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ABSTRACT

TRANSIENCY-DRIVEN RESOURCE MANAGEMENT

FOR CLOUD COMPUTING PLATFORMS

SEPTEMBER 2018

PRATEEK SHARMA

B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

M.S., INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

Modern distributed server applications are hosted on enterprise or cloud data cen-

ters that provide computing, storage, and networking capabilities to these applications.

These applications are built using the implicit assumption that the underlying servers

will be stable and normally available, barring for occasional faults. In many emerging

scenarios, however, data centers and clouds only provide transient, rather than contin-

uous, availability of their servers. Transiency in modern distributed systems arises

in many contexts, such as green data centers powered using renewable intermittent

sources, and cloud platforms that provide lower-cost transient servers which can be

unilaterally revoked by the cloud operator.

Transient computing resources are increasingly important, and existing fault-

tolerance and resource management techniques are inadequate for transient servers

iv



because applications typically assume continuous resource availability. This thesis

presents research in distributed systems design that treats transiency as a first-class

design principle. I show that combining transiency-specific fault-tolerance mechanisms

with resource management policies to suit application characteristics and requirements,

can yield significant cost and performance benefits. These mechanisms and policies

have been implemented and prototyped as part of software systems, which allow a

wide range of applications, such as interactive services and distributed data processing,

to be deployed on transient servers, and can reduce cloud computing costs by up to

90%.

This thesis makes contributions to four areas of computer systems research:

transiency-specific fault-tolerance, resource allocation, abstractions, and resource

reclamation. For reducing the impact of transient server revocations, I develop two

fault-tolerance techniques that are tailored to transient server characteristics and ap-

plication requirements. For interactive applications, I build a derivative cloud platform

that masks revocations by transparently moving application-state between servers of

different types. Similarly, for distributed data processing applications, I investigate

the use of application level periodic checkpointing to reduce the performance impact

of server revocations. For managing and reducing the risk of server revocations, I

investigate the use of server portfolios that allow transient resource allocation to be

tailored to application requirements.

Finally, I investigate how resource providers (such as cloud platforms) can provide

transient resource availability without revocation, by looking into alternative resource

reclamation techniques. I develop resource deflation, wherein a server’s resources are

fractionally reclaimed, allowing the application to continue execution albeit with fewer

resources. Resource deflation generalizes revocation, and the deflation mechanisms

and cluster-wide policies can yield both high cluster utilization and low application

performance degradation.
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CHAPTER 1

INTRODUCTION

Many enterprises and software systems rely in large part on cloud computing

platforms for their computing needs. Today’s cloud platforms enable customers to rent

computing resources and deploy applications on them in an on demand manner. This

utility-computing model offers numerous benefits, including pay-as-you-go pricing,

the ability to quickly scale capacity when necessary, and low costs, due to their high

degree of statistical multiplexing and massive economies of scale.

To handle the growing number and diversity in applications, cloud platforms

offer computing resources with a wide range of cost, availability, and performance

characteristics. This thesis looks at one such type of computing resource, called

transient servers. In contrast to traditional cloud servers whose availability can be

assumed to be continuous, transient servers only offer intermittent and transient

availability, and applications can have their access forcibly revoked by the resource

provider.

Running modern distributed applications on transient servers raises a slew of new

challenges. Most applications are designed and built with the implicit assumption

that its computing resources will continue to be available until relinquished. Transient

server revocations can cause loss of application-state, which can result in application

downtimes, degraded performance due to failure-recovery, and end-user dissatisfaction

in general. While transient servers introduce many challenges for applications, they are

also significantly cheaper compared to their non-revocable counterparts. For example,

transient servers offered by large public cloud providers such as Amazon EC2’s spot
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servers can be upto 50-90% cheaper compared to the traditional, non-revocable,

“on-demand” servers.

This thesis examines and addresses some of the challenges of running applications

on cloud transient servers. These challenges are addressed by designing and building

systems that introduce new mechanisms, policies, and abstractions—that together

enable more effective use of transient servers for a wide range of applications.

The reminder of this chapter provides a brief overview of transient servers and their

characteristics, the resulting systems research challenges, and provides a summary of

the research contributions made in this thesis.

1.1 Motivation

Due to the rising popularity of cloud computing, the number of data centers,

and their size, continues to grow at a rapid pace. Importantly, the distributed

applications that run in data centers are generally built with the implicit assumption

that the common case is for servers to be available—they may fail, but failures are

uncommon, and when they happen, well-known techniques for fault-tolerance mitigate

their performance impact.

However, many emerging scenarios are now altering this long-standing basic

assumption. Rather than attempt to ensure continuous server availability and then

design systems to mask rare failures, these scenarios instead offer transient availability,

such that servers are available only temporarily for an uncertain amount of time.

These transient servers are often cheaper and more energy-efficient than stable servers,

which provide continuous availability.

Transient servers arise in many data center and cloud environments. In data

centers running on renewable energy (such as solar and wind), deactivation and

reactivation of servers is required for handling intermittent power supply. In public

Infrastructure-as-a-Service clouds, cloud operators offer their idle, surplus computing
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resources as low-cost servers that can be preempted can revoked when demand for

higher-priced on-demand servers increases.

Handling transient server availability raises new challenges in systems design.

