
Using Types to Analyze and Optimize
Object-Oriented Programs

AMER DIWAN

University of Colorado, Boulder

and

KATHRYN S. McKINLEY and J. ELIOT B. MOSS

University of Massachusetts, Amherst

Object-oriented programming languages provide many software engineering benefits, but these
often come at a performance cost. Object-oriented programs make extensive use of method in-
vocations and pointer dereferences, both of which are potentially costly on modern machines.
We show how to use types to produce effective, yet simple, techniques that reduce the costs of
these features in Modula-3, a statically typed, object-oriented language. Our compiler performs
type-based alias analysis to disambiguate memory references. It uses the results of the type-based
alias analysis to eliminate redundant memory references and to replace monomorphic method in-
vocation sites with direct calls. Using limit, static, and running time evaluation, we demonstrate
that these techniques are effective, and sometimes perfect for a set of Modula-3 benchmarks.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization

General Terms: Algorithms, Languages, Performance, Measurement

Additional Key Words and Phrases: Alias analysis, polymorphism, classes and objects, object
orientation, method invocation, redundancy elimination

1. INTRODUCTION

In object-oriented languages, programmers make extensive use of pointers, type
hierarchies, and virtual method invocations to improve code reuse and correctness.

This work was supported by the National Science Foundation under grants CCR-9211272, CCR-
9525767, and ITR CCR-0085792 and by gifts from Sun Microsystems Laboratories, Inc., Hewlett-
Packard, and Compaq. Kathryn S. McKinley is supported by an NSF CAREER Award CCR-
9624209. Amer Diwan was supported by the Air Force Materiel Command and ARPA award
number: F30602-95-C-0098. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are the authors and do not necessarily reflect those of the sponsors.
Portions of this paper appeared previously [Diwan et al. 1996; Diwan et al. 1998].
Authors’ addresses: A. Diwan, Department of Computer Science, University of Colorado,
Boulder, CO 80309; email: diwan@cs.colorado.edu. K. McKinley and E. Moss, Depart-
ment of Computer Science, University of Massachusetts, Amherst, MA 01003-4610; email:
{mckinley,moss}@cs.umass.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2001 ACM 0164-0925/01/0100-0030 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001, Pages 30–72.

Using Types to Analyze and Optimize Object-Oriented Programs · 31

These features have a cost. For example, without alias analysis, the compiler must
assume all pointer dereferences are potential aliases and may not reorder them.
Compilers need to reorder instructions to effectively exploit the underlying hard-
ware, which may have multiple issue functional units, and elaborate pipelines. An
effective alias analysis disambiguates memory references, and enables the compiler
to reorder pointer accesses.

Virtual method invocations are costly as well. Method invocations obscure which
procedure is actually being invoked. In programs written in pure object-oriented
languages, method look-up is costly in itself because method invocations are fre-
quent [Chambers 1992]. However, in programs written in hybrid object-oriented
languages, method invocations are typically less frequent and therefore do not have
a significant cost. However, for all object-oriented languages, method invocations
inhibit optimization. If analysis can resolve method invocations to direct calls,
the compiler can replace the method invocation with a direct call, a tailored call,
or an inlined call. The additional control-flow information provides fodder for an
optimizing compiler to improve performance.

To alleviate the performance degradation resulting from pointer dereferences and
method invocations, we present a range of type-based alias analyses (tbaa). tbaa

uses programming-language types. Our alias analysis techniques range from a sim-
ple inspection of the type hierarchy to interprocedural flow-insensitive analysis.
We determine the effectiveness and usefulness of our alias analyses with respect to
two optimizations: redundant load elimination (rle) and method resolution. rle

combines loop-invariant code motion and common subexpression elimination of
memory references. Method resolution replaces monomorphic method invocations
with direct calls. To better understand the impact of tbaa on method resolution,
we consider three different algorithms for method resolution and extend two of them
with tbaa. These method resolution algorithms range from a simple inspection of
the type hierarchy to a new interprocedural flow-sensitive context-insensitive anal-
ysis. While there are obvious interactions between pointer analysis and method
resolution, we pick a fixed order for the analyses: tbaa followed by method res-
olution analysis. Previous work proposes a few of our alias analyses and method
resolution techniques, but our evaluation reveals new insights about these and our
new algorithms.

We evaluate the effectiveness of tbaa for rle and method resolution using static,
dynamic, and limit analyses. This evaluation methodology is more thorough than
most of the previous work on alias analysis. Our results show that there is sur-
prisingly little room for improvement in tbaa for our benchmarks. For example, a
better alias analysis would perform better than tbaa for method resolution in at
most three of our 10 benchmark programs. Although others have proposed using
types in similar ways, we believe we are the first to demonstrate their unantici-
pated effectiveness for important optimizations. We also modify our analyses to
work on incomplete programs and demonstrate that the effectiveness of tbaa and
rle is not compromised, but that method resolution is not effective on incomplete
programs. We have implemented our analyses in a traditional optimizing compiler
for Modula-3. The speed and simplicity of these analyses also makes them prac-
tical for statically compiled Java programs. For Java programs that use dynamic
class loading, our modifications for incomplete programs are applicable, but will

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

32 · Amer Diwan et al.

Table I. Kinds of Memory References

Notation Name Description

p.f Qualify Access field f of object p

p^ Dereference Dereference pointer p

p[i] Subscript Array p with subscript i

probably be less effective.
The remainder of this paper is organized as follows. Section 2 gives a brief

technical background on types. Section 3 describes our type-based alias analysis al-
gorithms. It discusses three progressively more precise alias analyses based on type
declarations, field declarations and other high-level properties, and flow-insensitive
data-flow analysis. Section 4 describes two uses of tbaa: rle and method res-
olution. It also describes algorithms for method resolution, the most aggressive
of which use tbaa. Section 5 presents our experimental methodology. Section 6
evaluates tbaa using static, dynamic, and upper bound evaluation for each of rle,
method resolution, and inlining enabled by method resolution. Section 7 evaluates
tbaa using our optimizations when the entire program is not available for analysis.
Section 8 considers how our techniques apply to other optimizations and object-
oriented languages, particularly C++ and Java. Section 9 discusses related work
in alias analysis and method resolution. Section 10 concludes.

2. BACKGROUND

We now present some assumptions and terminology that we will use in the rest of the
paper. All of our analyses assume the entire program is available unless otherwise
stated. Section 2.1 describes what memory references look like in the language that
we analyze, Modula-3 [Nelson 1991]. Section 2.2 describes how method invocations
give rise to polymorphism in Modula-3 programs.

2.1 Memory Reference Basics

Table I lists the three kinds of memory references in Modula-3 programs, their
names, and a short description of each.1 Without loss of generality, we assume that
all pointer dereferences are explicit and that a variable declared to be of object
or array type actually contains the object or array rather than a pointer to the
object or array. Modula-3 has implicit pointer dereferences, but at the intermediate
representation level all pointer dereferences are explicit.

We call a nonempty string of memory references, for example a^.b[i].c, an
access path (AP) [Larus and Hilfinger 1988] and assume that object fields have
different names. We define:

Type(p): The static type of AP p.
Subtypes(T): The set of subtypes of type T, which includes T.
REF T: A pointer to an object of type T.

1These types of memory references are, of course, not unique to Modula-3.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 33

TYPE U = OBJECT

f: U;

METHODS

m := mU;

END;

(* V is a subtype of U *)

TYPE V = U OBJECT

METHODS

n := nV;

OVERRIDES

m := mV;

END;

Fig. 1. A Modula-3 type hierarchy.

In Modula-3 and other type-safe languages, a variable of type REF T can legally
point to objects of type Subtypes(T). Each of our alias analyses refines the type of
objects to which an AP (memory reference) may refer.

2.2 Polymorphism through Subtyping

Statically typed object-oriented languages support polymorphism through subtyp-
ing. A variable of type S where S is a subtype of T supports all the behavior of T
and may extend it. Thus, the program can use an object of type S whenever an
object of type T is expected. In particular, a variable with declared type REF T
may point to objects that are subtypes of T.

Consider the Modula-3 type hierarchy in Figure 1, which defines a type U, and
V, a subtype of U. V has all the behavior of U (in particular, the m method) but has
a different implementation of m (mV instead of mU). V also supports the n method,
which U does not. Invoking the m method on a variable with declared type REF U
may invoke one of three procedures:

(1) mU, if the variable is currently a pointer to an object of type U;

(2) mV, if the variable is currently a pointer to an object of type V; or

(3) error, if variable is currently a pointer of type NULL.

In general, invoking a method on a variable of type REF U (the receiver) can call
any procedure that overrides that method in Subtypes(U). The NULL type, which
contains a single value NIL, is a subtype of all reference types in Modula-3 and
overrides all methods with an error procedure. While NULL is a type in Modula-3
and NIL is a value, we will abuse these terms and use NULL to mean both the type
and the value when it is clear from the context.

A polymorphic method invocation site calls more than one user procedure at
run time. For example, consider invoking the print method on each element of
a linked list in a loop. If the list links objects of different types with different
implementations of the print method, then the print method invokes different
procedures depending on the type of the list element.

A monomorphic method invocation site always invokes the same user procedure
(or error), for all possible program executions. The receiver need not always be
the same type, but the method implementation must be the same. To continue the

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

34 · Amer Diwan et al.

TYPE

T = OBJECT f, g: INTEGER; END;

S1 = T OBJECT ... END;

S2 = T OBJECT ... END;

S3 = T OBJECT ... END;

VAR

t: REF T;

s: REF S1;

u: REF S2;

Fig. 2. Type hierarchy example.

linked list example, if the list links objects of only one type, then the print method
will always invoke the same procedure.

We will call a method invocation site run-time monomorphic if, over some set
of program runs, it always invokes the same method implementation. Thus a
monomorphic site will always be run-time monomorphic, but a run-time monomor-
phic site may be polymorphic because it may invoke a different method implemen-
tation in some execution not yet considered. Whether a method invocation site is
monomorphic is undecidable in general; we will thus find a conservative estimate.
A method invocation is resolved if it is identified as being monomorphic. Section
4.2 gives algorithms for resolving monomorphic sites.

3. TYPE-BASED ALIAS ANALYSIS

This section describes type-based alias analyses (tbaa) in which the compiler has
access to the entire program except for the standard libraries. tbaa assumes a
type-safe programming language such as Modula-3 [Nelson 1991] or Java [Sun Mi-
crosystems Computer Corporation 1995] that does not support arbitrary pointer
type casting, which is supported in C and C++. We first describe three progres-
sively more powerful versions of tbaa and then conclude with their complexity.

3.1 tbaa Using Type Declarations

To use type declarations to disambiguate memory references, we simply examine
the declared type of an access path AP , and then assume that AP may reference
any object with the same declared type or subtype. This version of tbaa we call
t-tbaa. More formally, given two APs p and q, t-tbaa determines that they are
aliases if and only if t-tbaa (p, q) evaluates to true:

t-tbaa (p, q) = Subtypes(Type(p)) ∩ Subtypes(Type(q))
6= ∅.

Consider the example in Figure 2. Since S1 is a subtype of T, variables of type REF
T can point to objects of type REF S1. Thus,

Subtypes(Type(t^)) ∩ Subtypes(Type(s^)) 6= ∅
Subtypes(Type(t^)) ∩ Subtypes(Type(u^)) 6= ∅
Subtypes(Type(s^)) ∩ Subtypes(Type(u^)) = ∅.

In other words, t^ and s^ may refer to the same location, and t^ and u^ may refer
to the same location, but s^ and u^ may not refer to the same location, since they
have incompatible types. Note that t-tbaa is not transitive.
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 35

Table II. tf-tbaa (AP1, AP2) Algorithm

Case AP 1 AP 2 tf-tbaa(AP 1, AP 2)

1 p p true

2 p.f q.g (f = g) ∧ tf-tbaa (p, q)

3 p.f qˆ AddressTaken (p.f) ∧ t-tbaa (p.f, qˆ)

4 p[i] qˆ AddressTaken(p[i]) ∧ t-tbaa (p[i], qˆ)

5 p.f q[i] false

6 p[i] q[j] tf-tbaa (p, q)

7 x y x = y

8 (otherwise) p q t-tbaa (p, q)

3.2 Using Field Access Types

We next improve the precision of t-tbaa using the type declarations of fields
and other high-level information in the program. This version of tbaa we call
tf-tbaa. The tf-tbaa algorithm appears in Table II. Given AP1 and AP2,
it returns true if AP1 and AP2 may be aliases. It uses AddressTaken which
returns true if the program ever takes the address of its argument. For example,
AddressTaken(p.f) is true if the program takes the address of field f of an object
that p can possibly refer. AddressTaken(q[i]) returns true if the program takes
the address of some element of an array that q can possibly refer. In Modula-
3, programs may take the addresses of memory locations in only two ways: via
the pass-by-reference parameter-passing mechanism, and via the WITH statement,
which creates a temporary name for an expression. Note, that unlike t-tbaa,
which needs only the type hierarchy, AddressTaken actually needs to look at all
the instructions in the program. For simplicity, we assume that aggregate accesses,
such as assignments between two records, have been broken down into accesses of
each component.

