76

1,39

1,39

1.21

1.31

1.21

1,18

1.21

1.39

1.36

0.00

0.00

0.00

0.00

*
*

0.20
0.00

2.48

5.22

6.29

1.19

17,62

9,03

9.66

2.20

‘cannot be determined without simulating the CPU and/or FP unit pipehnes

program in seconds; Measured CPI is the CPI obtained from the measured

time; Simulated CPI is the CPI obtained from the simulations; Multicycle

CPI is the overhead of multicycle instructions when it could be accurately

computed; Discrepancy is the discrepancy between the simulated CPI plus

the multicycle CPI and the measured CPI as a percentage of measured CPI.

Table VIII shows that with the exception of PIA, the discrepancy is less

than 10’% and that the actual runs validate the simulations. The discrepancy

in PIA is due to multicycle instructions which comprise 4.8% of the total

instructions executed. Since multicycle instructions do not cause a stall until

their result is used, their cost can usually be determined only by simulations.

We were able to determine the overhead of multicycle instructions accurately

for VLIW since the results of most multicycle instructions are used immedi-

ately afterward. In the case of PIA, the distance between multicycle instruc-

tions and their use varies considerably. However, even if each multicycle

instruction stalls the CPU for half its maximum latency, the discrepancy falls

well below 10%. Thus, multicycle instructions can explain the discrepancy for

PIA.

5.7 Extending the Results

Section 5.3 demonstrated that heap allocation can have a significant memory

system cost if new objects cannot be allocated directly into the cache. In this

section, we present an analytic model which predicts the memory system cost

due to heap allocation when this is the case. The model formalizes the

intuition presented in Section 5.1 and predicts the memorys ystem cost due to

heap allocation when block sizes, miss penalties, or heap allocation rates

change. We use the model to speculate about the memory system cost of heap

allocation for caches without subblock placement if SML/NJ were to use a

simple stack.

5.7.1 An Analytic Model. Recall that heap allocation with copying garbage

collection allocates memory which typically has not been touched in a long

time and is unlikely to be in the cache. This is especially true when the

allocation area does not fit in the cache. When newly allocated memory is

initialized, write misses occur. The rate of write misses depends on the

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 267

Table IX. Percentage Difference between Analytical Model and Simulations

Cache Size Write-No-Allot/No Subblock Write-Allot/No Subblock

(Kilobytes) (%) (%)

8K 7.12 2.4

16K 6.84 2.2

32K 7.02 2.2

64K 10.8 5.7

128K 31.8 23.5

256K 128.8 111.4

512K 1847’.7 1746.2

allocation rate (a words\ instruction) and the block size (b words). Given the

rate of write misses, we can calculate the memory system cost, C, due to heap

allocation. The read and write miss penalties are rP and WP respectively.

Under the assumption that the allocation area does not fit in the cache, i.e.,

initializing writes miss, we have

c write allot = WP*a/b,

Under the additional assumption that programs touch data soon after it is

allocated, we have

c write no allot =rp+a/b,

Since the benchmarks do few assignments, the cost of heap allocation

should account for the difference in CPIS when the write-miss policy is varied.

Hence,

c write no allot/no subblock = CPIW,i,, ~0,llOC,~O,U~~lOC~– CPIW,,,e ~llOC/,U~~lOC~

Table IX shows the average (arithmetic mean) difference between the

predicted cost, C, and the actual difference in CPIS, as a percentage of the

actual difference in CPIS. The values used to calculate Table IX were: b = 4,

‘P
= 15, and Wp = 15.

The model is accurate for cache sizes of 128K or less, when the allocation

area does not fit in the cache. As expected, the model is inaccurate when the

allocation area fits in the cache. The percentage difference heads toward

infinity as the benefit of subblock placement becomes negligible. Thus, this

model can be used to predict the memory system cost of heap allocation for

small cache sizes.

