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Lock-Free Garbage Collection for Multiprocess_oré
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Abstract— Garbage collection algorithms for shared-memory
multiprocessors typically rely on some form of global synchro-
nization to preserve consistency. Such global synchronization may
lead to problems on asynchronous architectures: if one process
is halted or delayed, other, nonfaulty processes will be unable to
progress. By contrast, a storage management algorithm is lock-
free if (in the absence of resource exhaustion) a process that
is allocating or collecting memory can be delayed at any point
without forcing other processes to block. This paper presents
the first algorithm for lock-free garbage collection in a realistic
model. The algorithm assumes that processes synchronize by
applying read, write, and compare&swap operations to shared
memory. This algorithm uses no locks, busy-waiting, or barrier
synchronization, it does not assume that processes can observe or
modify one another’s local variables or registers, and it does not
use inter-process interrupts.

Index Terms— Garbage collection, lock-free algorithms, mem-
ory management, multiprocessors, shared memory, wait-free al-
gorithms. ‘

I. INTRODUCTION

ARBAGE collection algorithms for shared-memory mul-
tiprocessors typically rely on some form of global syn-
chronization to preserve consistency. Shared memory archi-
tectures, however, are inherently asynchronous: processors’
relative speeds are unpredictable, at least in the short term,
because of timing uncertainties introduced by variations in in-
struction complexity, page faults, cache misses, and operating
system activities such as preemption or swapping. Garbage
collection algorithms that rely on global synchronization may
lead to undesirable blocking on asynchronous architectures
because if one process is halted or delayed, other, nonfaulty
processes may also be unable to progress. By contrast, a
storage management algorithm is lock-free if any process can
be delayed at any point without forcing any other process to
block.! This is a very strong view of blocking, since even
very short term locks could lead to blocking in our sense. The
benefit of this view is that we can make a strong guarantee
of progress if a system is lock-free. This paper presents a
lock-free incremental copying garbage collection algorithm.
We note from the outset, however, that our garbage col-
lection algorithm, like any resource management algorithm,
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'Note that we do not use blocking to mean that ordinary execution,

€.g., mutator processes, stops during collection. In fact, we do not make a
mutator/collector distinction, as will be seen.

blocks when resources are exhausted. In our algorithm, for
example, a delayed process may force other processes to
postpone storage reclamation, although it will not prevent them
from allocating new storage if any free storage is available. If
that process has actually failed, then the nonfaulty processes
will eventually be forced to block when their remaining free
storage is exhausted. If halting failures are a concern, then our
algorithm should be combined with higher-level (and much
slower) mechanisms to detect and restart failed processes, an
interesting extension we do not address here. Nevertheless, our
algorithm tolerates substantial delays and variations in process
speeds, and may therefore be of value for real-time or “soft”
real-time continuously running systems.

Previous algorithms typically include two distinct forms of
synchronization. One is synchronization of access, update, etc.,
to individual objects, which we call local synchronization.
For example, Halstead [1] uses short term locks on objects.
The other is some form of barrier for phases of the garbage
collection computation and/or locks on such data structures as
a free list. This we call global synchronization. Our algorithm
is lock-free in both local and global synchronization, and
distinct techniques are used for each.

II. MODEL

There are three aspects to our model of memory: the under-
lying shared memory hardware and its primitive operations, the
application level heap memory semantics that we will support,
and the structuring of the contents of shared memory in order
to support the application level semantics.

A. Underlying Architecture

We focus on a multiple instruction/multiple data (MIMD)
architecture in which n processes, executing asynchronously,
share a common memory. Each process also has some private
memory (e.g., registers and stack) inaccessible to the other
processes. The processes are numbered from 1 to n, and each
process knows its own number, denoted by me. The primitive
memory operations are read, which copies a value from shared
memory to private memory, write, which copies a value in the
other direction, and compare&swap, shown in Fig. 1. We do
not assume that processes can interrupt one another.

