
How Not to Bid the Cloud

Prateek Sharma, David Irwin, Prashant Shenoy
University of Massachusetts Amherst

Abstract
Cloud providers have begun to allow users to bid for sur-
plus servers on a spot market. These servers are allocated
if a user’s bid price is higher than their market price and
revoked otherwise. Thus, analyzing price data to derive
optimal bidding strategies has become a popular research
topic. In this paper, we argue that sophisticated bidding
strategies do not provide any advantages over simple
strategies for multiple reasons. First, due to price char-
acteristics, there are a wide range of bid prices that yield
the optimal cost and availability. Second, given the large
number of spot markets, there is always a market with
available surplus resources. Thus, if resources become
unavailable due to a price spike, users need not wait un-
til the spike subsides, but can instead provision a new
spot resource elsewhere and migrate to it. Third, current
spot market rules enable users to place maximum bids
for resources without any penalty. Given bidding’s irrel-
evance, users can adopt trivial bidding strategies and fo-
cus instead on modifying applications to efficiently seek
out and migrate to the lowest cost resources.

1 Introduction

Cloud platforms now sell surplus server capacity at dis-
counted prices to users to gain additional revenue. Ama-
zon EC2 uses a market mechanism to sell this capacity
where users place a bid for servers, and EC2 allocates
them if the bid is higher than the spot price, which varies
continuously based on supply and demand. When the
spot price rises above a user’s bid price, EC2 revokes
the servers. EC2 determines the spot price by running
a sealed-bid multiunit uniform price auction [3]. Note
that the underlying supply of surplus servers in the spot
pool also changes, since EC2 may take resources from
the spot pool to allocate new on-demand instances. Thus,
the spot price changes dynamically as users submit new
bids and as spot pool’s capacity changes.

Amazon conducts a second-price auction for their spot
instances. Users place a single, fixed bid, which rep-
resents the maximum hourly price that they are willing
to pay. The market price is based on all the bids and
the available supply. Importantly, all users pay the same
market price, which may be lower than the bid. If the
market price increases above the user’s bid, then the spot
instance is revocated after a small (120 second) warning.

Spot price dynamics and the potential of unexpectedly
losing resources introduce additional new complexities,
which applications are typically not designed to handle.
Addressing these complexities is an active research area.
In particular, there has been substantial research on “opti-
mal” bidding strategies for various applications and sce-
narios [10, 11, 16, 18]. In general, a bidding strategy
determines the lowest bid price that ensures an applica-
tion satisfies a performance target with high probability,
e.g., finishing within a deadline. EC2 publishes three
months of spot price history—and there are archives over
multiple years—which prior work analyzes extensively
to model price characteristics [4, 7, 13, 15, 17].

Designing bidding strategies can be highly complex,
especially if a workload is distributed and users have to
bid on many resources. In this case, requesting mul-
tiple units of the same resource with the same bid is
risky, since all resources are governed by the same spot
price, meaning that if one resource is revoked, they all
are revoked. For distributed workloads, users might ei-
ther spread their requests across many different resource
types with different spot prices or place many different
bids for different units of the same resource type, i.e., to
reduce the probability of concurrent revocations. Bid-
ding’s complexity may be one reason why, despite its
extremely low prices (50-90% less than on-demand in-
stances), the spot market has low utilization.

EC2’s cloud has attempted to reduce complexity by in-
troducing tools, such as SpotFleets, which enable users
to specify bidding policies that apply to large groups of
resources from different markets. SpotFleets also in-