5.7.2 SML/NJ with a Stack. We can speculate about the memory system

cost of heap allocation in SML\NJ when a stack is used using this model. In

the absence of first-class continuations, which the benchmarks do not use,

callee-save continuations can be stack-allocated easily. The callee-save con-

tinuations correspond to procedure activation records. The first two columns
of Table X give the rate of heap allocation with and without heap allocation of

callee-save continuations,

ACM Transactions on Computer Systems, Vol 13, No. 3, August 1995

268 . Amer Dlwan et al,

Table X, Expected Memory System Cost of Heap Allocation for Caches without Subblock

Placement (assuming procedure activation records are stack-allocated in SML/NJ)

Allocation Rate Allocation Rate

Including Callee-Save Cents. Excluding Callee-Save Cents. c

Program (Words/Useful InstructIon) (Words/Useful Instruction) (Cycles/Instruction)

Cw
Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

Median

0.12

0.23

0.11

0.11

0.17

0.14

0.16

0.14

0.14

0.04

012

0.03
(),()2

013

0.05

0.06

0.07

0.05

0.15

044

012

0.09

0.47

0.17

0.23

0.24

0.20

Assuming only continuations are stack-allocated, column 3 of Table X

presents an estimate of the memory system cost of heap allocation for caches

that do not have subblock placement and are too small to hold the allocation

area. The block size is 16 bytes, the read-miss penalty 15 cycles, and the

write-miss penalty for the no-subblock caches 15 cycles. Since the read and

write miss penalties are the same, C is the same for write-allocate and

write-no-allocate organizations.

This is an upper bound on the expected memory system cost of heap

allocation with a stack because it may be possible to stack-allocate additional

objects [Kranz et al. 1986]. We see that even with a simple stack, the memory

system costs due to heap allocation for caches without subblock placement

will probably be significant for SML\NJ programs.

6. FUTURE WORK

We suggest three directions in which this study can be extended:

—measuring the impact of other architectural features not explored in this
work,

—measuring the impact of different compilation techniques, and

—measuring other aspects of programs.

Regarding architectural features, there is a need to explore memory system

performance of heap allocation on newer machines. As CPUS get faster

relative to main memory, memory system performance becomes even more
crucial to good performance. To address the increasing discrepancy between

CPU speeds and main-memory speeds, newer machines, such as Alpha

workstations [DEC 1992], often have features such as secondary caches,

stream buffers, and register scoreboarding. The interaction of these features

with heap allocation needs to be explored.
Regarding different compilation techniques, the impact of stack allocation

is worth measuring. A stack reduces heap allocation (which performs badly

on most memory system organizations) in favor of stack allocation (which can

ACM Transactions on Computer Systems, Vol 13, No 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 269

have good cache locality since it focuses most of the references to a small part

of memory, namely the top of the stack). For SML\NJ programs, the majority

of heap-allocated objects can be allocated on the stack (Table IV). Therefore

stack allocation can substantially improve performance of SML\NJ programs

on memory organizations without subblock placement or with small cache

sizes. However, stack allocation can slow down exceptions, first-class continu-

ations, and threads, A careful study is needed to evaluate the pros and cons of

doing stack allocation.

Regarding measuring other aspects of programs, several areas seem

promising for future work:

(1) Measuring the impact of different garbage collection algorithms on cache
performance.

(2) Measuring the impact of changing various garbage collector parameters

(such as allocation area size) on cache performance.

(3) Measuring the cost of various operations related to garbage collection:
tagging, store checks, and garbage collection checks. A preliminary study

of this is reported in Tarditi and Diwan [1993].

(4) Measuring the impact of optimizations on cache performance.

7. CONCLUSIONS

We have studied the memory system performance of heap allocation with

copying garbage collection, a general automatic storage management tech-

nique for programming languages. Heap allocation is useful for implementing

language features where objects may have indefinite extent, such as list-

processing, higher-order functions, and first-class continuations. However,

heap allocation is widely believed to lead to poor memory system performance

[Peng and Sohi 1989; Wilson et al. 1990; 1992; Zorn 1991]. This belief is based

on the high (write) miss ratios that occur when new objects are allocated and

initialized.

We studied the memory system performance of mostly functional SML

programs compiled with the SML\NJ compiler. These programs heap allo-

cate at intensive rates. They use heap-only allocation: all allocation, including

activation records, is done on the heap. We simulated a wide variety of

memory systems typical of current workstations.

To our surprise, we found that heap allocation performed well on some

memory systems. In particular, on an actual machine (the DE Citation

5000/200), the memory system performance of heap allocation was good.

However, heap allocation performed poorly on most memory system organiza-

tions. The memory system property crucial for achieving good performance

was the ability to allocate and initialize a new object into the cache without a

penalty. This can be achieved by having subblock placement or a cache large

enough to hold the allocation area, along with fast page-mode writes or a

sufficiently deep write buffer.
We found for caches with subblock placement, the arithmetic mean of the

data cache penalty was under 970 for 64K or larger caches; for caches without

ACM Transactions on Computer Systems, Vol. 13, No, 3, August 1995

270 . Amer Diwan et al.