The eight cases in Table II determine the following.

1: Identical APs always alias each other.
2: Two qualified expressions may be aliases if they access the same field in poten-

tially the same object. Note that this case recursively uses tf-tbaa to more
precisely handle the aliasing of access paths such as a.x.g and a.y.g.

3-4: A pointer dereference may refer to the same location as a qualified or sub-
scripted expression only if their types are compatible and the program may take
the address of the qualified or subscripted expression.

5: In Modula-3, a subscripted expression cannot alias a qualified expression.
6: Two subscripted expressions are aliases if they may subscript the same array.

tf-tbaa ignores the actual subscripts. Note that this case recursively uses tf-

tbaa to more precisely handle the aliasing of access paths such as a.x[i] and
a.y[j].

7: Two distinct variables are never aliases
8 (otherwise): For all other cases of APs, including two pointer dereferences,

tf-tbaa uses t-tbaa to determine aliases.
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

36 · Amer Diwan et al.

The Java programming language will have similar rules though we will need addi-
tional mechanisms to handle programs that use dynamic class loading and reflection.
For C++ the rules must be more conservative to handle arbitrary pointer casts and
pointer arithmetic.

3.3 Using Assignment

t-tbaa is conservative in the sense that it assumes that the program uses types in
their full generality. For instance, a program might use a list package capable of
linking objects of different types, and in fact link objects of only one type. We thus
improve on t-tbaa by examining the effects of explicit and implicit assignments
to determine more accurately the types of objects an AP may refer to in a flow-
insensitive manner. We call this algorithm tm-tbaa. Unlike t-tbaa, which always
merges the declared type of an AP with all of its subtypes, tm-tbaa only merges
a type with a subtype when a statement assigns some pointer to subtype S to a
variable declared to be of type REF T. As an example, consider applying t-tbaa

to the following program using the type hierarchy in Figure 2:

VAR
t: REF T := NEW (T);
s: REF S1 := NEW (S1);

t-tbaa assumes that t^ and s^ may refer to the same location. By inspecting the
code however, it is obvious that t and s never point to the same location. tm-

tbaa proves independence in this situation as follows: if the program never assigns
a value of type REF S1 to a location of type REF T (directly or indirectly), then
t^ and s^ cannot possibly be aliases. If there is any such assignment, tm-tbaa

ignores the control flow and assumes an alias. We call these assignments merges.
Figure 3 presents the algorithm to merge types selectively for complete pro-

grams.2 The algorithm produces a TypeRefsTable, which takes a declared type T
as an argument and returns all the types potentially referenced by an AP declared
to be of type T. Given two APs p and q, tm-tbaa determines that they are aliases
if and only if tm-tbaa (p,q) evaluates to true:

tm-tbaa (p,q) = TypeRefsTable(Type(p))
∩ TypeRefsTable(Type(q)) 6= ∅

In Figure 3, each set T = {T1, . . . , Tk} in Group represents an equivalence class of
types such that an AP with a declared type T ∈ T may refer to any object of type
U such that U ∈ T . For example, given the set T = {T1,T2} ∈ Group, APs with
declared type T1 may refer to any object of type T1 or T2.

Step 1 initializes Group such that each declared type is in an independent set.
Step 2 examines all the assignment statements and merges the type sets if the
types of the left- and right-hand sides are different.3 Step 2 does not consider the
order of the instructions and is therefore flow-insensitive. Step 3 then filters out
infeasible aliases from Group, creating asymmetry in the tm-tbaa relationship.4

2A more precise but slower formulation maintains a separate group for each type. In our experi-

ments the difference between the two variations was insignificant.
3This step is similar to Steensgaard’s algorithm [Steensgaard 1996].
4Steensgaard’s algorithm [Steensgaard 1996] applied to user-defined types would not discover this
asymmetry.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 37

(* Step 1: put each type in its own set *)
for all pointer types REF T do

Group := Group ∪ {{T}}

(* Step 2: merge sets because of assignments *)
for each implicit and explicit pointer assignment a:=b do

let Type(a) be REF Ta and Type(b) be REF Tb;
if Ta 6= Tb then

let Ga, Gb ∈ Group, such that Ta ∈ Ga, Tb ∈ Gb
Group := Group - {Ga} - {Gb} + {Ga ∪ Gb}

(* Step 3: Construct TypeRefsTable *)

for each type REF T do
let g ∈ Group, T ∈ g

TypeRefsTable(T) = g ∩ Subtypes(T)

Fig. 3. Selective type merging.

For instance, an AP with declared type REF T in Figure 2 may point to objects
of type T or type S1, but an AP declared as REF S1 may not point to objects of
type T. The final result of Step 3 is the TypeRefsTable.

Figure 4 uses the type declarations in Figure 2 to illustrate how the selective
merging algorithm works. Step 1 initializes each declared type to be in a set of its
own, as shown in Figure 5(a) where each oval represents a set in Group. Figure 5(b)
shows Group after Step 2 merges types T and S1, the types for the first assignment;
and Figure 5(c) shows that the second assignment causes Step 2 to merge S2 with
T and S1. S3 remains in a set by itself. Step 3 of the merge algorithm then creates
asymmetry for the subtype declarations in the TypeRefsTable, as shown in Figure
4. Notice that tm-tbaa determines that APs declared to point to T may not point
to objects of type S3, but t-tbaa assumes they may.

We obtain the final version of our tbaa algorithm tfm-tbaa by using tm-tbaa

instead of t-tbaa in the tf-tbaa algorithm of Table II.

3.4 Complexity of Analyses

The complexity of the slowest tbaa (tfm-tbaa) is dominated by Step 2 of tm-

tbaa (Figure 3). This step makes a single linear pass through the program and at
each pointer assignment unions two sets of types. The complexity of tbaa is thus
O(n ∗ |T |), where n is the number of instructions in the program and |T | is the
number of types in the program. If we use a fast union-find data structure [Tarjan
1975] (instead of our current bit vector set implementation) we can further reduce
the complexity of this analysis to near-linear time. The time to use the results of
the tbaa may, of course, be more than near-linear. For instance, computing all
the may-alias pairs using tbaa, or any other points-to analysis, takes O(e2) steps,
where e is the number of memory expressions in the program and each step requires
querying the results of the points-to analysis.

4. USING TBAA

Most compiler analyses and optimizations can benefit from alias analysis. In
this section, we describe two optimizations, redundant load elimination (rle) and

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

38 · Amer Diwan et al.

VAR

s1: REF S1 := NEW (S1);

s2: REF S2 := NEW (S2);

s3: REF S3 := NEW (S3);

t: REF T;

BEGIN

t := s1; (* Statement 1 *)

t := s2; (* Statement 2 *)

END;

Type TypeRefsTable(Type)

T T, S1, S2

S1 S1

S2 S2

S3 S3

Step 3: TypeRefsTable

Fig. 4. Example to illustrate tm-tbaa.

(a) Step 1:

T

S1

S2

S3

T S1

S2

S3

T S1 S2

S3

(c) Step 2: After statement 2(b) Step 2: After statement 1

Fig. 5. Selective merging for Figure 4.

method resolution, that use tbaa.

4.1 Redundant Load Elimination

rle combines variants of loop-invariant code motion and common subexpression
elimination [Aho et al. 1986], but applies them to loads instead of computation. We
expect rle to be a profitable optimization, since loads are expensive on modern
machines and architects expect they will only get more expensive [Hennessy and
Patterson 1995].

Similar to register promotion [Cooper and Lu 1997], rle hoists a memory refer-
ence out of a loop if it is loop invariant and is executed on every iteration of the
loop, leaving it up to the back end to place the hoisted memory reference in a reg-
ister. For example in Figure 6, the access path a^.b is redundant on all paths, and
loop-invariant code motion moves it into the loop header. As shown in Figure 7,
rle also eliminates common subexpressions of memory references. A memory ex-
pression at statement s is redundant if it is available on every path to s. rle

therefore improves performance by enabling the replacement of costly memory ref-
erences with fast register references. Since rle operates on memory references, its
effectiveness depends directly on the quality of the alias information and back end.
To enable rle across calls, rle is preceded by a mod-ref analysis that summarizes
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 39

1

2 3

4

2

4

3

1

0

t := a^.b

... := t^[i] ... := t^[j]... := a^.b^[i] ... := a^.b^[j]

Fig. 6. Eliminating loop-invariant memory loads.

the objects (in terms of types and fields) that are referenced and modified by each
call. For example, in order to hoist a memory reference out of a loop containing
a call, rle needs to know whether the call may change the value of the memory
reference. Note that even though rle uses interprocedural mod-ref information, it
does not eliminate redundant loads across procedure boundaries.

4.2 Resolving Method Invocations

This section describes techniques for resolving a method invocation site to a mono-
morphic call which we then replace with a direct call or inline the called procedure.
Many techniques for method resolution do not use alias information [Fernandez
1995; Bacon and Sweeney 1996]. Here we describe three straightforward method
resolution techniques that do not use pointer analysis—type hierarchy analysis,
intraprocedural type propagation, and interprocedural type propagation—and then
extend them to use tbaa to analyze pointer dereferences. We use the type hierarchy
of Figure 1 as a running example to illustrate the strengths and limitations of the
analyses.

4.2.1 Type Hierarchy Analysis. Our algorithm for type hierarchy analysis (tha)
bounds the set of procedures a method invocation may call by examining the type
hierarchy declarations for method overrides. For each type T and each method m
declared or inherited in T, type hierarchy analysis finds all overrides of m in the type
hierarchy rooted at T. These overrides are the procedures that may be called when
m is invoked on a variable of type T. Since NULL is a subtype of all object types in
Modula-3 and it overrides all methods, type hierarchy analysis can never narrow
down the possibilities to just one; at best it determines a method is one procedure
or the error procedure. If type-hierarchy analysis is used for unsafe languages,
such as C++, it may ignore the NULL case.

4.2.2 Intraprocedural Type Propagation. Our algorithm for intraprocedural type
propagation analysis (tpa) for method resolution is flow-sensitive and uses data-
flow analysis to propagate sets of types from type events to method invocations

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

40 · Amer Diwan et al.

... := t^[j]

2 3

4

2 3

4

1 1

t := a^.b
... := t^[i]

t := a^.b
... := t^[j]... := a^.b^[i] ... := a^.b^[j]

... := a^.b^[j]

Fig. 7. Eliminating redundant memory loads.

within a procedure. We first present the data-flow equations, and then show an
example.

tpa is similar to reaching definitions. In our data-flow lattice, we use a power
set of the types; the initial type for a local variable is the empty set. tpa first
identifies and propagates sets of possible types for each variable. All nonlocal
variables and parameters initially have the maximum set of types consistent with
their declaration.5 In the program, type events create or change type information.
The three distinguishing type events are allocation (v ← NEW (t)), implicit and
explicit type discrimination operators (IsType (v, T)), and assignment (v ← u),
which includes parameter bindings at calls. IsType is an explicit type discrimination
event that checks if v’s type is in Subtypes (T). IsType has two successors, and the
appropriate one is picked based on whether or not IsType evaluates to true. A
statement s with a type event generates and kills types as follows:

GenType (v ← NEW(t)) = 〈v, {t}〉
GenType (IsType(v, T)) = 〈v,TypeOf(v) ∩ Subtypes(T)〉 for true

= 〈v,TypeOf(v)− Subtypes(T)〉 for false
GenType (v ← u) = 〈v,TypeOf(u)〉

KillType(v ← NEW(t)) = 〈v,TypeOf(v)〉
KillType(v ← u) = 〈v,TypeOf(v)〉

T denotes a set of types, t is a single type, and TypeOf returns the set of possible
types of a variable (for this program point, at this stage of the data-flow analysis).
Note that there are two cases for the IsType case: one for IsType taking the true
branch and the other for it taking the false branch. The data-flow equations for a
statement s are similar to the equations for reaching definitions:

IN(s) =
⋃
p∈PRED(s) OUT(p)

OUT(s) = GenType(s) ∪ (IN(s)−KillType(s))

Our implementation of type propagation propagates types only to scalars; it as-
sumes the conservative worst case (the declared type) for the allocated types of

5If a method can be shown to be invoked only via method calls, and not directly as a procedure,
then its self argument’s types can be further restricted to types having this particular method
code body as their implementation of a method.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 41

1 p := NEW (V);

IF cond THEN

2 o := NEW (U);

3 o.m ();

ELSE

4 o := p;

5 o.m ();

END;

6 o.m ();

Fig. 8. Example to illustrate tpa.

record fields, object fields, array references, and pointer accesses. To demonstrate
how tpa works, consider the example in Figure 8.