1



cludes default bidding policies for users that do not want
to design their own policy. However, while bidding is a
complex problem in theory, we argue that it is not a sig-
nificant problem in practice due to at least three reasons.
Wide Range of Optimal Bids. Our spot price data anal-
ysis shows there is a wide band of bid prices that all
yield optimal results, such that any bid within this range
has a similar cost and availability as highly sophisticated
bidding strategies. One reason this is not apparent is
that prior work often compares the cost and performance
of a bidding strategy to using higher-priced on-demand
servers. However, in today’s market, bidding strategies
need not be sophisticated to reap significant savings com-
pared to on-demand servers due to long periods of low
and stable spot prices. Prior work should instead com-
pare their performance and cost with “dumb” strategies.
Resources Always Available. Due to the large number
of spot markets and their size, there are always many
markets available where prices are stable, even when
some markets are experiencing price spikes. Hence,
upon revocation, a simple strategy that provisions a new
spot server in another spot market and migrates an appli-
cation to it is better than waiting for a spot price spike to
subside. This migration approach nearly eliminates the
unavailability of spot servers and reduces the practical
impact of using bidding as a tool to control availability.
No Penalty for High Bids. Current spot market rules
permit users to bid the maximum allowed bid price
within each market with no penalty. Thus, sophisticated
users can ensure extremely high availabilities on spot in-
stances by placing high bids with little or no probability
of paying a high price if the spot price were to rise.

Finally, not only do different bidding strategies yield
little difference in their performance and cost, but some
of our insights above are reflected in the default bidding
strategies for EC2’s SpotFleets [2] tool. Thus, Amazon
is already nudging users to employ simple bidding strate-
gies [1]. Based on these insights, we argue that users
should ignore the potential complexity of bidding, and
simply procure cheap EC2 spot servers using simple bid-
ding strategies that we outline (or using Amazon’s tools
to employ such strategies). Rather than focusing on bid-
ding, researchers should instead focus on modifying ap-
plications i) to gracefully handle unexpected resource re-
vocation and allocation and ii) to efficiently seek out and
migrate to the lowest cost resources. Selecting the best
spot server to use at any time, i.e., the one with the lowest
cost and best performance, is the primary problem that
applications must address when using variable-priced re-
sources. That is, if a resource’s price rises significantly,
then applications should be flexible enough to simply mi-
grate to lower cost resources elsewhere in the cloud. For
applications willing to adopt it, this approach can yield
significant cost savings with little performance impact.

2 Background and Related Work

Since EC2 introduced its spot market, there has been sig-
nificant research both on analyzing and modeling spot
prices and developing bidding strategies based on real
data and models. One of the first papers analyzing spot
price data raised questions about whether EC2’s mecha-
nisms for setting the spot price were market driven [3].
However, as the authors note later, the characteristics of
the spot price changed, making it consistent with a mar-
ket driven allocation [3]. A number of related papers also
analyze spot price data to better understand its statisti-
cal characteristics [4, 7, 11, 13, 15, 17]. Analyzing and
modeling spot price data is a prerequisite to developing
bidding strategies that select the optimal bid to ensure a
target level of performance at the minimum cost.

Recent work focuses on optimal bidding for parallel
MapReduce jobs. In [18], the authors focus on selecting
a bid such that, with high probability, a job’s comple-
tion time on spot instances is less than twice its running
time on on-demand instances. The paper examines mul-
tiple variants of the problem, such as scenarios where
jobs only make one request for instances, i.e., they quit
job execution if too many revocations occur, versus mak-
ing persistent requests, i.e., waiting until the price drops
again and then resuming execution. However, in all vari-
ants, the work only considers bidding in a single spot
market: if the spot price rises too high and instances are
not available the MapReduce job must either quit or con-
tinue processing with fewer resources.

As we discuss, EC2 (and the cloud in general) is large
enough that there is nearly always resources available
somewhere. Thus, unless an application is highly opti-
mized for specific types of server architectures (which
MapReduce is not), waiting for the price of resources
to drop is simply not necessary. Related work makes
similar assumptions about market constraints but focuses
on different applications. For example, prior work also
develops bidding strategies for jobs with deadlines [16],
such that it chooses a bid for a particular spot market so
the job finishes before its deadline with high probability.

Restricting the problem to only a single spot market
also causes prior research to focus on the wrong price
characteristics. Specifically, if restricted to a single spot
market, the only important characteristic is availability,
or the percentage of time the bid price is below the spot
price. However, if we assume applications should not re-
strict themselves to only a single spot market, then avail-
ability is no longer important, as other cloud resources
are available in other markets. In this scenario, the fre-
quency of revocations is the primary attribute that affects
performance, since every revocation incurs an overhead
to request a new instance and migrate to it.