We chose the compare&swap primitive for two reasons.
First, it has been successfully implemented, having first ap-
peared in the IBM System/370 architecture [2]. Second, it can
be shown that some form of read-modify-write primitive is
required for nonblocking solutions to many basic synchro-
nization problems, and that compare&kswap is as powerful
in this respect as any other read-modify-write operation [3],
[4]. Most muitiprocessors, even ones based on load/store
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compare&swap (w: word, old, new: value) returns(Boolean)
if w = old
then w := new
retarn true
else return false
end if
end compare&swap

Fig. 1. The compare&swap operation.

architectures, have primitives of adequate power. For example,
the forthcoming MIPS II architecture [S] includes two relevant
instructions, Load Linked and Store Conditionally. The first
does an ordinary load but sets a special status bit in the
processor called the LL bit. This bit is automatically cleared
if an underlying cache consistency protocol detects updates
that might affect the location previously loaded. The Store
Conditionally instruction, which is required to store into
the location previously loaded, performs the store only if
the LL bit is still set, and returns the LL bit value. It is
easy to implement any conditional or unconditional, single
memory location, read-modify-write operation with these two
instructions, including compare&swap.

Note that we assume that compare&swap forces appropriate
cache consistency, not only for the location updated, but also
for most previous writes (certainly writes to the same object,
and possibly other writes to shared memory as well). It is easy
to examine our code sequences and determine the exact cache
consistency requirements, so we omit the details.

B. The Application’s View

An application program has a set of private local variables,
denoted by z, y, z, etc., and it shares a set of objects, denoted
by A, B, C, etc., with other processes. To an application, an
object appears simply as a fixed-size array of values, where a
value is either immediate data, such as a Boolean or integer, or
a pointer to another object. The storage management system
permits applications to create new objects, to fetch component
values from objects, and to replace component values in
objects. The create operation creates a new object of size s,
initializes each component value to the distinguished value nil,
and stores a pointer to the object in a local variable.

T := create (s)

The fetch operation takes a pointer to an object and an index
within the object, and returns the value of that component.

v := fetch (z,%)

The store operation takes a pointer to an object, an index, and
a new value, and replaces that component with the new value.

store (z,1,v)

We assume that applications use these operations in a type-safe
manner, and that index values always lie within range.

2We assume that objects do not vary in size over time, though our
techniques could be extended to support such a model.
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In the presence of concurrent access to the same object,
the fetch and store operations are required to be linearizable
[6]: although executions of concurrent operations may overlap,
each operation appears to take effect instantaneously at some
point between its invocation and its response. Applications are
free to introduce higher-level synchronization constructs, such
as semaphores or spin locks, but these are independent of our
storage management algorithm.

C. Basic Organization

Memory is partitioned into n contiguous regions, one for
each process. A process may access any memory location,
but it allocates and garbage collects exclusively within its
own region. Locations in process p’s region are local to p,
otherwise they are remote. Each process can determine the
process in whose region an address x lies, denoted by owner
(). This division of labor enhances concurrency: each process
can make independent decisions on when to start collecting its
own region and can use its own techniques for allocation. The
region structure is also well-suited for nonuniform memory
access (NUMA) architectures (e.g., [7]-[9]), in which any
process can reference any memory location, but the cost of
accessing a particular location varies with the distance between
the processor and the memory module.

An object is represented as a linked list of versions, where
each version is a contiguous block of words contained entirely
within one process’s region. Versions are denoted by lower
case letters a, b, ¢, etc. A version includes a snapshot of
the vector of values of its object, and a header containing
size information and a pointer to the next version. Version a’s
pointer to the next version is denoted a.next. A version that
has a next version is called obsolete; a version that does not
have a next version is called current.

An object can be referred to by pointing to any of its ver-
sions. The find-current procedure (Fig. 2) locates an object’s
current version by chaining down the list of next pointers until
it reaches a version whose next pointer is nil. The fetch and
store procedures appear in Figs. 3 and 4. Fetch simply reads
the desired field from the current version. Store modifies the
object by creating and linking in a new current version.? Later
we will discuss how store can avoid creating new versions.
The store procedure is lock-free: an individual process may
starve if it is overtaken infinitely often, but the system as a
whole cannot starve because one compare&swap can fail only
if another succeeds. Any allocation technique can be used to
implement create; the details are not interesting because each
process allocates and garbage-collects its own region, so no
inter-process synchronization is required.