Table XI. CPI with a Perfect Memory System

Program CPI

Cw
Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW

YACC

1.15

1.06

1.14

1.18

1.09

1.08

1.10

1.13

subblock placement, the mean of the data cache penalty was often higher

than 50%. We also found that a cache size of 512K aIlowed the allocation area

for six of the benchmark programs to fit in the cache, which substan-

tially improved the performance of cache organizations without subblock

placement.

The implications of these results are clear. First, a stack is not needed to

achieve good memory system performance. Given the right memory system,

heap allocation of procedure activation records can also have good memory

system performance, Heap allocation can be used without a performance

penalty in place of stack allocation, even though it is a more-general storage

management technique. Second, computer architects can better support lan-

guages which make heavy use of dynamic storage allocation on machines

with small primary caches by using subblock placement with a subblock size

of one word.

APPENDIX. SUMMARY TABLES

Table XI gives the CPI of the benchmark programs for a perfect memory

system. Table XII gives the CPI for each of the benchmark programs for the

different memory organizations. The following abbreviations are used in the

CPI table:

wa/wn: write allocateiwrite no allocate

s/ns: subblock placement\no subblock placement

418: Block size = 4 words\ Block size = 8 words.

ACKNOWLEDGMENTS

We thank Peter Lee for his encouragement and advice during this work.

We thank E. Biagioni, B. Chen, O. Danvy, A. Forin, U. Hoelzle, K. McKinley,

E. Nahum, D. Stefanovi6, and D. Stodolsky for comments on drafts of

this article, B. Milnes and T. Dewey for their help, J. Larus for creating QPT,

M. Hill for creating Tycho, and A. W. Appel, D. MacQueen, and many others

for creating SML\NJ.

ACM Transactions on Computer Systems, Vol 13, No 3, August 1995.