Statement 2 contains an allocation type event. tpa propagates the type U to o,
and thus determines that the method invocation in Statement 3 calls procedure mU.
Statement 4 contains an assignment type event, and tpa propagates the type of p to
o, and thus determines that the method invocation in Statement 5 calls procedure
mV. Finally, tpa merges the types of o at the control-flow merge before Statement
6, yielding the type {U, V} for o, and thus cannot resolve o.m at Statement 6.

4.2.3 Interprocedural Type Propagation. Our algorithm for interprocedural type
propagation analysis (itpa) for method resolution begins by using the results of
tpa to build a call graph. The call graph has an edge from a method invocation
to each possible target determined by tpa. The algorithm maintains a work list of
procedures in depth-first order that need analysis. The work list initially contains
all procedures. A procedure needs analysis if new information becomes available
about its parameters or about the return value of one of its callees. When itpa

analyzes a procedure, it may put the callers and callees of the procedure on the
work list and update the call graph. In particular, analysis may eliminate some call
graph edges if it refines the type of a method receiver. itpa terminates when the
work list is empty.

itpa also keeps track of which procedures are called only via method invocations
(i.e., not called directly). For these procedures, it eliminates NULL as a possible
type for the first argument (self). (If self has a pointer of type NULL, then
error is invoked instead of this procedure.) itpa propagates types only to scalars,
and it assumes the declared type for all data accessed through pointer traversal.
It does not propagate side effects from calls and assigns the declared type for
any variable changed by the call. Variables potentially changed by a call include
variables declared in outer scopes, globals, parameters passed by reference, and
parameter aliases.

itpa is context-insensitive: rather than analyzing for every combination of call
site and callee, itpa merges the parameter types of all call sites of a procedure,
and the return types of all callees at a call site. This simplification yields a faster
analysis (cubic instead of exponential) but at the cost of some accuracy. Consider
the following code:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

42 · Amer Diwan et al.

PROCEDURE Caller1 () =
t := P (NEW (T));
t.m ();

PROCEDURE Caller2 () =
t := P (NEW (U);
t.m ();

PROCEDURE P (o: T): T =
RETURN o;

A context-sensitive analysis would analyze P separately for each of its call sites
and thus determine that the method invocation in Caller1 will call mT and that in
Caller2 will call mU. Our context-insensitive analysis instead merges the parameter
types for each caller of P and thus does not resolve the method invocations in
Caller1 and Caller2. We show in Section 6.2.2 that, for our benchmark suite,
this loss in precision is not significant.

4.2.4 Using tbaa to Resolve Method Invocations. In this section, we extend
tpa and itpa with tfm-tbaa to obtain tpa-tbaa and itpa-tbaa, respectively.
Whenever tpa-tbaa or itpa-tbaa encounter a pointer dereference, they invoke
tfm-tbaa to get the set of locations referenced by the pointer dereference. tfm-

tbaa summarizes this set compactly using type information (e.g., field f of object
type O). tpa-tbaa or itpa-tbaa then propagates the types to or from the set
of locations referenced by the pointer dereference. Consider the following code
segment:

v: T;
v^.f := <rhs>

For this example, tpa-tbaa propagates the types of <rhs> to the field f of all
possible objects pointed-to by v. In the worst case, this assignment propagates the
type of the <rhs> to field f of all subtypes of T plus other variables if the program
ever takes the address of an f field (see Section 3.2). Since tfm-tbaa computes
may points to rather than must points to information, the analysis assumes that
the aliases of v.f may either retain their old type or the new type from <rhs>.
Such updates are called weak updates in the pointer analysis literature.

These analyses discover monomorphic uses of general data structures. Consider
the linked list package again. When a program links objects of a single type, itpa-

tbaa resolves the invocation of the print method on the list elements. However,
if the program allocates two distinct linked lists of the same type, but one with
elements of type T and the other with type U, this analysis does not recognize
that each list is homogeneous. It infers the type {T, U, NULL} for the elements in
both lists. (The type of an object-typed field always includes NULL, since all fields
in Modula-3 are initialized at allocation, and thus the first assignment to every
object-typed field is always of type NULL.)

4.2.5 Summary and Complexity of Analyses. Table III summarizes the analyses.
Eliminates NULL indicates whether the analysis can eliminate NULL as a possible
type. In the Complexity column, np is the number of statements in procedure p,
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 43

Table III. Summary of Analyses

Analysis Eliminates NULL Complexity

tha No O(NT ∗ |Methods|)
tpa Yes O(

∑
p
np ∗ vp)

itpa Yes O(Np
∑

p
np ∗ vp)

tpa-tbaa Yes O(
∑

p
(np ∗ (vp +NT ∗NF)))

itpa-tbaa Yes O(Np
∑

p
(np ∗ (vp +NT ∗NF)))

vp is the number of variables in procedure p, NT is the number of types in the
program, NF is the maximum number of fields in any type, and Np is the number
of procedures in the program. The complexity for all analyses except for tha is in
terms of bit vector steps. The complexity of tha is for one invocation of tha; tha

is invoked on demand. These algorithms are simple and therefore fast, as shown in
the Complexity column.

tha achieves it low time bound because it only examines types and method
declarations. tpa achieves its time bound because it is distributive, and furthermore
rapid [Kam and Ullman 1976]. It has the same complexity as reaching definitions
for reducible programs; Modula-3 programs are always reducible. tpa stores the
possible types of a variable as a set, enabling set union and intersection operations
on bit vectors. The length of the bit vectors equals the number of object types in
the program, and rarely exceeds 64 in our experience and thus fits entirely inside
an integer.

Since itpa may analyze each procedure multiple times due to recursion and
because information flows forward through parameters and backward from return
values, it may be substantially slower than tpa. In practice, we have found it to
be quadratic in the number of instructions, analyzing each procedure on average
2 to 4 times. Adding tbaa increases the complexity because it propagates types
not just to variables but also to aliases which are represented by types and fields
in types.

5. METHODOLOGY

In this section, we describe the metrics we used to evaluate tbaa (Section 5.1),
our compiler framework (Section 5.2), the benchmark programs we used in the
evaluation (Section 5.3), and finally, we discuss how we order the different analyses
in the compiler (Section 5.4).

5.1 Metrics

We evaluate tbaa with respect to rle and method resolution using static and
dynamic metrics, and a limit analysis. The majority of previous work on alias anal-
ysis uses only static properties, such as the size of the may alias and points-to sets
[Banning 1979; Burke et al. 1994; Hind et al. 1999; Chatterjee et al. 1999; Chase
et al. 1990; Choi et al. 1993; Cooper and Kennedy 1989; Deutsch 1994; Emami
et al. 1994; Landi and Ryder 1991; 1992; Larus and Hilfinger 1988; Shapiro and
Horwitz 1997b; Steensgaard 1996; Weihl 1980]. A few researchers recently have
used dynamic evaluation such as measuring the execution-time improvement due

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

44 · Amer Diwan et al.

Front end
adapter

Back end
adapter

Saved IR Object codeM3 Front End

Whole Program
Optimizer

GCC Back End

Fig. 9. Compilation framework.

to an optimization that uses alias analysis [Hummel et al. 1994; Wilson and Lam
1995; Cooper and Lu 1997; Ghiya and Hendren 1998; Shapiro and Horwitz 1997a].
Static, dynamic, and limit evaluation have the following strengths and weaknesses.

Static Evaluation. Static properties, such as the size of the may-alias sets,
enable comparisons between the precision of two similar analyses. Static properties
have, however, two main disadvantages. (1) They cannot tell us if the analysis is ef-
fective with respect to its clients. For example, even if an alias analysis determines
that there are very few aliases, it may not be good enough for an optimization
because it fails to disambiguate the key aliases. (2) Static properties do not en-
able comparisons between the effectiveness of two analyses with different strengths
and weaknesses. For example, two pointer analyses may report the same number
of aliases, but the analyses may disambiguate different pointers and thus enable
different optimizations. The main advantage of static evaluation compared to the
other metrics discussed below is that it is independent of program runs and inputs.

Dynamic Evaluation. Using dynamic evaluation, such as execution-time im-
provement, complements static metrics, since execution-time improvements mea-
sure the ultimate impact of an analysis (for example, the performance improvement
due to pointer analysis and rle). However, one of their disadvantages is that the
results are specific to the given program inputs and to particular uses (such as rle

or method resolution).

Limit Evaluation. Both static and dynamic evaluation have an additional sig-
nificant shortcoming: these properties do not tell us how much room for improve-
ment there is in the analysis being evaluated except in unusual cases, for example,
when an alias analysis disambiguates all memory references. For alias analysis, we
would like to know if the aliases really exist at run time, and if any imprecision
in the alias analysis causes missed opportunities for optimizations or other clients
of the analysis. To detect such imprecision and its impact, we also use a run-time
limit analysis to determine missed optimization opportunities and their causes for
a given program input. No previous work on alias analysis uses this metric.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 45

Table IV. Description of Benchmark Programs

Name Description

format Text formatter [Liskov and Guttag 1986]

dformat Text formatter [Liskov and Guttag 1986]

write-pickle Reads and writes an AST

k-tree Manages sequences using trees [Bates 1994]

slisp Small Lisp interpreter

dom System for building distributed applications [Nayeri et al. 1994]

postcard Graphical mail reader

m2tom3 Converts Modula-2 code to Modula-3

m3cg M3 v. 3.5.1 code generator + extensions

trestle Window system + small application

5.2 Compiler Framework

Figure 9 illustrates our compilation framework which is based on the SRC Modula-
3 compiler [Kalsow and Muller 1995]. The front end reads a Modula-3 module
and generates a file containing a typed abstract syntax tree (ast) for the compiled
module. The whole program optimizer (wpo) reads in the asts for a collection of
modules, analyzes and transforms them, and then writes out the modified ast for
each module and a file with the corresponding low-level stack machine code. The
stack representation is the input language for a gcc [Stallman 1989] back end. wpo

implements all optimizations and analyses presented in this paper.

5.3 Benchmarks

Table IV describes our benchmarks, and Table V gives the number of noncomment,
nonblank lines of code, the number of object types in each benchmark,6 and the
number of method invocations at compile time. For the noninteractive programs,
Table V also gives the number of instructions executed, the percent of instructions
that are memory loads from the heap, the percent of instructions that are memory
loads from the stack and global area (other), and the number of method invocations
executed at run time. None of these programs were written to be benchmarks, but
other researchers have used several of them in their studies [Fernandez 1995; Dean
et al. 1996]. Table V contains the data on the original programs (i.e., without the
optimizations proposed here) but with gcc’s standard optimizations turned on,
which include register allocation and instruction scheduling. Due to a compiler bug
in gcc, we were unable to perform the standard optimizations on m2tom3, which
explains its unusually large number of other loads. The numbers in Table V do not
include instructions or memory references from the standard libraries.

5.4 Ordering the Analyses

In this work, we start by building the call graph using type hierarchy analysis,
apply the alias analysis, apply method resolution analyses and related transforma-
tions, and finally perform rle. There are interactions between call graph building,

6One of the benchmarks, k-tree, has object types in generic modules. We only count the number
of static object types and not the number of times an object type is instantiated.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

46 · Amer Diwan et al.

Table V. Statistics of Benchmark Programs

% Loads Method inv.
Name Lines # obj. types Instructions Heap Other Static Dynamic

format 395 10 1,879,195 10 17 37 47,064

dformat 602 12 1,442,541 9 19 95 30,775

write-pickle 654 12 1,614,437 13 16 19 21,251

k-tree 726 3 50,297,517 10 21 13 714,619

slisp 1,645 6 11,462,791 27 9 223 67,253

dom 6,186 70 (interactive) 222

postcard 8,214 41 (interactive) 293

m2tom3 10,574 43 50,894,990 8 28 1821 473,559

m3cg 16,475 99 5,636,004 8 21 1808 32,850

trestle 28,977 181 (interactive) 430

method resolution, and alias analysis, and this process could be iterative or the
analyses could be combined. Exploring the interactions between these analyses is
beyond the scope of this paper.

6. RESULTS

This section presents the results of evaluating tbaa using the metrics described in
Section 5. Since we cannot get reproducible runs for the interactive benchmarks
and our dynamic and limit evaluations need multiple runs, we only present results
using static metrics for the interactive benchmarks. Section 6.1 presents results
evaluating the effectiveness of tbaa for rle. Section 6.2 presents results evaluating
the effectiveness of tbaa for method resolution. Section 6.3 explores the cumulative
impact of implementing rle, method resolution, and inlining. Finally Section 6.4
summarizes our results.

6.1 Evaluation of tbaa Using rle

Sections 6.1.1, 6.1.2, and 6.1.3 evaluate tbaa with respect to rle using static,
dynamic, and limit evaluations respectively.