Multiple versions serve two purposes: first, they allow us
to perform concurrent updates without mutual exclusion [10],
and second, they allow our copying collector to “move” an
object without locking it. In Section V we discuss extensions
that permit an object to be modified in place: using the more
powerful compare&swap-two operator, an owner-only lock-

3This method can implement arbitrary atomic updates to a single object,
including read-modify-write operations, modifications encompassing multiple
fields, and growing or shrinking the object size.
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find-current (z: object) returns(object)
while z.next # nil do
T = z.next
end while
return ¢
end find-current

Fig. 2. Find-current: locate current version of z.

fetch(z: object, 4: integer) returns (value)
z := find-current (x)
return z[¢]

end fetch

Fig. 3. Fetch: obtains current contents of a slot

store (z: object, i: integer, v: value)
temp := allocate local space for new version
loop /* retry from here, if necessary */
z := find-current (z)
for j in 1 to z.size do temp[7] := z[;] end for
templ[¢] := v
if compare&swap (z.next, nil, temp) then
return
end if
end loop
end store

Fig. 4. Store: updates contents of a slot

free technique using compare&swap, and a blocking technique
that locks individual objects (similar to [1]).

III. THE ALGORITHM

Our algorithm is an incremental copying garbage collector
in the style of Baker [11] as extended to multiprocessing by
Halstead [1]. Each region is divided into multiple contiguous
spaces: a single fo space, zero or more from spaces, and zero
or more free spaces. Initially, a process’s objects reside in
from spaces, and new objects are allocated in the fo space.
As computation proceeds, the processes cooperate to move
objects from from spaces to to spaces, and to redirect reachable
pointers to the to spaces. Once it can be guaranteed that there
is no path from any local variable to any version in a particular
from space, that from space becomes free. When the storage
allocated in a o space exceeds a threshold, it becomes a from
space, and a free space is allocated to serve as the new to
space. This structure is standard for copying collectors; our
contribution is a lock-free implementation of such a collector.

First, some terminology. A process flips when it turns a to
space into a from space. A version residing in from space is
old, otherwise it is new. Note that an old version may be either
current or obsolete, and similarly for new versions. Further,
it is possible for a new version to have an old version as
its next version. Our procedures use the function old to test
whether a version is old. This function could be implemented
by associating an old bit with the space as a whole, or with
individual objects, or by maintaining a table mapping memory
pages to spaces.

Each process alternates between executing its application
and executing a scanning task that checks local variables and
to space for pointers to old versions. When such a-pointer is
found, the scanner locates the object’s current version. If that
version is old, the object is evacuated: a new current version
is created in the scanner’s own to space.

A scan is clean with respect to process p if it completes
without finding any pointers to versions in any of p’s from
spaces; otherwise it is dirty. A scan is done as follows:

1) Examine the contents of the local variables. This stage
can be interleaved with assignments as long as the
variables’ original values are scanned before being over-
written.

2) Examine each memory location in the allocated por-
tion of ro space. This stage can be interleaved with
allocations, as long as each newly allocated version is
eventually scanned.

Scanning does not require interprocess synchronization.

How can we determine when a from space can be reclaimed?
Define a round to be an interval during which each process
starts and completes a scan. A clean round is one in which
every scan is clean and no process flips. Our algorithm is based
on the following claim: once a process flips, the from space
can be reclaimed after a clean round starts and finishes.

How does one process detect, without locks or barrier
synchronization, that another has started and completed a
scan? Call the detecting process the owner, and the scanning
process the scanner. The two processes communicate through
two atomic bits, called handshake bits, each written by one
process and read by the other. Initially, both bits agree. To
start a flip, the owner creates a new fo space, marks all
versions in the old to space as being old, and complements
its own handshake bit. On each scan, the scanner reads the
owner’s handshake bit, performs the scan, and sets its own
handshake bit to the previously read value for the owner’s
bit. This protocol guarantees that the handshake bits will
agree again once the scanner has started and completed a
scan in the interval since the owner’s bit was complemented.
(Similar techniques appear in a number of asynchronous
shared-memory algorithms [12]-[14].)

How does the owner detect that all processes have started
and completed a scan? The processes share an n-element
Boolean array owner, where process g uses owner[q] as
its “owner” handshake bit. The processes also share an n-
by-n-element Boolean array scanner, where process g uses
scanner[p][q] as its “scanner” handshake bit when communi-
cating with owner process p. Initially, all bits agree. An owner
q starts a round by complementing owner[g]. A scanner p
starts a scan by copying the owner array into a local array.
When the scan is finished, p sets each scanner{p][q] to the
previously saved value of owner[g]. The owner process g
detects that the round is complete as soon as owner[q] agrees
with scanner[p][q] for all p. An owner may not start a new
round until the current round is complete.