Unfortunately, modeling revocations is not as straight-

2



0 1 2 3 4 5
Bid

0.0

0.2

0.4

0.6

0.8

1.0
Av

ai
la

bi
lit

y
(a) Availability CDF

0 1 2 3 4 5
Bid

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Co
st

(b) Expected Cost

0 1 2 3 4 5
Bid

0

50

100

150

200

M
TB

R 
(h

ou
rs

)

(c) MTBR

g2.2xlarge c3.xlarge r3.large m3.medium d2.8xlarge

Figure 1: The effect of bidding on availability, expected cost, and MTBR for selected instance types. Bids and the
expected costs are normalized to a factor of the corresponding on-demand price.

forward as modeling availability. Modeling availabil-
ity simply requires fitting a probability density function
(PDF) to a histogram over different spot prices, which
returns a probability the spot price is equal to a particular
value. The corresponding CDF then directly gives avail-
ability, which is equal to the probability the spot price
is above a given value. Prior work models availability
using both Pareto and exponential distributions [18]. In
contrast, revocations are discrete events with inter-arrival
times that are not cleanly captured by a single number.
As in any queuing model, the distribution of inter-arrival
times is also important. However, the frequency and dis-
tribution of revocation events is a function of the bid,
and may be different at different bid prices. Even though
revocations are the primary attribute that affects perfor-
mance, we know of no prior work that models the distri-
bution of these events at different bid prices in EC2.

Finally, in many cases, as in [10, 16], bidding strate-
gies are with respect to idealized spot price distributions,
e.g., mixed Gaussian, exponential, Pareto, etc., and not
real data. These idealized models are often based on ex-
amining only a few markets even though thousands of
spot markets exist, which have vastly different character-
istics. These characteristics are not likely to fit a one-
size-fits-all model. Further, as [3] notes, price charac-
teristics may change frequently due to changes in EC2’s
supply, demand, or its pricing algorithm, which may ren-
der models based on prior data unreliable. In many cases
above, proposed solutions actually depend on the type
and attributes of the particular model used in the analy-
sis. As we discuss, though, the bidding problem in to-
day’s market (and possibly in future markets) is a red
herring that is not particularly important for maximizing
performance and minimizing costs using spot instances.

3 Do Optimal Bidding Strategies Matter?
To understand whether (and how much) optimal bidding
strategies matter in EC2, we conduct a data-driven analy-
sis of spot price data over a six month period from March
to August 2015 (and longer periods where stated) , as
well as show aggregate statistics from every EC2 spot

market. For ease of exposition, we focus on the most
popular instance types in the most popular region, i.e.,
Linux instances in us-east-1.

Bidding strategies optimize the cost-availability trade-
off for spot instances: as a user increases their bid, they
may pay more per-hour, but their availability also in-
creases. However, spot price data across many markets
shows that there is a wide range of “optimal” bids that es-
sentially yield the same availability for the same cost. To
illustrate, Figure 1(a) shows a CDF of availability for in-
stance types in five different markets over our six month
period, where the x-axis is a user’s bid normalized to the
on-demand price, i.e., 1 is 1× the on-demand price, 2
is 2× the on-demand price, etc. As expected, availabil-
ity monotonically increases with the bid. However, in
each case, the CDF has a steep incline followed by an
extremely long tail, such that there is little increase in
availability after some bid threshold and only bids that
fall within the steep range of the incline yield different
availabilities. As the graph shows, this range of bids is
quite small with only a narrow window where changing
a bid will have a significant affect on availability.

Similarly, Figure 1(b) shows the cost a user would pay
for the same instance types and the same bids. In this
case, the cost on the y-axis is a fraction of the on-demand
cost, i.e., 0.5 means the expected cost is 0.5× the on-
demand price. As with availability, the cost is monoton-
ically increasing with the bid amount. However, just as
with availability, the cost curve has a long tail, such that
higher bids result in little or no increase in cost. The only
exception in these markets is the c3.xlarge instance type,
which experiences two abrupt increases in cost at bid lev-
els of 1.2× and 4.75× the on-demand price. The other
instance types have nearly the same cost regardless of the
bid level. This occurs because most markets always have
a low and stable spot price, with the average spot price
< 0.2× the on-demand price. Just as with availability,
bidding has little effect on the cost of spot instances.