6.1.1 Static Evaluation. Table VI evaluates the relative importance of the three
variations of tbaa: t-tbaa, tf-tbaa, and tfm-tbaa. The table contains the
number of static alias pairs determined by each analysis as a percent of all possible
alias pairs. Since each memory reference trivially aliases itself, we exclude these
pairs from our calculations. In the absence of an alias analysis, the compiler must
assume that all possible alias pairs hold (100%). The Intraprocedural columns gives
the data for intraprocedural aliases— i.e., both references in an alias pair must be
in the same procedure. The Interprocedural columns give the data when an alias
pair may contain references in different procedures. Note, that since tfm-tbaa is
strictly more powerful than tf-tbaa, and tf-tbaa is strictly more powerful than
t-tbaa, static metrics are appropriate.

The table shows that tbaa based on field declarations (tf-tbaa) is much more
precise than the basic tbaa (t-tbaa), and that selective type merging offers little
added precision. Selective type merging reduces the number of intraprocedural
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 47

Table VI. Static Alias Pairs as a Percent of All Possible Pairs

Intraprocedural Interprocedural
Program t-tbaa tf-tbaa tfm-tbaa t-tbaa tf-tbaa tfm-tbaa

format 31 27 27 11 8 8

dformat 24 16 16 19 11 11

write-pickle 24 13 13 11 4 4

k-tree 29 17 17 15 10 10

slisp 45 33 33 23 16 16

dom 39 25 25 9 7 7

postcard 39 15 15 6 1 1

m2tom3 41 23 23 3 1 1

m3cg 32 5 5 5 1 1

trestle 23 11 11 8 3 3

Table VII. Number of Redundant Loads Removed Statically

Program Loads t-tbaa (%) tf-tbaa (%) tfm-tbaa (%)

format 193 14.0 15.0 15.0

dformat 321 3.1 6.9 6.9

write-pickle 385 11.9 12.2 12.2

k-tree 1018 21.7 22.4 22.4

slisp 1066 3.4 3.5 3.5

dom 3773 8.7 11.2 11.2

postcard 4631 5.6 7.1 7.1

m2tom3 6444 5.7 6.1 6.1

m3cg 6765 7.7 9.1 9.1

trestle 12737 4.1 4.6 4.6

and interprocedural alias pairs for postcard and reduces interprocedural aliases
for m3cg, but these improvements are so small that they do not show up in the
table. In the next two sections we show, that even though our analysis does not
disambiguate all intraprocedural memory references (i.e., the intraprocedural aliases
are greater than zero), it may be precise enough for some applications.

Table VII evaluates our alias analyses using another static metric: the percent
of access paths that rle removes statically in each of our benchmark programs for
each variant of tbaa. The first data column of Table VII (Loads) lists the number
of static loads in each of the benchmark programs. We only list those loads that are
visible to rle; once a program is compiled to assembly code, it may have more loads
than the ones visible to rle. The next three columns list the number of redundant
loads removed by rle as a percent of total static loads using the three levels of
tbaa. Even though rle does not eliminate redundant loads across procedure
boundaries, it does use interprocedural pointer alias information (in the form of
mod-ref information); thus, both intraprocedural and interprocedural aliases affect
this optimization.

By comparing Table VI and Table VII, we see that the reduction in alias pairs
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

48 · Amer Diwan et al.

98 99 98 98
92

96 95
97 99 98 98

92
97

94
97 99 98 98

92
97

94

0

10

20

30

40

50

60

70

80

90

100

Format Dformat Write-
Pickle

K-Tree Slisp M2toM3 M3CG

P
e

rc
e

n
t

o
f

o
ri

g
in

a
l r

u
n

n
in

g
 t

im
e

T-TBAA TF-TBAA TFM-TBAA

Fig. 10. Impact of rle.

caused by considering field declarations in tbaa translates into more optimization
opportunities: tf-tbaa finds more redundant loads than t-tbaa. The improved
precision of selective merges (tfm-tbaa) does not significantly decrease the number
of alias pairs, nor increase the number of redundant loads removed.

6.1.2 Dynamic Evaluation. This section measures simulated execution-time im-
pact of tbaa on rle for our noninteractive benchmarks. We measured execution
times using a detailed (and validated [Calder et al. 1995]) simulator [Emer et al.
1996] for an Alpha 21064 workstation with one difference: rather than simulating
an 8K primary cache we simulated a 32K primary cache to eliminate variations due
to conflict misses that we observed in an 8K direct mapped cache. Also, we mea-
sured only the execution time spent in user code, since that is the only code that
we analyze. Execution times are normalized with respect to the execution time
of the original program without rle, but with all of gcc’s optimizations. (gcc

eliminates redundant loads without any assignments to memory between them.)
Figure 10 illustrates the simulated execution time impact of tbaa on rle relative

to the original execution time for noninteractive benchmarks. The graph has three
bars for each benchmark. Each bar represents the execution time due to rle and
a different alias analysis: t-tbaa (types only), tf-tbaa (types and fields), and
tfm-tbaa (types, fields, and merges). Note that benchmark size increases from
left to right on the graph.

tbaa enables rle to improve program performance from 1% to 8%, and on
average 3.6%. One of the benchmarks, m2tom3, performs slightly worse with tf-

tbaa than with t-tbaa because rle does not consider register pressure. Note that
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 49

8
5

14

34

56

32

22

5
1

5

21

16

4 3

0

10

20

30

40

50

60

format dformat write-pickle ktree slisp m2tom3 m3cg

P
er

ce
nt

 o
f o

rig
in

al
 h

ea
p

re
fe

re
nc

es

Redundant originally

Redundant after RLE and TFM-TBAA

Fig. 11. Comparing tbaa to an upper bound.

the three largest benchmarks benefit the most from rle. Since rle is just one of
many optimizations that benefits from tbaa, the full impact of tbaa on execution
time should be higher. Also, contrary to what the data in Table VI and Table VII
suggest, the three variants of tbaa have roughly the same performance as far as
rle is concerned. These results make two important points. First, a more precise
alias analysis is not necessarily better; it all depends on how the alias analysis is
used. Second, static metrics such as alias pairs are insufficient by themselves for
evaluating alias analyses.

6.1.3 Limit Evaluation: How Much Precision Does tbaa Lose in Order to
Achieve Its Fast Time Bound. The speedups for rle are not impressive, and it
is easy to contrive examples where tbaa fails to disambiguate memory references
while many other alias analyses succeed. To discover how effective rle is, Figure
11 compares heap loads that are redundant at run time before and after applying
rle. A redundant load occurs when two consecutive loads of the same address
load the same value in the same procedure activation. We measure these loads
using Atom [Srivastava and Eustace 1994], a binary rewriting tool for the Alpha.
We instrument every load in an executable, recording its address and value. If the
most recent previous load of an address is redundant with the current load, we
mark it as redundant. (We describe this process in more detail elsewhere [Diwan
1996].) In Figure 11, the bars labeled “Redundant originally” give the fraction of
heap references (loads) that are redundant in the original program, and the bars
labeled “Redundant after optimizations” give the fraction of heap references that
are redundant after tfm-tbaa and rle (this fraction is with respect to the original

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

50 · Amer Diwan et al.

number of heap references). The number above each bar gives the height of that
bar. These results are specific to program inputs.

Figure 11 shows that our optimizations eliminate between 35% and 88% of the
redundant loads in these programs. Moreover, for 5 of the 7 benchmark programs,
only 5% or fewer of the remaining loads are redundant. However, slisp and ktree
still have many redundant loads. To understand the source of all the remaining
redundant loads, we manually classified them as follows:

(1) Hidden loads: rle could not eliminate a redundant expression because it
was implicit in our high-level (ast) intermediate representation. For example,
the subscript expression for a Modula-3 open array involves an implicit memory
reference to the dope vector. While it is relatively straightforward to expose the
hidden loads, it would either lower the level of our intermediate representation
or force us to use a multi level intermediate representation.

(2) No PRE: rle did not eliminate a redundant expression because it was only
partially redundant, i.e., redundant along some paths but not along others.
Partial redundancy elimination (PRE) would catch these.

(3) No copy propagation: rle did not eliminate a redundant expression because
it consisted of multiple smaller expressions and our optimizer does not do copy
propagation (recall that rle eliminates textually identical expressions).

(4) Alias failure: rle did not eliminate a redundant load because of an alias that
tbaa could not disambiguate.

(5) Rest: we do not know the reason why rle did not eliminate the redundant
loads, since we did not determine the reason for the entire list of redundant
expressions (it is labor intensive).

The first category results from a limitation of representation, not tbaa or rle.
Categories 2 and 3 are limitations in our implementation of rle, rather than tbaa.
The fourth category, alias failure, corresponds to limitations of tbaa. The fifth
category may be a limitation of rle or tbaa or the representation. Each bar in
Figure 12 breaks down the Redundant after Optimizations bar from Figure 11 into
the above five categories. Note that Figure 12 uses a different scale from Figure 11
to make it easier to read. The “alias failure” segment is empty for all the programs
and thus not included.

Figure 12 illustrates that Hidden loads (dope vector accesses to index open arrays)
is the most significant source of the remaining redundant loads. Although, we we did
not encounter a single situation when optimization failed because of inadequacies
in our alias analysis, there could be some in Rest. On average, these loads are
less than 2.5% of the remaining loads. Thus, for rle on these programs and their
inputs, there is little room for improvement in our simple and fast alias analysis.

6.2 Evaluation of tbaa Using Method Resolution

This section uses static, dynamic, and limit metrics to evaluate the effectiveness of
tbaa for method resolution. The bar graphs in this section combine dynamic num-
bers, represented by the height of the bars, with the corresponding static numbers,
written above each bar. Note that we use site to refer to static measurements, e.g.,
the number of resolved method invocation sites, and invocations to distinguish dy-
namic measurements, e.g., the number of method invocations occurring at resolved
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 51

0

10

20

30

format dformat write-pickle ktree slisp m2tom3 m3cg

P
er

ce
nt

 o
f o

rig
in

al
 h

ea
p

re
fe

re
nc

es

Hidden loads No PRE No copy prop. Rest

Fig. 12. Source of redundant loads after optimizations.

sites over a run of a program. In these results, we use only the most aggressive
version of tbaa: tfm-tbaa. Section 6.3 comments on the results we obtain when
we use tf-tbaa.

6.2.1 Static and Dynamic Evaluation. Figures 13 through 22 illustrate the per-
cent of method invocations resolved by each analysis for each of the benchmark
programs. The graphs have one bar for each level of analysis. The With NULL
regions in the bars correspond to the percentage of method invocations at run time
that analysis resolves to exactly one procedure. The Ignoring NULL corresponds
to method invocations that analysis resolves to one user procedure or error. We
obtained these numbers by doing static analyses using each of our method resolu-
tion techniques and then scaling the results with the method invocation frequency
from a single run of the benchmark; thus, we are also able to provide these numbers
for the interactive benchmarks. The pair above the bar is the number of static call
sites (With NULL, Ignoring NULL). The Ignoring NULL component of the pair
includes the With NULL component: it is the total number of method resolutions
we would resolve if we ignored NULL. The pair includes all method invocation sites
including ones that may not execute in this execution.

The figures illustrate that type-hierarchy analysis resolves many method invoca-
tions for most of the benchmark programs. In addition, the other analyses bene-
fit different benchmarks (though the benefit is not always visible in the dynamic
number but rather in the static pairs). tpa resolves very few additional method
invocations compared with type hierarchy analysis but removes NULL possibilities.
Thus, type propagation is useful for languages that have well-defined semantics for

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

52 · Amer Diwan et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,33) (8,33) (8,33) (18,33) (18,33)

Fig. 13. format : Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,92) (13,92) (13,92) (47,92) (47,92)

Fig. 14. dformat : Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,18) (2,18) (2,18) (4,18) (4,18)

Fig. 15. write-pickle: Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,4) (0,4) (0,4) (0,4) (0,4)

Fig. 16. k-tree: Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,218) (1,218) (1,218) (65,218) (65,218)

Fig. 17. slisp: Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,176) (60,188)

(60,193)

(70,190)

(70,195)

Fig. 18. dom: Resolved invocations.

the NULL case (such as Modula-3 and Java) but is less useful for other languages
(such as C++). tpa-tbaa improves over tpa for two benchmarks, dom and trestle.

itpa also eliminates the NULL possibility in several of the benchmarks, and re-
solves additional method invocations (over tpa) in dom, m3cg, and trestle. itpa-

tbaa resolves additional method invocations (over itpa) in several of the bench-
mark programs (dom, postcard, m3cg, and trestle) though its benefit is visible only
in the dynamic numbers for dom and m3cg. Other runs may display more benefit
from tbaa. The bottom line is that while tha resolves most of the method invo-
cations, other resolution techniques, particularly ones that involve tbaa, are also
useful for some benchmark programs, particularly dom and m3cg.