How does a process detect whether a completed round was
clean? The processes share an n-element Boolean array, dirty.
When a process flips, it sets dirty[p] to true for all p other than
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itself, and when a process finds a pointer into p’s from space,
it sets dirty[p] to true. If a process’s dirty bit is false at the
end of a round, then the round was clean, and it reclaims its
from spaces. The process sets its own dirty bit to false before
starting each round.

We are now ready to discuss the algorithm in more detail.
To flip (Fig. 5), a process allocates a new to space, marks
the versions in the old fo space as old, sets everyone else’s
dirty bit, and complements its owner bit. (A process may not
flip in the middle of a scan.) To start a scan (Fig. 6), the
process simply copies the current value of the owner array
into a local array. The scanner checks each memory location
for pointers to old versions (Fig. 7). When such a pointer is
found, it sets the owner’s dirty bit, and redirects the pointer
to a new current version, evacuating the object to its own to
space if the current version is old. When the scan completes
(Fig. 8), the scanner informs the other processes by updating
its scanner bits to the previously-saved values of the owner
array. The scanner then checks whether a round has completed.
If the round is completed and the scanner’s dirty bit is false,
the scanner reclaims its from spaces. If the round is completed
but the dirty bit is true, then the scanner simply resets its dirty
bit. Either way, it then starts a new scan.

IV. CORRECTNESS

For our algorithm there are two correctness properties of
interest: safety, ensuring that the algorithm implements the
application-level model described in Section 1I-B, and liveness,
ensuring that as long as processes continue to take steps,
then garbage is eventually collected. We now discuss each
in turn.

A. Safety

There are two safety properties to be demonstrated: that the
implementations of the model’s basic operations are lineariz-
able, and that nongarbage objects are never collected.

1) Linearizability of the Basic Operations: One way to show
an operation implementation is linearizable is to identify a
single primitive step where the operation “takes effect” [15].
For fetch, this instant occurs when it reads a null next pointer,
and for store, when its compare&swap succeeds in replacing
a null next pointer with a pointer to its new version. Note
that scan is essentially a store that does not affect the logical
contents of the object.

2) Only Garbage is Collected:

Claim 1: Every process starts and completes at least one
scan during the interval between the start and end of p’s clean
round.

Proof: Since p reset owner[p] to disagree with each
scanner{p][q] at the start of the interval, and since these values
agree again at the end, each process ¢ must have 1) read
the new value of owner[p], 2) performed a scan, and 3) set
scanner[g][p] to the value of owner|p]. O

Claim 2: Every process starts and completes at least one
scan clean with respect to p during the interval between the
start and end of p’s clean round.
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flip ()
mark versions in current to space as old
create new to space
for iin 1 to n do
if ¢ # me then dirty[:] := true end if

end for
owner[me] := not owner[me]
end flip
Fig. 5. Starting a flip.
scan-start ()

foriin 1ton do
local-owner[z][me] := owner[:]
end for
end scan-start

Fig. 6. Starting a scan.

scan-value (z: object) returns(object)
if old (z) then dirty[owner (z)] := true end if
loop /* evacuate object if necessary */
z := find-current (z)
if new (z) then return z end if
temp := allocate local space for new version
for j in 1 to z.size do temp[j] := z[;] end for
if compare&swap (x.next, nil, temp)
then return temp
else release local space for new version
end if
end loop
end scan-value

Fig. 7. Scanning a pointer.

scan-end ()
/* Notify other from spaces */
for 7 in 1ton doscanner[i]{me] := local-owner{:] end for
/* Did a round complete? */
if (Vi) scanner{i][me] = owner[me] then
if not dirty[me] then reclaim from spaces end if
dirty[me] := false
end if
/* start new scan */
scan-start()
end scan-end

Fig. 8. Completing a scan.