Finally, as we discuss in the previous section, the fre-
quency of revocations, as indicated by their mean-time-
between-revocations (MTBR), is another important met-

3



Avail. Cost MTBR
4

5

6

7

8

9

10

Bi
d 

ra
ng

e 
le

ng
th

Figure 2: Range of bids for which availability, cost, and
MTBR is within 10% of optimal across 1500 markets.

ric, since revocations incur overhead for applications that
migrate to other available resources. Thus, Figure 1(c)
shows the MTBR for different bids. The figure shows
that MTBRs range from tens to hundreds of hours. In
addition, the MTBRs also have a long tail in all but one
market, such that bidding high does not significantly in-
crease the MTBR and there is a wide range of bids that
effectively yield the same MTBR.

While the analysis above uses only five spot markets
as illustrative examples, we analyzed these properties in
over 1500 spot markets over our six month period. Fig-
ure 2 plots the range of bids such that any bid within the
range is within 10% of the optimal bid for availability,
cost, and MTBR. The optimal bid is simply the bid that
yields the highest availability and MTBR and the lowest
cost. Thus, we consider every bid within the range as
effectively optimal that yields near the same result. As
above, the y-axis is the length of the bid range as a factor
of the on-demand price. Thus, a bid range length of 2 in-
dicates a range of [b,b+(2∗D)] for some bid b where D
is the on-demand price. A smaller range indicates higher
bid sensitivity, where an application should carefully se-
lect a bid from a small range of near-optimal bids. In
contrast, a larger range indicates a low bid sensitivity.

We see from Figure 2 that the bid ranges for the avail-
ability, cost, and MTBR are generally quite large, with a
bid range near 9. Note that EC2 imposes a maximum bid
of 10× the on-demand price. These results suggest that
picking nearly any bid within the range of allowed bids
yields the same optimal result. Put another way, users
would need to “try hard” to make a “bad” bid by select-
ing a bid price that is exceedingly low compared to the
average spot price. Thus, in today’s market, due to low
prices (resulting in high availability) and price stability
(resulting in long MTBRs), spot revocations are rare, but
unavoidable, regardless of a user’s bid.

4 Beyond Bidding
Based on our analysis in the previous section, we argue
that users should focus less on bidding and instead adopt
the following simple strategy to optimize using spot in-
stances: i) employ a simple bidding strategy that selects

a high bid price equal to the on-demand price, when re-
questing one or more spot servers; ii) if a server is re-
voked, simply seek out a different spot market with a
lower price and request new servers (and if no spot mar-
kets have low prices, request an on-demand instance);
iii) migrate application state to the newly acquired server
and resume the application.

As mentioned in Section 1, SpotFleets partially en-
codes our simple bidding strategy, as its default policy
is to bid the on-demand price. If users are willing to mi-
grate applications, bidding above the on-demand price
is not cost-effective, as users can simply migrate to an
on-demand instance once the spot price rises above the
on-demand price. The only reason to bid above the on-
demand price would be to gain advance notification and
additional time to migrate to an on-demand instance.
However, under current spot market rules, users can actu-
ally bid the maximum bid price without penalty by sim-
ply monitoring the spot price and migrating to an on-
demand instance once the price exceeds the on-demand
price. Since EC2 only charges based on the spot price at
the start of each hour, a user would never incur their high
bid price, and even if EC2 charged at a finer granular-
ity the user would only incur the high price for the small
time window required to vacate the spot instance. The
only way to prevent such gaming is to hide real-time spot
prices from users, and only publicly release them much
later. However, hiding spot prices would likely further
discourage users from using the spot market.