To judge the execution-time impact of the analyses, we ran our noninteractive
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,167) (7,167) (7,167) (23,167) (23,189)

Fig. 19. postcard : Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,1851) (517,1851) (521,1851) (648,1851) (652,1851)

Fig. 20. m2tom3 : Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,745) (165,747) (165,747) (461,748)

(461,1100)

Fig. 21. m3cg : Resolved invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,245) (18,246) (28,256) (80,252) (91,262)

Fig. 22. trestle: Resolved invocations.

benchmarks7 before and after resolution of method invocations on an Alpha 21064
simulator (see Section 6.1.2). In the first experiment, the compiler replaced method
invocations that resolved to exactly one user procedure with direct calls. These
are the method invocations that make up the With NULL region in Figures 13
through 22. The compiler did not convert method invocations that resolved to one
user procedure or error, since that would be inconsistent with Modula-3 language
semantics. We found that the execution time improvement averaged less than 2%
for the benchmarks even when the compiler inlined the frequently executed resolved
method invocations.

In the second experiment, the compiler replaced method invocations that resolved
to one user procedure or error with direct calls. Ignoring the error possibility is
inconsistent with Modula-3 semantics, but it facilitates comparison with languages
such as C++. We found that resolving the method invocations improved perfor-
mance by 0 to 11%, with an arithmetic mean of 4.6%.

These results show that unlike pure dynamically typed object-oriented languages,
the direct cost of method invocations here is small. The main cost of method
invocations is indirect: method invocations obscure control flow and thus inhibit
compiler optimizations.

6.2.2 Limit Evaluation. Programs introduce potential polymorphism by merg-
ing control and data as follows:

—Control merges:

7Because trestle, postcard, and dom are interactive, we did not include them in this experiment.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

54 · Amer Diwan et al.

Table VIII. Cause of Information Loss

Source Solution

Data merge More powerful alias analysis

Control merge Context-sensitive analysis

Unavailable Analyze libraries

—after a conditional statement
—at a call site with multiple targets due to the returns
—at a procedure with multiple callers
—at the return of a procedure with multiple return statements

—Data merges:
—at assignments through potential aliases (includes heap allocated data, point-

ers, and array references)

If a merge results in the loss of type information and the affected variable is later
used to invoke a method, then that merge is the reason analysis failed to resolve
the method invocation. The method invocation may actually be polymorphic, or
the analysis may not be powerful enough to resolve it. For each method invocation
that our analyses do not resolve, our cause assignment algorithm finds the first
merge that results in the loss of type information for the receiver of the method
invocation. The analyzer finds the merge by following use-def chains [Aho et al.
1986] to the point where information is lost.

We use this information to expose the reason when our analyses fail. The rea-
son suggests which analyses or transformations may be effective on the unresolved
method invocations. For example, if a control merge obscures a type, a context-
sensitive analysis may prevent this loss of information. The cause analysis identifies
three sources of information loss: data merge, control merge, and code unavailable.
Code unavailable means that a method could not be resolved due to the unavail-
ability of library code. Table VIII suggests techniques that may prevent the loss of
information for each of the three causes of information loss.

Now we address the following questions for the most aggressive version of our
method resolution analysis, itpa-tbaa using tfm-tbaa:

(1) How does our analysis compare to a perfect analysis that resolves all monomor-
phic method invocations?

(2) What transformations could convert the remaining polymorphic method invo-
cations to direct calls?

Figure 23 answers the first question. Each bar gives the run-time data for one
benchmark program. The height of a bar corresponds to the percentage of (dy-
namic) method invocations that always call the same procedure in a run of the
benchmark. Each bar has two regions: the “Resolved” region corresponds to the
method invocations from sites resolved by analysis, and the “Unresolved” region
corresponds to invocations from unresolved monomorphic method sites. The pair
above each bar gives the number of static method invocation sites corresponding to
the two regions. Note that the numbers above the bar only include those method
sites that are executed in our runs. The “Unresolved” region is an upper bound
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fo
rm

at

df
or

m
at

writ
e-

pic
kle sli

sp
do

m
k-

tre
e

po
stc

ar
d

m
2t

om
3

m
3c

g

tre
stl

e

P
er

ce
nt

ag
e

of
 to

ta
l i

nv
oc

at
io

ns

Unresolved
Resolved

(26,0)

(65,0)

(9,1)

(94,0)

(128,6)

(2,5)

(88,32)

(494,16)

(155,56)

(8,12)

Fig. 23. Monomorphic method invocations.

0%

5%

10%

15%

20%

25%

30%

fo
rm

at

df
or

m
at

writ
e-

pic
kle sli

sp
do

m
k-

tre
e

po
stc

ar
d

m
2t

om
3

m
3c

g

tre
stl

e

P
er

ce
nt

 o
f t

ot
al

 in
vo

ca
tio

ns

Unavailable
Control merges
Data merges

0 0 1 0 6

5

32

16

56

12

Fig. 24. Monomorphic method invocations that are unresolved.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

56 · Amer Diwan et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fo
rm

at

df
or

m
at

writ
e-

pic
kle sli

sp
do

m
k-

tre
e

po
stc

ar
d

m
2t

om
3

m
3c

g

tre
stl

e

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

Unavailable
Control merges
Data merges

4

3

0

1

3

8

0

3

22

19

Fig. 25. Polymorphic method invocations.

on the truly monomorphic method invocations (i.e., across all possible runs of the
programs) that are unresolved by our analyses, and thus on how much better an
oracle could do compared to our analyses. It is an upper bound, since method in-
vocations may actually be polymorphic on a different program execution or across
executions.

Figure 23 shows, that for all benchmarks except k-tree, m3cg and trestle, our
analysis resolves the vast majority of monomorphic method invocations; the anal-
yses perform almost as well as the oracle. For the benchmarks where our analyses
are less effective, Figure 24 suggests which analyses may be successful in resolving
these method invocations.

Each bar in Figure 24 breaks down an unresolved region in Figure 23 into three
regions, one for each cause of analysis failure. The number above each bar is the
number of static method invocation sites represented by the bar. For m3cg, the
figure indicates that a more powerful alias analysis may be successful in resolving
more method invocations. On inspection of the source code of m3cg, we found that
an analysis would have to discover the semantics of a stack in order to do better
than our alias analysis, which is unlikely. For trestle and k-tree, the primary cause
of analysis failure is control merges, and thus a context-sensitive analysis may be
effective in resolving more method invocations. Note, that like the experiments for
rle, these experiments also suggest that there is little or no room for improvement
in tbaa as far as method resolution analyses and our benchmarks are concerned.

Figure 25 addresses the second question: what transformations will be effective in
converting the polymorphic method invocations to direct calls? Figure 25 presents
data for the method invocation sites that call more than one procedure in a run
of the benchmark and thus cannot be resolved by analysis alone. These method
invocations are a lower bound on the polymorphic method invocations, since in
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 57

another run of the benchmark additional method invocations may be polymorphic,
although relative execution frequencies may also change. The number above each
bar is the number of static method invocation sites corresponding to the method
invocations represented by the bar.

Figure 25 illustrates that most run-time polymorphic method invocations arise
because more than one type of object is stored in a heap slot. Two techniques,
explicit type test [Calder and Grunwald 1994; Hölzle and Ungar 1994] and cloning
or splitting combined with aggressive alias analysis, may be able to resolve these
method invocations. Merges in control are another important cause of the run-
time polymorphism, especially for trestle, and can be resolved by code splitting and
cloning [Chambers and Ungar 1989; 1991; Hall 1991].

While the static number of run-time polymorphic sites in the benchmarks is usu-
ally small, they are executed relatively frequently. For example, of the 30 method
invocation sites executed in a run of format, only 4 sites are polymorphic, but they
comprise more than 80% of the total method invocations executed. Across all the
benchmarks, polymorphic sites are called 26 times more than monomorphic sites.
Thus these Modula-3 programs have relatively few polymorphic method invoca-
tion sites, but they are executed very frequently. This observation has implication
for optimizations: the number of method invocation sites where transformation is
needed is small, and thus hopefully the code growth induced by transformations
such as cloning will be small.

6.3 Cumulative Results

In the previous section we evaluated tbaa with respect to two optimizations: rle

and method resolution. However, these two optimizations are synergistic: method
resolution can create new opportunities for rle, especially if resolved methods are
inlined. In this section, we explore this synergy to better understand the full impact
of using tbaa for these optimizations.

6.3.1 Cumulative Execution Time Results. Figure 26 shows the individual and
cumulative impact of method invocation resolution (Minv), rle, and inlining. We
present the “base+inlining” column separately so that we can isolate the benefit
of inlining resolved method invocations from the benefit of inlining ordinary calls
(which does not use any of our analyses). “Minv+RLE+Inlining” should be com-
pared to the “Base+Inlining” bar and not to the original running time. In these
experiments, we inlined all direct call sites or resolved method invocation sites that
contributed more than 0.8% of the total number of calls in the run. We ran our
analyses in the following order: tfm-tbaa, itpa-tbaa, inlining, and rle.

This graph shows that our optimizations together have a significant impact
on the speed of our benchmark programs. In particular, the Minv+Rle+inlining
bars show that our two sets of optimizations improve program performance over
“Base+Inlining” by as much as 18% with an arithmetic mean of 8%. On comparing
the bars, we see that the benefit of combining inlining with our method invocation
resolution and rle is synergistic, i.e., the performance improvement is greater than
the sum of the improvements from the three individual optimizations.

In two cases, we observe unexpected slowdown due to the optimizations: write-
pickle and slisp. For slisp, method resolution and rle give significant improvement

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

58 · Amer Diwan et al.

97%
95%

91%

83%

93%

99%

81%

96%

89%

94%

99% 99%

91%

100%

95%

88%

94%
97%

91%
89%

96%

92%

78%

73%

79%

102%

89%

78%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Format Dformat Write-
Pickle

K-Tree Slisp M2toM3 M3CG

P
er

ce
nt

 o
f o

rig
in

al
 r

un
ni

ng
 ti

m
e

Base+Inlining
Minv
Minv+RLE
Minv+RLE+Inlining

Fig. 26. Cumulative impact of optimizations.

(9%), but doing inlining on top of these optimizations actually slows down the
program compared to the “base.” When we investigated further we found that
the vast majority of the slowdown was due to increased data-cache misses in the
inlined version (there was also a small slowdown due to increased instruction-cache
misses). We speculate that these misses are caused by inlining a large method,
which increased the register pressure and eventually resulted in more data-cache
misses. We observed similar behavior with write-pickle. Our inliner only considers
the frequency of execution when inlining; it should probably consider the size of
the procedure as well.

6.3.2 Cumulative Analysis and Optimization Time. Table IX gives the analysis
time for our most aggressive combination of analyses: itpa-tbaa using tfm-tbaa.
The first data column (Our optimizations) column gives the time to perform rle,
method resolution, and tbaa. The second data column (tbaa) gives the approx-
imate time to perform just tbaa. Since part of tfm-tbaa happens on demand
when a client requests alias information, we cannot easily separate the tfm-tbaa

time from the method resolution time.
In our experiments, we found that tfm-tbaa and tf-tbaa enabled the same

optimizations. Because of our implementation of tfm-tbaa and tf-tbaa, we
incur much of the overhead of the merging even when we use tf-tbaa. Thus,
the analysis times for tf-tbaa are almost identical to tfm-tbaa. The second
data column, which gives the total time spent in tbaa, gives a sense for how much
maximum improvement we can expect in analysis time if we had implemented tbaa

differently so that we did not incur the overhead of merging when we did not need
it. The last column (Time to build) gives the total amount of time to generate
an executable of each program starting from the Modula-3 sources on a 350MHz
Alpha 21164 workstation. This time does not include any optimizations or analyses
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 59

Table IX. Analysis Time in Seconds for Interprocedural Type Propagation and tfm-tbaa

Time in seconds
Program Our optimizations tbaa Build

format 0.2 0.06 17.1

dformat 0.5 0.09 15.4

write-pickle 0.3 0.12 20.0

k-tree 1.1 0.26 23.7

slisp 3.1 0.93 24.0

dom 8.9 1.29 94.4

postcard 10.2 1.80 65.2

m2tom3 32.7 1.44 273.4

m3cg 58.4 6.29 321.9

trestle 43.2 8.10 420.5

described in this paper. tbaa and the optimizations that depend on it increase the
total compilation time by only a small percent (up to 15%). However, we should
to point out that the Modula-3 compiler is a relatively slow compiler.

6.4 Summary of Results

This section evaluated tbaa using the following different metrics:

(1) Static alias pairs.
(2) Number of opportunities exposed by tbaa for rle.
(3) Number of method invocations resolved.
(4) Simulated execution-time improvement due to rle and method resolution.
(5) An upper-bound for tbaa with respect to rle and method resolution. rle,

method resolution, and inlining.
(6) Analysis time.

Each of these metrics exposes different information about tbaa. The first metric,
static alias pairs, tells us two things. (1) For our benchmark programs, tfm-

tbaa offers little or no improvement in precision over tf-tbaa. (2) tf-tbaa is
potentially a much better alias analysis than t-tbaa. Even though tf-tbaa offers
little performance improvement over t-tbaa for rle, it should probably be the
algorithm of choice, since it does gives more precise results without much added
complexity, which may be important for other optimizations that use alias analysis.