Performance of Programs with Intensive Heap Allocation . 271

Table XII. Cycles per Useful Instructions

Associativity = 1 Associativity = 2

Config 8K 16K 32K 64K 128K 256K 512K 8K 16K 32K 64K 128K 256K 512K

wn,ns,4 2.41 2.07 1.88 1.73 1.43

wajns,4 2.44 2.09 1.90 1.74 1.44

wa,s,4 1.96 1.62 1.44 1.39 1.24

wnjnsj8 2.18 1.89 1.72 1.60 1.37

wa,ns,8 2.19 1.89 1.72 1.60 1.37

wa,s,8 1.88 1.59 1.43 1.38 1.23

wn,ns,4 2.32 2.18 1.96 1.87 1.79

wa,ns,4 2.53 2.40 2.18 2.08 1.98

wa,s,4 1.66 1.52 1.30 1.20 1.15

wn,ns,8 2.05 1.93 1.75 1.67 1.60

wa,ns,8 2.12 2.00 1.82 1.73 1.66

wa,s,8 1.56 1.44 1.26 1.18 1.13

wn,ns,4 3.59 1.94 1.84 1.72 1.65

wa,ns,4 3.61 1.96 1.85 1.74 1.67

wa,s,4 3.17 1.53 1.42 1.31 1.27

wn,ns,8 2.96 1.78 1.67 1.57 1.51

wa,ns,8 2.97 1.79 1.68 1.57 1.51

wa,s,8 2.70 1.51 1.41 1.30 1.26

wn,ns,4 1.79 1.70 1.65 1.62 1.61

wajns,4 1.80 1.70 1.65 1.62 1,60

wa,s,4 1.39 1.29 1.24 1.21 1,20

wn,ns,8 1.65 1.55 1.49 1.47 1.46

wa,nsj8 1.65 1.55 1.50 1.47 1.45

wa,s,8 1.39 1.29 1.24 1.21 1.20

wn,ns,4 2.23 1.93 1.80 1.75 1.62

wa,ns,4 2.27 1.96 1.82 1.77 1.65

wa,s,4 1.66 1.36 1.22 1.18 1.15

wn,ns,8 1.92 1.70 1.59 1.55 1.46

wa,ns,8 1.95 1.72 1.60 1.56 1.47

wa,s,8 1.55 1.32 1.21 1.17 1.14

wn,ns,4 2.32 2.02 1.79 1.73 1.70

wa,ns,4 2.35 2.05 1.81 1.75 1.72

wa,s,4 1.80 1.50 1.26 1.21 1.19

wn,ns,8 2.03 1.79 1.57 1.51 1.49

wa,ns,8 2.05 1.80 1.58 1.53 1.50

wa,s,8 1.70 1.45 1.23 1.18 1.16

wn,ns,4 3.26 2.73 2.30 1.98 1.79

wa,ns,4 3.29 2.75 2.32 2.00 1.82

wa,s,4 2.67 2.13 1.70 1.39 1.31

wn,ns,8 2.62 2.25 1.93 1.70 1.57

wa,ns,8 2.63 2.26 1.94 1.70 1.58
wa, s,8 2.23 1.86 1.55 1.31 1.25

Cw
1.30 1.18 2.22 1.96 1.78 1.62 1.42 1.30 1.17

1.31 1.18 2.24 1.98 1.79 1.63 1.43 1.31 1.17

1.20 1.17 1.77 1.50 1.33 1.25 1.21 1.18 1.16

1.27 1.18 1.98 1.76 1.62 1.50 1,35 1.26 1.17

1.27 1.18 1.98 1.76 1.61 1.49 1.35 1.26 1.17

1.20 1.17 1.68 1.46 1.32 1.25 1.21 1.18 1.16

Leroy

1.65 1.37 2.17 2.03 1.89 1.82 1.76 1.65 1.40

1.83 1.50 2.38 2.25 2.09 2.00 1.95 1.83 1.57

1.12 1.09 1,51 1.37 1.21 1.12 1.10 1.09 1.08

1.50 1.30 1.92 1.81 1.68 1.61 1.57 1.50 1.33

1.56 1.35 1.99 1.87 1.74 1.67 1.63 1.55 1.38

1.11 1.09 1.43 1.32 1.19 1.11 1.09 1.08 1.07

Lexgen

1.50 1.31 2.04 1.85 1.70 1.64 1.60 1.50 1.34

1.51 1.31 2.06 1.87 1.71 1.66 1.61 1.51 1.35

1.21 1,19 1.62 1.43 1.28 1.22 1.20 1.19 1.18

1.39 1.27 1.86 1.71 1.56 1.49 1.45 1.38 1.28

1.40 1.27 1.87 1.71 1.57 1.50 1.46 1.39 1.28

1.21 1,19 1.60 1.44 1.30 1.22 1.20 1.18 1.18

Life

1.42 1.20 1.77 1.64 1.61 1.60 1.60 1.48 1.19

1.42 1.20 1.74 1.64 1.60 1.60 1.59 1.48 1.19

1.19 1,19 1.33 1.23 1.20 1.19 1.19 1.19 1.18

1.34 1.19 1.57 1.54 1.46 1.45 1.44 1.37 1.19

1.34 1.19 1.57 1.51 1.45 1.45 1.44 1.37 1.19

1.19 1.19 1.31 1.25 1.20 1.19 1.19 1.18 1.18

Pia

1.34 1.12 2.23 1.83 1.73 1.72 1.63 1.36 1.12

1.36 1.12 2.26 1.85 1.76 1.74 1.66 1.39 1.12

1,13 1.10 1.66 1.25 1.15 1.14 1.12 1.11 1.10

1.26 1.11 1.87 1.60 1.53 1.51 1.45 1.28 1.11

1.27 1.11 1.89 1.61 1.54 1.52 1.47 1.30 1.11

1.12 1.10 1.49 1.22 1.14 1.13 1.11 1.10 1.10
Simple

1.68 1.62 1.98 1.74 1.70 1,70 1.68 1.66 1.63

1.70 1.64 2.01 1.76 1.72 1.72 1.69 1.68 1.65

1.18 1.15 1.46 1.21 1.18 1.17 1.16 1.15 1.14

1.47 1.43 1.72 1.52 1.49 1.48 1.47 1.46 1.44

1.48 1.44 1.74 1.54 1.50 1.49 1.48 1.47 1.44

1.15 1.13 1.39 1.19 1.15 1.15 1.14 1.13 1.13

VLIW

1.35 1.15 3.06 2.64 2.19 1.88 1,69 1.37 1,14

1.36 1.15 3.08 2.66 2.21 1.91 1.72 1.40 1.14

1.17 1.13 2.47 2.04 1.59 1.29 1.16 1.14 1.12

1.28 1.14 2.48 2.16 1.85 1.63 1.50 1.30 1.13

1.29 1.14 2.48 2.16 1.85 1.64 1.51 1.31 1.13
1.16 1.12 2.09 1.76 1.46 1.25 1.16 1.13 1.12

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

272 . Amer Dlwan et al.