We examine the feasibility and benefits of this simple
strategy above as an alternative to sophisticated bidding.
Market Correlations. We examined the correlations be-
tween price variations between markets by studying price
histories for the same spot server across different avail-
ability zones within a region, as well as across different
types of spot servers within the same availability zone.
We found that spot prices of the same spot server type
across availability zones and those across server types
are largely uncorrelated. A consequence of the lack of
price correlation is that revocation events are separated
in time across spot markets—when one spot market ex-
periences price volatility and price spikes, other markets
are often unaffected. This is demonstrated in Figure 3,
which shows the average revocation gaps between pairs
of markets for the us-east-1 region.

The revocation gap is on the order of hundreds of
hours between some market—thus, they are effectively
independent, and can be treated as independent failure
domains. This observation has two important conse-
quences. First, if a single node application running on
a spot server sees a revocation, it is feasible to find an-
other spot server type (of equal or greater size) at a low
price with high probability. The application can then be
resumed on the new server. Second, for distributed appli-

4



0

5

10

15

20

0 5 10 15 20
Spot Market

S
po

t M
ar

ke
t

0

200

400

600

Revocation
Gap(Hours)

Figure 3: Revocation gap between different EC2 avail-
ability zones and instance types in the us-east-1 region.

cations that run on multiple nodes, it is beneficial to dis-
tribute the application components across different (and
uncorrelated) spot server types. Doing so ensures a revo-
cation event only results in the application losing a frac-
tion of the nodes, rather than all of its nodes with homo-
geneous servers. The distributed application can procure
new servers from other spot markets while continuing to
execute on the unrevoked servers.
Migration Strategies. Migration strategies are key in
the light of our proposed strategy to request new spot
servers in a different market and to resume the applica-
tion on the new servers. We can treat these revocation
events as fail-stop failures. By periodically checkpoint-
ing state to network storage, the application can resume
from the most recent checkpoint [5, 6, 12]. Migration
strategies are also feasible using live [8] or bounded-time
migration [9] of nested VMs [14]. Thus, research should
instead focus on determining efficient checkpointing and
migration strategies, rather than optimal bidding strate-
gies, to exploit cheap revocable spot servers.

Since job completion time can increase substantially
due to frequent revocations, research should also focus
on reducing revocation frequency by judiciously choos-
ing between several different markets and choosing one
(or more) with a low volatility. The expected completion
time, revocation frequency, and cost can be estimated
based on spot price data and bid prices, enabling appli-
cations to minimize revocations by determining how to
optimally use the mechanisms above.
Exploiting Arbitrage. Our analysis also shows that cur-
rent spot markets are “inefficient” at pricing resources.
For example, we observe long periods where larger
servers have normalized spot prices that are lower than
smaller servers (presumably since demand in the lat-
ter market is greater than the former). From Figure 1,
r3.large spot instances are about 0.15× their on-
demand price, whereas the d2.8xlarge spot servers
are about 0.25× their on-demand price. This price dif-
ferential can serve as an arbitrage opportunity, enabling
the use of more powerful spot servers at low cost. Ju-
dicious selection and migration to spot servers with the

2010 2011 2012 2013 2014 2015
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sp
ot

 p
ric

e 
di

st
rib

ut
io

n

7.71
3.31

4.27

4.94

6.40
1.03

Figure 4: Spot price distribution for m1.large over
the years. The number above each boxplot denotes the
skewness of the distribution.

lowest cost are important in exploiting such arbitrage.

5 Future of Spot Markets
Will markets get more volatile? We have examined price
data over the past six years (in addition to our three
month traces) and found that bidding has never been a
significant problem throughout the history of EC2’s spot
market. For example, as shown in Figure 4, while the av-
erage spot price of the m1.large instance type since its
inception has decreased (in accordance with decreasing
on-demand prices), the spread of spot prices has not in-
creased significantly either. However, while our analysis
of historical spot price data leads us to conclude that bid-
ding has never been an important problem, it is possible
that it may become an important problem in the future if
price characteristics change.
Will prices rise? A substantial increase in demand will
undoubtedly cause an increase in average spot prices and
any substantial price increase will cause price-sensitive
spot users to become “priced out” of the market (which
in turn may reduce demand and cause prices to drop).
The second-order effects due to widespread adoption
of the migration strategies we propose remains unclear,
and a rigorous analysis, through game-theoretic or other
means, is an open question. However, anecdotal evi-
dence suggests that such effects may not come to pass—
due to the significant capacity additions being made by
all cloud providers on a regular basis, implying that there
may always be some surplus capacity despite increasing
demand in both the spot and on-demand markets.