The second metric, number of opportunities exposed by tbaa for rle, reveals
that tf-tbaa enables many more opportunities for rle than t-tbaa. The third
metric, number of method invocations resolved, reveals that on some programs our
techniques resolve the vast majority of method invocations but on several programs
(most notably m3cg and trestle) our analyses fail to resolve the majority of method
invocations.

The fourth metric, execution-time improvement, indicates how much an optimiza-
tion or analysis really matters to the bottom line: performance. Our experiments
find that the majority of the execution-time improvement due to rle comes from
t-tbaa. tf-tbaa improves performance only slightly. The results also illustrate
that the execution-time improvement resulting from tbaa and rle or method res-

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

60 · Amer Diwan et al.

olution is relatively small: on average 3.6% improvement for rle and 4.6% for
method resolution.

If we had used only execution-time improvements to evaluate our analysis we
might conclude that t-tbaa is the algorithm of choice. However, the number
of opportunities metric tells us that tf-tbaa is indeed significantly better than
t-tbaa. Perhaps with different benchmark inputs tf-tbaa would improve per-
formance significantly more than t-tbaa. If we had used only the execution-time
improvement metric or the number of method invocations resolved metric, we might
conclude that tbaa is a very imprecise alias analysis. However, upper-bound anal-
ysis reveals that tbaa in fact performs about as well as any alias analysis could
perform with respect to rle and method resolution and our benchmark programs.

To summarize, each metric reveals different information about tbaa. For this
reason, we feel that static, dynamic, and limit metrics should all be used together
in a thorough evaluation of an alias analysis, or any compiler analysis for that
matter.

7. ANALYZING INCOMPLETE PROGRAMS

In this section, we describe modifications to our alias analysis and method invo-
cation resolution to produce conservative analyses when the entire program is not
available, such as during separate compilation or for Java programs that load classes
dynamically. We evaluate the modified analyses by comparing the performance of
rle and method resolution to their performance using the original algorithms.

7.1 Alias Analysis for Incomplete Programs

All prior pointer alias analyses for the heap are whole-program analyses, i.e., the
compiler assumes it is analyzing the entire program, including libraries, making
a closed-world assumption. Many situations arise, however, in which the entire
program is not available: for instance, during separate compilation, or compiling
libraries without all their potential clients, or compiling incomplete programs.

In unsafe languages such as C++, alias analyses must assume that unavailable
code may affect all pointers in arbitrary ways (though if all code is written in ANSI
C++ an alias analysis can make better assumptions about pointers in unavailable
code). For type-safe languages such as Modula-3 and Java, the compiler can use
type-safety and a type-based alias analysis to make stronger type-safe assumptions
about unavailable code. It can assume that unavailable code will not violate the
type system of the language. For example, consider the following procedure decla-
ration using the types declared in Figure 2.

PROCEDURE f (p: REF S1; q: REF S2) = ...

In an unsafe language, if some of the callers of f are not available for analysis, the
compiler must assume that p and q may point to the same object. For a type-safe
language, a type-based analysis can safely assume that p and q cannot point to the
same object since they have incompatible types.

Two components of tbaa rely on properties other than the type system of the
language: AddressTaken and type merging. Since unavailable code may pass to
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 61

97 99 98 98 97

92 94
97 99 98 98 97

92 94

0

10

20

30

40

50

60

70

80

90

100

Format Dformat Write-Pickle K-Tree M2toM3 Slisp M3CG

P
er

ce
nt

 o
f o

rig
in

al
 r

un
ni

ng
 ti

m
e

RLE RLE Open

Fig. 27. Simulated execution time using open- and closed-world assumptions

available code the address of a qualified expression or subscript expression we revise
AddressTaken as follows.

AddressTaken (p) is true:

(1) if the program ever takes p’s address (for instance to pass it by reference or as
part of a WITH), or

(2) if f is a pass-by-reference formal and p and f have the same type.

Since Modula-3 requires the types of pass-by-reference formals and actuals to be
identical, the second clause needs to check only for type equality, not type compat-
ibility. Note that this new definition of AddressTaken considers instructions in the
program for available code (1) and considers only the type system for unavailable
code (2).

Since unavailable code may cause merges of types, we make tfm-tbaa more
conservative at merges. We merge any two types (related by the subtype relation)
to which the program has access, since unavailable code may assign them. Since
Modula-3 uses structural type equivalence, unavailable code can access most types
because it can construct its own copy of the types. Exceptions to this ability are
Branded types in Modula-3. These types essentially observe name equivalence and
may not be “reconstructed” by unavailable code.

Figure 27 compares the simulated running time improvement resulting from rle

when assuming that the entire program is available (closed world) and assuming
it is not available (open world). The open-world assumption has an insignificant
impact on the effectiveness of tbaa with respect to rle. This result however
reflects the results of Table VII, since tfm-tbaa, which is most affected by the
open-world assumption, does not enable any additional opportunities for rle over
tf-tbaa. With respect to the static metrics, we found that they were the same

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

62 · Amer Diwan et al.

8%
4%

0% 0% 0% 0% 0%

14%

62%

100%

49%

87%

50% 50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

format dformat write-
pickle

k-tree slisp m2tom3 m3cg

P
er

ce
nt

ag
e

of
 to

ta
l m

et
ho

d
in

vo
ca

tio
ns

open world
closed world

Fig. 28. Percent of resolved method invocations with open- and closed-world assumptions.

for the open-world and closed-world assumptions with one difference: M3CG had
about 80 more alias pairs (interprocedurally) with the open-world assumption than
with the closed-world assumption. These additional alias pairs did not reduce the
effectiveness of rle.

We also need to modify method resolution analyses if the entire program is not
available for analysis. If some of the assignments and type hierarchy are unavail-
able for analysis, only intraprocedural type propagation (along with the open-world
version of tbaa) is applicable. Type propagation must start with the assumption
that on entry to each procedure all nonlocal variables and aggregate locations may
have a type that type propagation knows nothing about. However, given the as-
signments and conditional statements within the procedure, intraprocedural type
propagation may still be able to resolve some method invocations.

Figure 28 compares the percent of dynamic method invocations out of all method
invocations that our analysis can resolve assuming the entire program is available
(closed world) and assuming some portion is unavailable (open world). The open-
world assumption dramatically limits the number of method calls that our analysis
resolves.

8. APPLICABILITY TO OTHER OPTIMIZATIONS AND LANGUAGES

This paper has demonstrated that tbaa works for two specific optimizations that
both can benefit from locally precise information. We believe this property will
make it effective for other scalar optimizations such as dead-code elimination, con-
stant propagation, scheduling, and register allocation. This speculation needs fur-
ther testing of course.

The analyses described here are language independent, but their usefulness de-
pends on both language and programming style. tbaa, of course, depends greatly
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 63

on type-safety in programs. Thus it is unlikely to be useful for arbitrary C or C++
code. However, if the C++ code is written in a type-safe style, tbaa can be applied
to it. To our knowledge, at least two groups of people have applied our ideas to
languages other than Modula-3 and found them to be effective: Reinig [1998] in
their DEC C++ compiler and Nystrom et al. [1999] in their Java optimizer. We
discuss these further in related work.

While Java programs are type safe, they introduce a different set of challenges for
tbaa and associated optimizations. In particular, the exception model, memory
model, and threads severely limit the extent to which an optimization can reorganize
code [Nystrom et al. 1999].

The effectiveness of our method resolution analyses depends on programming
style and type-safety as well. For example, some C++ programming styles discour-
age the use of virtual functions unless necessary;8 in essence, this style encourages
the programmer to attempt type-hierarchy analysis manually. In such situations,
the impact of method resolution analyses will be limited compared to Modula-3
programs, where all methods are virtual. We expect that our results will carry over
to other statically typed object-oriented languages such as C++ if the programs are
written using only virtual methods. However, the execution-time improvement due
to our analyses in C++ programs may be greater if these programs use multiple
inheritance. Since there are no static types in dynamically-typed languages, our
results will not directly apply to them.

9. RELATED WORK

In this section, we distinguish our work from others that address alias analysis,
method resolution, and compiler optimization evaluation. For alias analyses, we
focus on those papers that present algorithms similar to ours or evaluate alias
analyses using more than static metrics.

9.1 Alias Analysis

Alias analysis must consider an unbounded number of paths through an unbounded
collection of data, and is therefore harder than traditional data-flow analyses. The
literature contains many algorithms for alias analysis [Banning 1979; Burke et al.
1994; Hind et al. 1999; Chatterjee et al. 1999; Chase et al. 1990; Choi et al. 1993;
Cooper and Kennedy 1989; Deutsch 1994; Emami et al. 1994; Landi and Ryder
1991; 1992; Larus and Hilfinger 1988; Shapiro and Horwitz 1997b; Steensgaard
1996; Weihl 1980; Hummel et al. 1994; Cooper and Lu 1997; Larus and Hilfinger
1988; Wilson and Lam 1995]. The key differences between the algorithms stem from
how they approximate the unbounded control paths and data. The approximation
determines the precision and efficiency of the algorithm, and these alias analyses
range from precise exponential time algorithms to less precise nearly linear-time
algorithms.

Our work differs from previous work in three ways: (1) It is type-based instead of
instruction-based. (2) We evaluate our alias analyses with respect to two optimiza-
tions, rle and method resolution, rather than using static measurements as used
by most work on alias analysis [Banning 1979; Burke et al. 1994; Hind et al. 1999;

8Only virtual functions may be overridden in subtypes.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

64 · Amer Diwan et al.

Chatterjee et al. 1999; Chase et al. 1990; Choi et al. 1993; Cooper and Kennedy
1989; Deutsch 1994; Emami et al. 1994; Landi and Ryder 1991; 1992; Larus and
Hilfinger 1988; Shapiro and Horwitz 1997b; Steensgaard 1996; Weihl 1980]. (3)
For both our optimizations that benefit from alias analysis, we use a limit study to
demonstrate that tbaa is close to perfect for our benchmarks and optimizations.
Our limit studies are similar to those of Wall [1991], which assumes a “perfect alias
analysis” to find an upper bound on instruction-level parallelism. Wall [1991] does
not evaluate an existing alias analysis as we do, but just gives the potential of a
perfect alias analysis for instruction-level parallelism.

Aho et al. [1986] and Chase et al. [1990] were among the first to write that
using programming language types could improve alias analysis, but did not present
algorithms that did so and did not evaluate it. Our alias analysis is most similar
to those of Rinard and Diniz [1996], Steensgaard [1996], and Ruf [1995; 1997].

Rinard and Diniz [1996] use type equality to disambiguate memory references.
The type system they use is a subset of C++ that does not have inheritance and is
thus weaker than Modula-3’s or Java’s type systems. Steensgaard [1996] presents
an instruction-based alias algorithm that uses nonstandard types, not programming
language types, to obtain a nearly linear-time alias analysis. His type inference
algorithm is similar to our selective type merging; however, he does not use pro-
gramming language types, and in particular inheritance, to prune the merge sets as
we do. In terms of precision, Steensgaard’s algorithm is not directly comparable to
tbaa, and there are many examples where Steensgaard does better or worse than
tbaa.

Ruf [1995] compares a context-sensitive alias analysis to a context-insensitive
one and finds, for his benchmarks, that they are comparable in precision. Both
algorithms are flow-sensitive and are fairly simple versions of context-insensitive
and -sensitive algorithms in that they do not consider any shape information (such
as Chase et al. [1990]). Both algorithms considered by Ruf are more precise than
tbaa, since they are flow-sensitive and also support strong updates. Ruf finds that
there is little difference for his benchmarks between context-sensitive and context-
insensitive versions of his analyses. Our work suggests that the point of diminishing
return for pointer analyses may come even earlier for many applications than Ruf’s
context-insensitive analysis.

Ruf [1997] shows how to use programming language types and nonstandard types
(such as those of Steensgaard [1996]) to partition data-flow analyses: each partition
represents code that can be analyzed independently, and thus a different analysis
can be used on each partition. In Ruf’s first algorithm, he uses only dependences
between programming language types; thus the kind of type information he uses is
similar to t-tbaa. Ruf uses his scheme to partition programs for alias analyses, but
does not use programming language types in the analysis. Ruf’s second algorithm
does not use programming language types; instead it uses nonstandard types (e.g.,
those of Steensgaard [1996]).

Wilson and Lam [1995] present a context- and flow-sensitive pointer analysis
for C programs. This analysis handles the entire C language and is thus quite
complex. Wilson and Lam introduce the use of partial-transfer functions for pointer
analysis, which allow even their context-sensitive analysis to reuse prior analyses of
procedures. Wilson and Lam evaluate their algorithm using static metrics and one
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 65

dynamic metric: the speedup due to automatic parallelization of two C programs
which could previously not be fully parallelized because of how they used pointers.
This analysis is much more powerful than any tbaa but is not always practical
even for modestly sized programs [Wilson 1997].