Table XII—Continuezi

Yacc

wn,ns,4 2.38 2.16 1.99 1,90 1.83 1,64 1.33 2.13 1,99 1.89 1.84 1.79 1,65 1.33

wa,ns,4 2.42 2.20 2.02 1.92 1,86 1.67 1,34 2.16 2.02 1.92 1.86 182 1,68 1.35

wa,s,4 185 1,63 1.45 1.35 132 1.27 1.21 1.59 1.45 1.35 1.29 1.26 1.24 1.20

wn,ns,8 2.11 1.90 1.75 1.67 1.62 1.49 1.28 1.87 1.75 1.67 1.62 1.58 1.49 1.28

wa,ns,8 2.13 1.92 1.77 1.68 1.63 1.50 1.29 1.89 1.76 1.68 1.63 1.59 1.50 1.29

wa,s,8 1.76 1.55 1.40 1.32 1.29 1.25 1.20 1.52 1.40 1.32 1.27 1.24 1.22 1.19

REFERENCES

APPEL, A. W. 1987. Garbage collection can be faster than stack allocation. Zrzf. Process. Lett. 25,

4, 275-279.

APPEL, A. W. 1989. Simple generational garbage collection and fast allocation. S’oftuJ. Pi-act.

Exper. 19, 2 (Feb.), 171-184.

APPEL, A. W. 1990. A runtime system. LMp Symb. Cornput. 3, 4 (Nov.), 343-380.

APPEL, A, W. 1992. Compiling with Continuations. Cambridge University Press, Cambridge,

Mass.

APPEL, A, W. AND JIM, T. Y. 1989. Continuation-passing, closure-passing style. In Proceedings of

the 16th Ann ual ACM Symposium on Principles of Programmmg Languages (Austin, Tex.).

ACM, New York, 293-302.

APPEL, A. W., MATTSON, J. S., AND TARDITI, D. 1989. A lexical analyzer generator for Standard

ML. User manual distributed with Standard ML of New Jersey.

BALL, T. AND LARUS, J. R. 1992. Optimally profihng the tracing programs. In the 19th Sympo-

sium on Principles of Programming Languages. ACM, New York.

CHEN, J. B. AND BERSHAD, B. N. 1993. The impact of operating system structure on memory

system performance. In the 14th Symposium on Operating Systems Principles ACM, New

York.

CHENEY, C. 1970. A nonrecursive list compacting algorithm Commun ACM 13, 11 (Nov.),

677-678.

CLEAVELAND, R., F’ARROW, J., AND STEFFEN, B. 1993, The Concurrency Workbench: A semantics-

based tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. 15, 1

(Jan.), 36-72.

CROWLEY) W. P., HENDRICKSON, C. P., AND RUDY, T. E. 1978. The SIMPLE code. Tech, Rep,

UCID 17715, Lawrence Livermore Laboratory, Livermore, Calif, Feb.

CYPRESS. 1990. SPARC RISC User’s Guzde, 2nd ed. Cypress Semiconductor, San Jose, Calif.

DEC. 1990a. DS5000/200 KN02 System Module Functional Specification, Digital Equipment

Corp., Palo Alto, Calif.

DEC. 1990b. DECStation 3100 Desktop Workstation Functzon Speciflcatzon, 13 ed. Digital

Equipment Corp., Palo Alto, Calif.

DEC. 1992. DECch ip 21064-AA Microprocessor Hardware Reference Manual, 1st ed. Digital

Equipment Corp., Maynard, Mass.

EKANADH.AM, K. AND ARVIND. 1987. SIMPLE: An exercise m future scientltic programming. Tech.
Rep. Computation Structures Group Memo 273, MIT, Cambridge, Mass. July. Also available as

IBM/T, J. Watson Research Center Research Rep. 12686.

FENICHEL, R. R. AND YOCHELSON, J. C. 1969. A LISP garbage-collector for vu-tual-memory

computer systems Commun. ACM 12, 11 (Nov.), 611–612.

HIEB, R., DYBVIG, R. K., AND BRUGGEMAN, C. 1990. Representing control in the presence of

first-class continuations. In Proceeduzgs of the SIGPLAN ’90 Conference on Programming

Language Des~gn and Implementation (White Plains, N Y.). ACM, New York, 66-77.