Proof: This is true because each process completed a
scan (Claim 1) but no process set p’s dirty bit. O
Claim 3: When a process reclaims a from space, no path
exists into that space from any other process’s local variables.
Proof: Suppose otherwise: p completes a clean round
even though some process has a path from a local variable
to a version z in p’s from space. If such a path exists at the
end of the clean round, then some path must have existed at
the start of the round. Call such a path an early path.
Suppose some early path passes through a mew version.
Let y be the last new version on the path from the variable
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to z. Because the round is clean, no process flips, and y
remains new for the duration of the round. The scanning
process will eventually inspect y, and it will evacuate the old
versions referenced by y, the old versions they reference, and
so on. When the scanning process reaches z, it sets dirty[p],
contradicting the hypothesis that the round was clean.

If no early path passes through a new version, then some
process ¢ has a local variable holding a pointer that references
z through a chain of old versions. Any such local variable must
be overwritten before g starts its clean scan, since otherwise
q would scan the variable, start evacuating old versions, and
set dirty[p] when it reaches x. If all such local variables are
overwritten without being stored, then there would be no path
to z at the end of the round. Therefore, some local variable
v must have been stored in a new version y after the start of
the clean round, but before v was overwritten, and before the
start of ¢’s clean scan. By the argument given in the previous
paragraph, ¢’s next scan inspects y, evacuates z, and sets
dirty[p], again contradicting the hypothesis that the round was
clean. O

B. Liveness

We claim that if each process always eventually scans,
then some process always eventually reclaims its from spaces.
Suppose not. Then each process will eventually exhaust its
finite supply of free spaces, further flips will cease, and
dirty bits will be set only by scanning. Since each process
continues to scan, each process observes an infinite sequence
of rounds, where each round includes a dirty scan. Each dirty
scan, however, reduces the number of reachable objects whose
current versions are old, since each object reachable from
a to space or from local variables is evacuated. Since the
supply of objects is finite, all objects will eventually have new
current versions. In the next round, all pointers are redirected
to current versions, and in the round after that, all scans are
clean, a contradiction.

Finally, any process that always eventually flips will even-
tually have no versions of unreachable objects in to space.
When a process creates a new fo space, it evacuates only
those objects reachable from its local variables at the time
of the flip, or objects created after the flip. Therefore, once
an object becomes unreachable, it will have no versions in to
space after each process does a flip.

V. EXTENSIONS

We now describe a number of interesting extensions to our
algorithm. The first three allow objects to be updated without
creating new versions. The fourth extension allows some from
spaces to be reclaimed sooner. Finally, we consider making
our copy collection scheme generational.

A. Update in Place Using a Stronger Operator

A significant obstacle to general practical use of our al-
gorithm is the requirement to create a new version for each
update. However, inspired by [16],* we devised a very simple

4That work also gave us the term lock-free.

technique for update in place using the compare&swa;;-two
operator, defined in Fig 9. Later versions of the M68000
architecture define a CAS2 instruction that implements this
operator [17], so our algorithm is practical, at least on that
architecture. The compare&swap-two operator may be difficult
to incorporate smoothly into RISC architectures; for example,
the previously mentioned MIPS II instructions are inadequate
for implementing compare&swap-two directly.

In using compare&swap-two for update in place the idea
is to verify that the next pointer is still nil and to do the
update in the same atomic step. Fig. 10 shows the revised
store routine. Note that versions are still needed for garbage
collection, and are permitted, but no longer required, for store
operations. Making new versions might be sensible, e.g., to
increase locality on a NUMA multiprocessor.

B. Owner Only Update in Place

Few architectures now include compare&swap-two; in this
section, we show how a process can make in-place modi-
fications to versions in its own fo space using only com-
paredswap. We add the following fields to the version header:
a.seq is a modulo two sequence number for the next update,
initially distinct from the value in the next field, a.indez is the
index of the slot being updated, and a.value is the new value
for that slot. The type of the nezt field is extended so that it
may hold cither a pointer to the next version or a sequence
number. There need be only two values for sequence numbers:
if a.seq = a.nezt, then the current update is installed, and
otherwise it is ignored.