Cooper and Lu [1997] describe and evaluate register promotion, an optimization
that moves memory references out of loops and into registers. Register promo-
tion, when it includes the extension for pointer-based loads, is similar to the loop-
invariant code motion part of rle except that promotion also hoists stores out of
loops and not just loads. They evaluate register promotion with two alias analyses:
a trivial analysis and a flow-sensitive alias analysis. Their flow-sensitive analysis is
similar to the context-insensitive analysis of Ruf [1995]. They used the number of
instructions executed as their performance metric and found that the more pow-
erful alias analysis did not significantly improve performance. We observe more
performance improvement due to rle, which may be because we measure object-
oriented programs as opposed to the C programs used by Cooper and Lu. Calder
et al. [1994] show that C programs typically execute a smaller percentage of loads
and stores than C++ programs.

Debray et al. [1998] describe an alias analysis for executable code. They eval-
uate their algorithm by measuring the percentage of loads eliminated using loop-
invariant code motion and pre of loads. They do not present execution time im-
provements or a limit study for their alias analysis.

Shapiro and Horwitz [1997a] evaluate the impact of four flow-insensitive alias
analyses on a range of applications. The four alias analyses are naive, Steensgaard
[1996], Anderson [1994], and their own alias analysis [Shapiro and Horwitz 1997b],
whose precision is approximately between Steensgaard’s and Anderson’s. With the
exception of “naive,” which is weaker than tbaa, the other analyses are incom-
parable with tbaa. It is easy to contrive examples that show the superiority of
one over the other. For instance, unlike tf-tbaa or tfm-tbaa, Shapiro and Hor-
witz’s algorithms do not separate fields in their analyses. Shapiro and Horwitz
compare the pointer analyses by counting optimization opportunities rather than
the performance impact of the optimizations.

Ghiya and Hendren [1998] use their pointer analysis, called connection analy-
sis, to improve scalar optimizations, particularly loop-invariant removal, location-
invariant removal, and common-subexpression elimination, and present running
time improvements. The combination of loop-invariant removal and common-
subexpression elimination is similar to rle. Connection analysis is a very weak
pointer analysis, but since it is flow-sensitive, in some cases it may be more power-
ful than tbaa. Their paper evaluates connection analysis by measuring the number
of opportunities for their optimizations and by measuring the running time perfor-
mance improvement that results. They do not present a limit study.

Lucassen and Gifford [1988] use a type-based analysis to discover expression
scheduling constraints. One key difference between our work and theirs is our focus
on experimental evaluation of type-based analyses.

Since the first publication of some of our algorithms [Diwan et al. 1998], two
groups have applied tbaa to other languages. Reinig [1998] describes how to use
tbaa in the DEC GEM C and C++ compilers. Reinig applies and uses tbaa

intraprocedurally and assumes that the code is compliant with the ANSI standard
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

66 · Amer Diwan et al.

(tbaa may be turned off if the code violates the ANSI standard). Reinig shows that
tbaa, combined with other optimizations in GEM, yields small improvements in the
generated code at an insignificant cost. We think that one of the reasons that they
observe less benefit than we do is because the type system in our language (Modula-
3) is much richer than the type system in the language of Reinig’s experiments (C),
and thus we have better information than type-safe C programs.

Nystrom et al. [1999] apply the “incomplete program” version of tbaa to Java
programs in a bytecode-to-bytecode optimizer and use it for intraprocedural pre

of memory references. pre of memory references is more powerful than rle in
that it can eliminate not just fully redundant memory references but also partially
redundant ones. They apply their optimization only intraprocedurally (and using
only intraprocedural information) since any call can potentially result in a thread
switch. They get execution time improvements of up to 9% (but usually much less—
average 1%) for their programs. They find that Java’s exception model significantly
hinders their ability to optimize Java programs.

9.2 Other Related Work on Method Invocation Resolution

Fernandez [1995] and Dean et al. [1995] evaluate type hierarchy analysis for Modula-
3 and Cecil respectively. They find that type hierarchy analysis is a worthwhile
technique that resolves many method invocations. Our work confirms these results.
In addition to type hierarchy analysis, we evaluate a range of other techniques.

Chambers et al. [1996] describe and evaluate a range of transformations and
analyses for resolving method invocations in object-oriented languages. Their pa-
per combines many of the ideas in other papers discussed in this Related Works
section; it also serves as an excellent overview of the area. Specifically, Chambers
et al. describe class hierarchy analysis and an analysis similar to tpa (called in-
traprocedural class analysis). They do not evaluate these algorithms using a limit
study and do not study the impact of pointer analyses on method resolution.

Palsberg and Schwartzbach [1991], Agesen and Hölzle [1995], and Plevyak and
Chien [1994] describe type inference9 for dynamically typed object-oriented lan-
guages. Agesen and Hölzle’s and Plevyak and Chien’s analyses are more powerful
than ours, since they are context-sensitive (polyvariant). They are also more com-
plex and expensive. Polyvariant analyses can be used in conjunction with trans-
formations to resolve polymorphic method invocations. Chambers [1992], Calder
and Grunwald [1994], Hölzle and Ungar [1994], Dean et al. [1994], and Grove et al.
[1995] describe transformations for converting polymorphic method invocations to
direct calls, which we did not perform. Plevyak and Chien discuss reasons for loss of
type information, but do not present any results. We present detailed data, giving
reasons for loss of type information.

In work done concurrently with ours, Bacon and Sweeney [1996] and Aigner
and Hölzle [1996] evaluate techniques for resolving method invocations in C++
programs. Bacon and Sweeney evaluate three fast analyses, including type hierarchy
analysis and rapid type analysis (RTA), for resolving method invocations in C++
programs. Bacon and Sweeney also use a limit study to evaluate their analyses.

9“Method resolution” and “type inference” are terms that have been used to describe the same
kinds of analysis in object-oriented languages.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 67

Bacon and Sweeney evaluate flow-insensitive analyses. Aigner and Hölzle evaluate
type feedback and type hierarchy analysis and find that they are both effective at
resolving method invocations. Our analysis is flow-sensitive and uses alias analysis,
and is thus more precise.

Driesen and Hölzle [1996] report on the direct cost of virtual function calls in C++
programs. They find, that in “all virtual” versions of programs, the median direct
overhead of virtual functions is 13.7%. These numbers are somewhat higher than
what we observe for Modula-3 programs, and may be caused by C++’s multiple
inheritance, which makes virtual function calls more expensive.

Shivers [1991] describes and classifies a range of analyses to discover control flow
in Scheme programs. Our interprocedural type propagation and 0CFA are both
context-insensitive. However, Shivers’s analysis is optimistic with respect to the
call graph while ours is pessimistic. While Shivers focuses on powerful (and slow)
analyses—0CFA is the least powerful analysis he considers—we focus on simple and
fast analyses. Interprocedural type propagation is the most complicated analysis
we consider.

Pande and Ryder’s [1995] algorithm performs pointer analysis at the same time
as method invocation analysis. Plevyak and Chien’s [1994] type inference algo-
rithm also does some pointer analysis. Both algorithms are flow-sensitive and at
least somewhat context-sensitive and are thus more powerful than tbaa but much
slower. On a SPARC-10, Pande and Ryder’s algorithm can take 23 minutes to
analyze programs that are less than 1000 lines of code (median 36 seconds). Our
most aggressive analysis takes 43 seconds to analyze 28,977 lines of code on a DEC
3000/400 (median 6 seconds, with a number of larger benchmarks than theirs).
Subsequent work [Chatterjee and Ryder 1997a; 1997b; Chatterjee et al. 1999] im-
proves the scalability of their analyses. We show, that for our benchmarks and
optimizations, our simple analyses are effective, and that there is little to be gained
by more powerful analyses. This result originates in part from Modula-3’s language
semantics, which restricts aliasing; a more powerful alias analysis may be more use-
ful for C++ than for Modula-3, but to our knowledge this need has not yet been
demonstrated for significant applications.

DeFouw et al. [1998] describe a parameterized framework that integrates a range
of analyses for method resolution. This framework can encompass fast and sim-
ple analyses such as RTA [Bacon and Sweeney 1996], Steensgaard-like analyses
[Steensgaard 1996], and 0-CFA [Shivers 1991] (which, as discussed above, is a more
precise version of itpa). DeFouw et al. use this framework to evaluate a range of
analyses, including those just mentioned and some new analysis opportunities that
their framework exposes. For their evaluation they use several static and dynamic
metrics, including number of method invocations resolved and execution speedup.
They do not use any limit study for their evaluation. They find that for Java
programs there is little or no difference between the different analyses. However,
for Cecil programs there is a significant difference between the analyses for the
small programs and modest difference between the larger programs. Even on the
larger programs, they get most of their benefit from the simpler analysis. Our re-
sults support theirs: for many applications, a fast and simple alias analysis may be
sufficient.

A key difference between our work and that of all others is that we present results
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

68 · Amer Diwan et al.

that give the reason when analysis fails, and place upper bounds on how well more
powerful analyses or transformations can possibly do.

9.3 Evaluating Optimizations

Larus and Chandra [1993] introduce a technique, compiler auditing, that uses stud-
ies to test compiler optimizations. This technique is very similar to our limit studies,
and in particular their method of auditing redundant loads and stores is similar to
the oracle we use to evaluate tbaa and rle. One difference is that Larus and
Chandra are pessimistic about procedure calls whereas we are optimistic.

10. CONCLUSIONS

We described and evaluated three algorithms that use programming language types
to disambiguate memory references. The first analysis, t-tbaa, uses type compat-
ibility to determine aliases. The second, tf-tbaa, extends the first by using addi-
tional high-level information such as field names and types. The third, tfm-tbaa,
extends the second with a flow-insensitive analysis. We show that the algorithm
that uses only type compatibility gives the vast majority of performance improve-
ment though the other two analyses improve on it with respect to the static metrics
(and thus may yield greater performance improvements for other programs or runs).
We evaluated these pointer analyses with respect to two clients of pointer analysis:
redundant load elimination (rle) and method resolution.

tbaa with rle produces modest performance improvements, but tbaa is precise
for our benchmarks; a more precise analysis could only enable rle to eliminate on
average an additional 2.5% of redundant references, and at most 6%. Because
tbaa relies on type-safety, it can be conservative in the face of incomplete, type-
safe programs without losing effectiveness. Our results show, that as far as rle is
concerned, tbaa performs just as well with an open-world assumption as with a
closed-world assumption.

tbaa with method resolution is quite effective. On average, our analyses resolve
more than 92% of the method invocation sites that are amenable to analysis. Ap-
plying method resolution and inlining improves the running time of the benchmark
programs by up to 11%. Combined with rle, the improvements are even higher.
For method invocations that are unresolved by our analyses, we determine the rea-
son for analysis failure. We find that for the most part tbaa is precise for method
resolution, but for some programs, a more precise alias analysis may be justified.
Finally, tbaa with method resolution performs much worse with the open-world
assumption than with the closed-world assumption.

In summary, we have shown that simple, fast type-based analyses are an effective
tool for optimizing object-oriented programs, and for a selection of optimizations,
they are close to perfect.

ACKNOWLEDGMENTS

We would like to thank Ole Agesen and Darko Stefanović for comments on drafts
of this paper. We would like to thank the anonymous referees for their detailed
comments.

REFERENCES

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 69

Agesen, O. and Hölzle, U. 1995. Type feedback vs. concrete type inference: A comparison of
optimization techniques for object-oriented languages. In Proceedings of the ACM SIGPLAN
’95 Conference on Object-Oriented Programming Systems, Languages, and Applications. ACM,
Austin, Texas, 91–107.

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

Aigner, G. and Hölzle, U. 1996. Eliminating virtual function calls in C++ programs. In
Proceedings of European Conference on Object-Oriented Programming. Linz, Austria, 142–166.

Anderson, L. O. 1994. Program analysis and specialization for the C programming language.
Ph.D. thesis, DIKU.

Bacon, D. and Sweeney, P. 1996. Fast static analysis of C++ virtual function calls. In Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Object-Oriented Programming Systems,
Languages, and Applications. ACM, ACM Press, San Jose, CA, 324–341.

Banning, J. 1979. An efficient way to find side effects of procedure calls and aliases of variables.
In Conference Record of the Sixth Annual ACM SIGACT/SIGPLAN Symposium on Principles
of Programming Languages. San Antonio, Texas, 29–41.

Bates, R. M. 1994. K-trees. Personal communication.

Burke, M., Carini, P. R., Choi, J.-D., and Hind, M. 1994. Efficient flow-insensitive alias analysis
in the presence of pointers. Tech. Rep. 19546, IBM T.J. Watson Research Center, Yorktown
Heights, NY. Sept.

Calder, B. and Grunwald, D. 1994. Reducing indirect function call overhead in C++ programs.
In 21st Symposium on Principles of Programming Languages. ACM, Portland, Oregon, 397–
408.

Calder, B., Grunwald, D., and Emer, J. 1995. A system level perspective on branch architecture
performance. In 28th International Symposium on Microarchitecture. 199–206.