HILL, M. D. 1988. A case for direct mapped caches. Computer 21, 12 (Dec.), 25-40.

HILL, M, AND SMITH, A. 1989. Evaluating associativity in CPU caches. IEEE Trans. Comput. 38,

12 (Dec.), 1612-1630.

ACM TransactIons on Computer Systems, Vol. 13, No 3. August 1995

Performance of Programs with Intenswe Heap Allocation . 273

JOUPPI, N. P. 1993. Cache write policies and performance. In Proceedings of the 20th Annual

International Symposium on Computer Architecture (San Diego, Calif.). ACM Press, New York,

191-201.

KANE, G. AND HEINRICH, J. 1992. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, N.J.

KESSLER, R. E. AND HILL, M. D. 1992. Page placement algorithms for large real-indexed caches.

ACM Trans. Comput. Syst. 10, 4 (Nov.), 338-359.

KOOPMAN, P. J., JR., LEE, P., AND SIEWIOREK, D. P. 1992. Cache behavior of combinator graph

reduction. ACM Trans. Program. Lang. Syst. 14, 2 (Apr.), 265–277.

KRANZ, D., KELSEY, R., REES, J., HUDAK, P., PHILBIN, J., AND ADAMS, N. 1986. ORBIT: An

optimizing compiler for Scheme. In Proceedings of the SIGPLAN ’86 Conference Symposium on

Compiler Construction (Palo Alto, Calif.). ACM, New York, 219-233.

LARUS, J. R. 1990. Abstract execution: A technique for efficiently tracing programs. SoftoJ.

Pratt. Exper. 20, 12 (Dec.), 1241-1258.

LARUS, J. R. AND BALL, T. 1992. Rewriting executable files to measure program behavior. Tech.

Rep. Wis 1083, Computer Sciences Dept., Univ. of Wisconsin-Madison, Madisonj Wise. Mar.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The Definition of Standard ML. MIT Press,

Cambridge, Mass.

PATTERSON, D. A. AND HENNESSY, J. L. 1990. Computer Architecture: A Quantitative Approach.

Morgan Kaufmannj San Mateo, Calif.

PENG, C.-J. AND SOHI, G. S. 1989. Cache memory design considerations to support languages

with dynamic heap allocation. Tech. Rep. 860, Computer Sciences Dept., Univ. of Wisconsin-

Madison, Madison, Wise. July.

PRZYBYLSKI, S. A. 1990. Cache and Memory Hierarchy Destgru A Performance-Directed

Approach. Morgan Kaufmann, San Mateo, Calif.

READE, C. 1989. Elements of Functional Programming. Addison-Wesley, Reading, Mass.

REINHOLD, M. B. 1993. Cache performance of garbage-collected programming languages. Ph.D.

thesis, Laboratory for Computer Science, MIT, Cambridge, Mass.

SLATER, M. 1991. PA workstations set price/performance records. Microprocess. Rep. 5, 6

(Apr.), 1.

TARDITI, D. AND APPEL, A. W. 1990. ML-YACC, version 2.0. Distributed with Standard ML of

New Jersey. Software.

TARDITI, D. AND DIWAN, A. 1993. The full cost of a generational copying garbage collection

implementation. In 00PSLA ’93 Workshop on Memory Management and Garbage Collection.

ACM, New York.

WAUGH, K. G., MCANDREW, P., AND MICHAELSON, G. 1990. Parallel implementations from

function prototypes: A case study. Tech. Rep. Computer Science 90/4, Heriot-Watt Univ.,

Edinburgh, U.K.

WILSON, P. R., LAM, M. S., AND MOHER, T. G. 1990. Caching considerations for generational

garbage collection: A case for large and set-associative caches. Tech. Rep. EECS-90-5, Univ. of

Illinois at Chicago, Chicago, Ill. Dec.

WILSON, P. R., LAM, M. S., AND MOHER, T. G. 1992. Caching considerations for generational

garbage collection. In the 1992 ACM Conference on Lisp and Functional Programming (San

Francisco, Calif.). ACM, New York, 32–42.

ZORN, B. 1991. The effect of garbage collection on cache performance. Tech. Rep. CU-CS-528-91,

Univ. of Colorado at Boulder, Boulder, Colo. May.

Received December 1993; revised January 1995; accepted May 1995

ACM Transactions on Computer Systems, Vol. 13, No. 3, August 1995.