To perform a store, a process chains down the list of versions
until it finds a version whose next field is either nil or a
sequence number. If the version is remote, the store proceeds
as before. If the version is local, however, the process calls the
local-store operation shown in Fig. 11. The operation takes a
pointer to the version, the value observed in the nezt field,
the index of the slot to be modified, and the new value of the
slot. The process calls compare&swap to reset a.next from
its current value (either a sequence number or nil) to the
new sequence number. If it succeeds, the process scans the
old value and updates the target slot. (It is necessary to scan
the overwritten value to preserve the invariant that the scan
inspects every value written to fo space.) If it fails, the process
locates the newer version and starts over. The restriction that
update in place be performed only by the owning process is
well-suited to a NUMA architecture, where it is more efficient
to update closer objects.

When a remote process attempts to update a version, it
creates a local copy just as before. One extra step is needed:
after copying the version, it checks whether z.next is equal
to x.seq. If so, the storing process must complete the pending
updates by scanning slot z.indez and storing x.value in that
slot. The evacuate procedure is similarly affected. (These
changes are not shown.) The fetch operation need not be
modified, because observing the next field linearizes every
fetch with respect to operations that create new versions, and
observing the updated field linearizes the fetch with respect to
updates in place.
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compare&swap-two (w1, w2: word, ol, 02, n1, n2: value) returns(Boolean)

if wl = 01 and w2 = 02
then w1l :=nl
w2 :=n2
return true
else return false
end if
end compare&swap-two

Fig. 9. The compare&swap-two operation.

store-cst (z: object, i: integer, v: value)

loop /* retry from here, if necessary */

z := find-current (z)

if compare&swap-two (z.next, z{i], nil, z[:], nil, v) then return end if

end loop
end store-cst

Fig. 10. Update in place using compare&swap-two.

store-local (z: object, next: value, i: integer, v: value)
seq := next + 1 (mod 2)
z.5eq := seq /* it is important to set this first */
z.index := 1
z.value := v
if compare&swap (z.next, next, seq)
then scan(z[:])
zfi] ==v
else store (z, ¢, v)
end if
end store-local

Fig. 11. Store, with owner-only update in place.

C. Locking Update in Place

A practical approach to performing updates in place on
machines without compare&swap-two is to relax slightly our
prohibition on mutual exclusion by allowing the current ver-
sion’s owner to lock out concurrent accesses. The principal
advantage of this approach is that updates do less work,
especially if the application is going to lock the object anyway,
or if the likelihood of conflict is low. The disadvantage,
of course, is that the storage management algorithm now
permits one process to force another to block. Nevertheless,
even if storage management is no longer lock-free, allocation
and garbage collection are still accomplished without global
synchronization.

As before, only the owner of the current version may update
an object in place. The owner locks an object as follows: 1) it
calls compare&swap to set the current version’s next field to
a distinguished locked value, 2) it scans the current values of
the fields that will be updated, 3) it operates on the object, 4)
it rescans the updated fields, and 5) it unlocks the object by
setting the next field back to nil. Fetch and store are changed
so that a process that encounters a locked version waits until
the next field is reset to nil.

Since the owner is the only process that updates the object in
place, there is no need to synchronize with the scanner, except
perhaps to avoid superfluous scans. Step 2 ensures that values

possibly seen by other processes will be scanned, similar to the
scan in store-local. Step 4 ensures that if the object has already
been scanned, the new values will not be mistakenly omitted.
Depending on the details of the incremental scanning process,
it is correct to omit step 2 or step 4 on some occasions.

D. Reclaiming From Spaces Earlier

Rather than reclaiming each process’s from spaces all at
once, we can reclaim them individually, by keeping more
detailed information about pointers encountered while scan-
ning. Rather than associating dirty bits with each process, we
associate them with each from space. When a scanning process
encounters a pointer into from space s, it sets the dirty bit for
space s. At the end of a scan, each from space whose dirty bit
is false can be reclaimed. If a space’s dirty bit is true, then
the dirty bit is cleared and a new scan is started. When a flip
occurs, the dirty bits of all other processes’ from spaces must
be set.

E. Generational Collection

Extending our algorithm to generational incremental col-
lection is straightforward. We divide each process’s region
into some number of generations, ordered by age. Pointers
from older to younger generations are kept in remembered
sets, reducing the work necessary to scan older generations. It
seems sensible also to remember pointers to remote objects,
to further reduce the need to scan objects. Additionally, some
means must be provided for a process to discover old versions
in old generations without scanning the old generations. One
way to do that is to have a bit table, with one bit per some
fixed number of words (Wilson calls this card marking [18]).
When a new version is installed, the process that created
the new version sets the bit corresponding to the address
of the previously current version. The owner of that version
can then locate the old version by scanning the bit table
and the associated memory words rather than scanning all
memory in the old generations. The partitioning of regions into
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generations is an internal concern of the processes, although
care must be taken that the region is scanned correctly.