Calder, B., Grunwald, D., and Zorn, B. 1994. Quantifying behavioral differences between C
and C++ programs. Tech. Rep. CU-CS-698-94, University of Colorado, Boulder, CO. Jan.

Chambers, C. 1992. The design and evaluation of the SELF compiler, an optimizing compiler for
object-oriented programming languages. Ph.D. thesis, Stanford University, CA.

Chambers, C., Dean, J., and Grove, D. 1996. Whole-program optimization of object-oriented
languages. Tech. Rep. 96-06-02, University of Washington, Seattle, Washington. June.

Chambers, C. and Ungar, D. 1989. Customization: Optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming language. In Proceedings of the ACM SIG-
PLAN ’89 Conference on Programming Language Design and Implementation. 146–160.

Chambers, C. and Ungar, D. 1991. Making pure object oriented languages practical. In Pro-
ceedings of the ACM SIGPLAN ’91 Conference on Object-Oriented Programming Systems,
Languages, and Applications. 1–15.

Chase, D. R., Wegman, M., and Zadeck, F. K. 1990. Analysis of pointers and structures. In
Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation. 296–310.

Chatterjee, R., Ryder, B. G., and Landi, W. A. 1999. Relevant context inference. In Proceed-
ings of 26th ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages.
ACM, 133–146.

Chatterjee, R. K. and Ryder, B. G. 1997a. Modular concrete type-inference for statically typed
object-oriented programming languages. Tech. Rep. DCS-TR-349, Rutgers University. Nov.

Chatterjee, R. K. and Ryder, B. G. 1997b. Scalable, flow-sensitive type-inference for statically
typed object-oriented programming languages. Tech. Rep. DCS-TR-326, Rutgers University.
July.

Choi, J.-D., Burke, M., and Carini, P. 1993. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. In Conference Record of the Twentieth Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Charleston, SC,
232–245.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

70 · Amer Diwan et al.

Cooper, K. and Lu, J. 1997. Register promotion in C programs. In Proceedings of the ACM
SIGPLAN ’97 Conference on Programming Language Design and Implementation. Las Vegas,
Nevada, 308–319.

Cooper, K. D. and Kennedy, K. 1989. Fast interprocedural alias analysis. In Conference Record
of the Sixteenth Annual ACM SIGACT/SIGPLAN Symposium on Principles of Programming
Languages. 49–59.

Dean, J., Chambers, C., and Grove, D. 1994. Identifying profitable specialization in object-
oriented languages. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation. Association of Computing Machinery, Orlando, FL.

Dean, J., DeFouw, G., Grove, D., Litvinov, V., and Chambers, C. 1996. Vortex: An optimizing
compiler for object-oriented languages. In Proceedings of the ACM SIGPLAN ’96 Conference
on Object-Oriented Programming Systems, Languages, and Applications. San Jose, CA, 83–100.

Dean, J., Grove, D., and Chambers, C. 1995. Optimization of object-oriented programs using
static class hierarchy analysis. In Proceedings of European Conference on Object-Oriented
Programming. Aarhus, Denmark, 77–101.

Debray, S., Muth, R., and Weippert, M. 1998. Alias analysis of executable code. In Conference
Record of the Twenty Fifth Annual ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages.

DeFouw, G., Grove, D., and Chambers, C. 1998. Fast interprocedural class analysis. In
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. ACM, 222–236.

Deutsch, A. 1994. Interprocedural May-Alias analysis for pointers: Beyond k-limiting. In Pro-
ceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design and Imple-
mentation. 230–241.

Diwan, A. 1996. Understanding and improving the performance of modern programming lan-
guages. Ph.D. thesis, University of Massachusetts, Amherst, MA 01003.

Diwan, A., McKinley, K. S., and Moss, J. E. B. 1998. Type-based alias analysis. In Proceedings
of the ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation.
Montreal, 106–117.

Diwan, A., Moss, E., and McKinley, K. S. 1996. Simple and effective analysis of statically
typed object-oriented programs. In Proceedings of the ACM SIGPLAN ’96 Conference on
Object-Oriented Programming Systems, Languages, and Applications. San Jose, CA, 292–305.

Driesen, K. and Hölzle, U. 1996. The direct cost of virtual function calls in C++. In Proceedings
of the ACM SIGPLAN ’96 Conference on Object-Oriented Programming Systems, Languages,
and Applications. San Jose, CA, 306–323.

Emami, M., Ghiya, R., and Hendren, L. J. 1994. Context-sensitive interprocedural Points-
to analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementation. 242–256.

Emer, J., Webb, D., and McCallig, M. 1996. Zippy simulator for alpha workstations. Software.

Fernandez, M. F. 1995. Simple and effective link-time optimization of Modula-3 programs. In
Proceedings of Conference on Programming Language Design and Implementation. SIGPLAN,
ACM Press, La Jolla, CA, 103–115.

Ghiya, R. and Hendren, L. J. 1998. Putting pointer analysis to work. In Conference Record of
the Twenty Fifth Annual ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages. 121–133.

Grove, D., Dean, J., Garrett, C., and Chambers, C. 1995. Profile-guided receiver class predic-
tion. In Proceedings of the ACM SIGPLAN ’95 Conference on Object-Oriented Programming
Systems, Languages, and Applications. ACM, Austin, Texas, 108–123.

Hall, M. W. 1991. Managing interprocedural optimizations. Ph.D. thesis, Rice University,

Houston, Texas.

Hennessy, J. and Patterson, D. 1995. Computer Architecture A Quantitative Approach.
Morgan-Kaufmann.

Hind, M., Burke, M., Carini, P., and Choi, J.-D. 1999. Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems 21, 4 (July), 848–894.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

Using Types to Analyze and Optimize Object-Oriented Programs · 71

Hölzle, U. and Ungar, D. 1994. Optimizing dynamically-dispatched calls with run-time type
feedback. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation. ACM, 326–336.

Hummel, J., Hendren, L. J., and Nicolau, A. 1994. A general data dependence test for dy-
namic, pointer-based data structures. In Proceedings of the ACM SIGPLAN ’94 Conference
on Programming Language Design and Implementation. 218–229.

Kalsow, B. and Muller, E. 1995. SRC Modula-3 Version 3.5. Systems Research Center, Digital
Equipment Corporation, Palo Alto, CA.

Kam, J. B. and Ullman, J. D. 1976. Global data flow analysis and iterative algorithms. Journal
of the ACM 7, 3, 305–318.

Landi, W. and Ryder, B. G. 1991. Pointer-induced aliasing: a problem classification. In Con-
ference Record of the Eighteenth Annual ACM SIGACT/SIGPLAN Symposium on Principles
of Programming Languages. Orlando, FL, 93–103.

Landi, W. and Ryder, B. G. 1992. Interprocedural side effect analysis with pointer aliasing.
In Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation. San Francisco, CA, 235–248.

Larus, J. R. and Chandra, S. 1993. Using tracing and dynamic slicing to tune compilers.
University of Wisconsin Technical Report 1174.

Larus, J. R. and Hilfinger, P. N. 1988. Detecting conflicts between structure accesses. In
Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language Design and
Implementation. Atlanta, GA, 21–34.

Liskov, B. and Guttag, J. 1986. Abstraction and Specification in Program Development. MIT
Press.

Lucassen, J. M. and Gifford, D. 1988. Polymorphic effect systems. In 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, 47–57.

Nayeri, F., Hurwitz, B., and Manola, F. 1994. Generalizing dispatching in a distributed object
system. In Proceedings of European Conference on Object-Oriented Programming. Bologna,
Italy, 450–473.

Nelson, G., Ed. 1991. Systems Programming with Modula-3. Prentice Hall, New Jersey.

Nystrom, N., Hosking, A. L., Whitlock, D., Cutts, Q., and Diwan, A. 1999. Partial redun-
dancy elimination for access path expressions. In Proceedings of the International Workshop
on Aliasing in Object-Oriented Systems. Lisbon, Portugal. Revision of Purdue University Com-
puter Sciences Technical Report 98-044.

Palsberg, J. and Schwartzbach, M. I. 1991. Object-oriented type inference. In Proceedings
of the ACM SIGPLAN ’91 Conference on Object-Oriented Programming Systems, Languages,
and Applications. SIGPLAN, ACM Press, Pheonix, Arizona, 146–162.

Pande, H. and Ryder, B. G. 1995. Static type determination and aliasing for C++. Tech. Rep.
LCSR-TR-250, Rutgers University. July. A version of this appeared in Proceedings of the Third
International Static Analysis Symposium (SAS’96).

Plevyak, J. and Chien, A. 1994. Precise concrete type inference for object-oriented languages. In
Proceedings of the ACM SIGPLAN ’94 Conference on Object-Oriented Programming Systems,
Languages, and Applications. ACM, 324–340.

Reinig, A. G. 1998. Alias analysis in the DEC C and DIGITAL C++ compilers. DIGITAL
Technical Journal 10, 1 (Dec.).

Rinard, M. C. and Diniz, P. C. 1996. Commutativity analysis: A new analysis framework for
parallelizing compilers. In Proceedings of the ACM SIGPLAN ’96 Conference on Programming
Language Design and Implementation. Philadelphia, PA, 54–67.

Ruf, E. 1995. Context-insensitive alias analysis reconsidered. In Proceedings of the ACM SIG-
PLAN ’95 Conference on Programming Language Design and Implementation. La Jolla, CA,
13–22.

Ruf, E. 1997. Partitioning dataflow analyses using types. In Conference Record of the Twenty
Fourth Annual ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-
guages. Paris, France, 15–26.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

72 · Amer Diwan et al.

Shapiro, M. and Horwitz, S. 1997a. The effects of the precision of pointer analysis. In Lecture
Notes in Computer Science, 1302, P. V. Hentenryck, Ed. Springer-Verlag, 16–34. Proceedings
from the 4th International Static Analysis Symposium.

Shapiro, M. and Horwitz, S. 1997b. Fast and accurate flow-insensitive points-to analysis. In
Conference Record of the Twenty Fourth Annual ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages. Paris, France, 1–14.

Shivers, O. 1991. Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis, Carnegie-
Mellon University, Pittsburgh, PA.

Srivastava, A. and Eustace, A. 1994. ATOM: A system for building customized program analysis
tools. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design
and Implementation. Association of Computing Machinery, Orlando, FL, 196–205.

Stallman, R. M. 1989. Gnu C Compiler. Free Software Foundation, Cambridge, MA. Software
distribution.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Conference Record of the
Twenty Third Annual ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages. Association of Computing Machinery, 32–41.

Sun Microsystems Computer Corporation 1995. The Java language specification, 1.0 Beta ed.
Sun Microsystems Computer Corporation.

Tarjan, R. E. 1975. On the efficiency of a good but not linear set union algorithm. Journal of
the ACM 22, 2, 215–225.

Wall, D. W. 1991. Limits of instruction-level parallelism. In Proceedings of the Fourth In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems. Santa Clara, California, 176–189.

Weihl, W. E. 1980. Interprocedural data flow analysis in the presence of pointers, pro-
cedure variables and label variables. In Conference Record of the Seventh Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Las Vegas, Nevada,
83–94.

Wilson, R. P. 1997. Efficient context-sensitive pointer analysis for C programs. Ph.D. thesis,
Stanford University, Palo Alto, CA.

Wilson, R. P. and Lam, M. S. 1995. Efficient context-sensitive pointer analysis for C programs.
In Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design and
Implementation. Association of Computing Machinery, La Jolla, CA, 1–12.

Received August 1999; revised June 2000; accepted January 2001

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.

	Introduction
	Background
	Memory Reference Basics
	Polymorphism through Subtyping

	Type-based alias analysis
	textsc {tbaa}{} Using Type Declarations
	Using Field Access Types
	Using Assignment
	Complexity of Analyses

	Using textsc {tbaa}{}
	Redundant Load Elimination
	Resolving Method Invocations
	Type Hierarchy Analysis
	Intraprocedural Type Propagation
	Interprocedural Type Propagation
	Using textsc {tbaa}{} to Resolve Method Invocations
	Summary and Complexity of Analyses

	Methodology
	Metrics
	Compiler Framework
	Benchmarks
	Ordering the Analyses

	Results
	Evaluation of textsc {tbaa}{} Using textsc {rle}
	Static Evaluation
	Dynamic Evaluation
	Limit Evaluation: How Much Precision Does textsc {tbaa}{} Lose in Order to Achieve Its Fast Time Bound

	Evaluation of textsc {tbaa}{} Using Method Resolution
	Static and Dynamic Evaluation
	Limit Evaluation

	Cumulative Results
	Cumulative Execution Time Results
	Cumulative Analysis and Optimization Time

	Summary of Results

	Analyzing incomplete programs
	Alias Analysis for Incomplete Programs

	Applicability to other optimizations and languages
	Related work
	Alias Analysis
	Other Related Work on Method Invocation Resolution
	Evaluating Optimizations

	Conclusions
	References

