UNASS Amherst

SYNTACTICALLY SUPERVISED TRANSFORMERS FOR FASTER NEURAL MACHINE TRANSLATION Nader Akoury, Kalpesh Krishna, Mohit Iyyer

code & data at github.com/ dojoteef/synst

We present the syntactically supervised Transformer (**SynST**), which achieves faster translation and higher BLEU than competing non-autoregressive neural machine translation models.

SYNST VS. EXISTING SYSTEMS

TRAINING SYNST

Each > denotes a single decode step. Fewer decode steps results in faster translation, often at the expense of quality.

TARGET PARSE CHUNKING

S₆

CONTROLLED EXPERIMENTS

Model

During an in-order traversal, if the subtree rooted at a visited node spans $\leq k$ tokens, append it to our **chunk sequence**.

	BLEU	Speedup	BLEU	Speedup	BLEU	Speedup	BLEU	Speedup
Vanilla Transformer								
Beam Size $=$ 4	26.87	1.00×	30.73	1.00×	30.00	1.00×	40.22	1.00×
Beam Size $= 1$	25.82	1.15×	29.83	1.14×	28.66	1.16×	39.41	1.18×
Semi-Autoregressive Transformer								
k = 2	22.81	2.05×	26.78	2.04×	25.48	2.03×	36.62	2.14×
k = 4	16.44	3.61×	21.27	3.58×	20.25	3.45×	28.07	3.34×
k = 6	12.55	4.86 ×	15.23	4.27×	14.02	4.39 ×	24.63	4.77×
Latent Transformer*								
* As reported in (Kaiser et al. 2018)	19.8	3.89×	_	-	_	-	_	-
Syntactically Supervised Transformer								
k=6	20.74	4.86 ×	25.50	5.06×	23.82	3.78×	33.47	5.32×

WMT De-En

WSLT

En-De

WMT En-Fr

WMT En-De

ANALYSIS ON IWSLT DEV SET

Constituent identity is crucial for quality

Only predicting constituent length (1 > 3) rather than type & length (NP1 > VP3), causes a **BLEU drop** from **23.8** to **8.2**.

k=3: **NP3 VP3**

Ground-truth syntax yields huge improvements

Conditioning on the ground-truth chunk sequence during inference dramatically **improves BLEU** from **23.8** to **41.5**, yielding an upper bound for our approach.

How much does SynST rely on syntax?

Source: Katzen schlafen vielTarget: Cats sleep a lotPredicted Parse: NP1 > VP2Prediction: Cats sleep lotsGold Parse: NP1 > VP3Parsed Prediction: NP1 > VP2

	Predicted Parse	Predicted Parse	Parsed Prediction	Parsed Prediction		
	VS	VS	VS	VS		
	Gold Parse (trained senarately)	Gold Parse	Gold Parse	Predicted Parse		
F1		4044	70 1 4	00 00		
	05.40	07.04	/ 7.10	07.70		
Exact Match	4.23%	5.24%	5.94%	43.10%		

Parsed prediction closely matches predicted parse, though there exists room for improvement for parse prediction.

SynST's bottleneck is its parse decoder

A one-layer parse decoder is ~3× faster than a 5-layer version, with only a ~0.5 BLEU drop.

Future work: dynamic vs fixed k Randomly sampling possible chunk sequences during training by varying k leads to a large BLEU improvement (+1.5) with minimal impact to speedup (drop from 3.8× to 3.1×). Improving parse

prediction is an avenue

for future research.