6 Conclusion
In this paper, we dispel the notion that bidding signifi-
cantly affects the availability and cost of spot instances.
In particular, we show that the availability, cost, and re-
vocation rate of spot instances based on spot price history
are largely constant across a wide range of bids. Thus,
instead of optimizing bidding strategies, we argue users
should focus instead on modifying applications to effi-
ciently seek out and migrate to the lowest cost resources.

5



References
[1] Ec2 Spot Bid Advisor. https://aws.amazon.com/ec2/

spot/bid-advisor/, September 2015.

[2] Ec2 Spot-fleet. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/spot-fleet.html,
September 2015.

[3] BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND
TSAFRIR, D. Deconstructing Amazon EC2 Spot Instance Pric-
ing. ACM TEC 1, 3 (September 2013).

[4] JAVADI, B., THULASIRAM, R., AND BUYYA, R. Statistical
Modeling of Spot Instance Prices in Public Cloud Environments.
In UCC (December 2011).

[5] KHATUA, S., AND MUKHERJEE, N. Application-centric Re-
source Provisioning for Amazon EC2 Spot Instances. In EuroPar
(August 2013).

[6] MARATHE, A., HARRIS, R., LOWENTHAL, D., DE SUPINSKI,
B. R., ROUNTREE, B., AND SCHULZ, M. Exploiting Redun-
dancy for Cost-effective, Time-constrained Execution of HPC
Applications on Amazon EC2. In HPDC (2014).

[7] MIHAILESCU, M., AND TEO, Y. M. The Impact of User Ratio-
nality in Federated Clouds. In CCGrid (2012).

[8] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY, P.
SpotCheck: Designing a Derivative IaaS Cloud on the Spot Mar-
ket. In EuroSys (April 2015).

[9] SINGH, R., IRWIN, D., SHENOY, P., AND RAMAKRISHNAN,
K. Yank: Enabling Green Data Centers to Pull the Plug. In NSDI
(April 2013).

[10] SONG, Y., ZAFER, M., AND LEE, K. Optimal Bidding in Spot
Instance Market. In Infocom (March 2012).

[11] TANG, S., YUAN, J., AND LI, X. Towards Optimal Bidding
Strategy for Amazon EC2 Cloud Spot Instance. In CLOUD (June
2012).

[12] VOORSLUYS, W., AND BUYYA, R. Reliable Provisioning of
Spot Instances for Compute-Intensive Applications. In AINA
(2012).

[13] WEE, S. Debunking Real-Time Pricing in Cloud Computing. In
CCGrid (May 2011).

[14] WILLIAMS, D., JAMJOOM, H., AND WEATHERSPOON, H. The
Xen-Blanket: Virtualize Once, Run Everywhere. In EuroSys
(2012).

[15] XU, H., AND LI, B. A Study of Pricing for Cloud Resources.
Performance Evaluation Review 40, 4 (March 2013).

[16] ZAFER, M., SONG, Y., AND LEE, K. Optimal Bids for Spot
VMs in a Cloud for Deadline Constrained Jobs. In CLOUD
(2012).

[17] ZHANG, Q., GÜRSES, E., BOUTABA, R., AND XIAO, J. Dy-
namic Resource Allocation for Spot Markets in Clouds. In Hot-
ICE (March 2011).

[18] ZHENG, L., JOE-WONG, C., TAN, C. W., CHIANG, M., AND
WANG, X. How to Bid the Cloud. In SIGCOMM (August 2015).

6

https://aws.amazon.com/ec2/spot/bid-advisor/
https://aws.amazon.com/ec2/spot/bid-advisor/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html

	Introduction
	Background and Related Work
	Do Optimal Bidding Strategies Matter?
	Beyond Bidding
	Future of Spot Markets
	Conclusion