VI. RELATED WORK

Our algorithm is an intellectual descendant of Baker’s
single-processor algorithm [11], and can be viewed as a lock-
free refinement of Halstead’s multiprocessor algorithm [1].
Our algorithm differs from Halstead’s because it does not
require processes to synchronize when flipping from and to
spaces, and we do not require locks on individual objects.

A number of researchers [19]-[21] have proposed two-
process mark-sweep schemes, in which one process, the muta-
tor, executes an arbitrary computation, while a second process,
the collector, concurrently detects and reclaims inaccessible
storage. The models underlying these algorithms differ from
ours in an important respect: they require that the collector
process observe the mutator’s local variables, which are treated
as roots. Many current multiprocessor architectures, however,
cannot meet this requirement, since the only way to copy a
pointer is to load it into a private register, and then store it back
to memory, leaving a “window” during which the collector
cannot tell which objects are referenced by the mutator.
The problem is that one processor generally cannot examine
another processor’s registers, and the registers are a crucial
part of the state of the mutator. These algorithms synchronize
largely through read and write operations, although some
kind of mutual exclusion appears to be necessary for the
free list and other auxiliary data structures. Pixley [22] gives
a generalization of Ben-Ari’s algorithm in which a single
collector process cleans up after multiple concurrent mutators.
This algorithm, as Pixley notes, behaves incorrectly in the
presence of certain race conditions, which Pixley explicitly
assumes do not occur. Our algorithm introduces multiple
versions to avoid precisely these kinds of problems.

Ellis, Li, and Appel [23] describe the design and imple-
mentation of a multi-mutator, single-collector copying garbage
collector. This algorithm is blocking, since processes synchro-
nize via locks, and flipping the from and fo spaces requires
halting the mutators and inspecting and altering their registers.

Massalin and Pu [16] describe how to implement an oper-
ating system kernel without locks. From them we realized the
existence and usefulness of the compare&swap-two operator;
they also appear to have introduced the term lock-free. Beyond
that there is little similarity between our work and theirs
since they were considering lock-free solutions to different
problems.

VII. CONCLUSIONS

The garbage collection algorithm presented here is (to our
knowledge) the first shared-memory multiprocessor algorithm
that does not require some form of global synchronization. The
algorithm’s key innovations are lock-free object operations for
local synchronization and the use of asynchronous “handshake
bits” for global synchronization, to detect when it is safe to
reclaim a space.

There are several directions in which this research could
be pursued. First, as noted above, although our algorithm

tolerates delays, it does not tolerate halting failures, since }"rom
space reclamation requires a clean sweep from each process.
It would be of great interest to know whether haltimg failures
can be tolerated in this model, and how expensive it would be.
Second, our algorithm makes frequent copies of objects. Some
copying, such as moving an object from from space to to space,
is inherent to any copying collector. Other copying, such as
moving an object from one process’s fo space to another’s, is
primarily intended to avoid blocking synchronization, although
it might also improve memory access time in a NUMA
architecture. The “pure” algorithm also copies objects within
the same fo space, although this copying can be eliminated
by using a stronger operator (compare&swap-two), by adding
extra fields (owner-only update in place), or by locking indi-
vidual objects. It would be useful to have a more systematic
understanding of the tradeoffs between copying, blocking
synchronization, and the power of synchronization operators.
Third, it appears that compare&swap-two allows substantially
more efficient implementation of our algorithms and it would
be helpful to have a precise formal characterization and proof
of this conjecture. Fourth, since our algorithms assume enough
resources are available to prevent blocking resulting from
resource exhaustion, it would be helpful to have a quantitative
analysis of the resources required to prevent exhaustion, and
a qualitative development of reasonable assumptions leading
to practical guarantees that resources will not be exhausted.
Finally, it would be instructive to gain some practical experi-
ence with this (or similar) lock-free algorithms. The version
of the algorithm that uses compare&swap-two appears to be
practical; other versions may be practical in more limited
circumstances, e.g., when objects are updated infrequently.
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