While transient server unavailability can be masked by treating server unavailability

as fail-stop failures and using fault-tolerance techniques, we argue that these tradi-

tional techniques are inappropriate and insufficient. Since transiency arises from a

desire to cut costs by relaxing the requirement for near-continuous server availability,

employing expensive fault-tolerance techniques (such primary-secondary replication)

would eliminate its benefits. Thus, optimization techniques for transient servers must

be lightweight to maintain the low cost of transient servers.

Importantly, transient resource availability is fundamentally different from classic

fault-tolerance in three important aspects:

High unavailability: Transient servers can become unavailable at a much higher

rate than hardware failures in conventional servers, since their availability is

controlled by the operational policies of the data center or the cloud.

Advance warning: Transient server unavailability is different from sudden fail-stop

failures in that the unavailability is a result of higher-level operator policies.

Thus unlike, say, hardware failures that occur without warning, transient server

revocations are often preceded by a revocation-warning signal.

Heterogeneity: Transient servers trade off availability for lower cost. In many scenar-

ios, multiple types of transient servers may be offered with different availability-

cost tradeoffs. Thus in addition to fault-tolerance, applications can also mitigate

the effects of revocations by carefully selecting transient server types based on

their sensitivity to cost and revocations.

Thus there is an opportunity to leverage transient servers’ unique mix of characteristics—

high failure rates, failure warnings, and server selection—to design low-cost techniques
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that mitigate impact on performance and availability. For example, Amazon’s EC2

spot instances cost only 0.1–0.5× on-demand (non-revocable) servers, and by mit-

igating the effects of the spot instance revocations, we can achieve significant cost

savings.

As transient resources become increasingly prevalent and ubiquitous, we argue

that transiency-aware resource management is crucial for increasing the utility of the

transient resources as well as reduce computing costs. The effective utilization of

transient resources raises many interesting questions and challenges:

• How to mask transient server revocations such that applications requiring nearly-

continuous availability can still use them?

• How can fault-tolerance techniques be adapted to transient servers to mitigate

the performance overheads of revocations?

• How to manage and allocate transient resources for applications that have

different cost and availability requirements?

• How to reclaim transient resources without resorting to preemption?

The questions above cover some of the challenges in deploying applications on

transient servers. By tackling these problems, we can provide low-cost computing to

applications and make transient resources as “first-class” computing resources.

1.2 Thesis Contributions

Most applications are designed and built with the implicit assumption that its

computing resources will continue to be available until relinquished. This assumption is

not compatible with transient servers that only offer intermittent resource availability.

Transient server revocations can cause loss of application-state, which can result in
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application downtimes, degraded performance due to failure-recovery, and end-user

dissatisfaction in general.

This thesis develops novel techniques that combine fault-tolerance techniques with

transiency-specific resource management, that enable a wide range of applications to

make effective use of transient resources.

This thesis makes contributions in these four areas of computer systems research:

1. Transiency-specific fault tolerance techniques

2. Transient resource allocation

3. Abstractions for cloud resources

4. Transient resource reclamation

One of the main themes of this thesis is that combining fault-tolerance mechanisms

with transient resource management policies, to suit application characteristics and

requirements, has significant cost and performance benefits. These mechanisms and

policies developed as part of this thesis have been implemented and prototyped as

part of four systems, that are summarized below:

SpotCheck: Provides bounded-time virtual machine live migration as part of a

derivative cloud platform, which can run unmodified interactive applications on

low-cost cloud transient servers.

Flint: Runs batch-interactive distributed data processing applications on cloud

transient servers. Flint reduces the impact of revocations through periodic

application-level checkpointing, and selects transient servers to minimize cost

and running time.

ExoSphere: A cluster manager for transient servers that runs multiple applications

with different cost and availability preferences, by using the notion of server

portfolios.
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Figure 1.1: This thesis develops systems for running a wide range of applications on
cloud transient servers.

Resource Deflation: A virtualized cluster management framework that uses re-

source deflation—a fractional resource reclamation technique, that allows data

center operators to achieve high utilization without necessitating preemption.

Together, these systems allow a range of applications to run on transient servers,

as shown in Figure 1.1.

1.2.1 Transiency-specific Fault-tolerance Techniques

Transient server revocations can affect the availability and performance of applica-

tions that run on them. Transiency-specific fault-tolerance is one of the revocation-

mitigation approaches that this thesis explores. We develop two new fault-tolerance

techniques that leverage the unique characteristics of transient server revocations.

Bounded-time Live Migration: To allow applications requiring continuous avail-

ability to run on transient servers, we use nested virtualization and bounded-time

live migration to move application state upon revocation to stable, non-revocable

servers. This technique leverages the small pre-revocation warning, allowing us to safely

migrate and transfer an application’s in-memory state to a fall-back non-revocable

cloud server. This system-level technique allows unmodified applications, including

interactive services, to run on low-cost cloud transient servers with minimal downtime

(Chapter 3). This greatly expands the potential uses of transient servers, whose use

has conventionally been restricted to disruption-tolerant batch jobs.
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Periodic Application-level Checkpointing: The second fault-tolerance technique

we develop uses application-level checkpointing for distributed data processing applica-

tions. Server revocations can severely impact the completion times of data processing

jobs, since the revocations often require expensive recomputation of lost data. Further-

more, low-latency data processing is an increasingly common requirement, and is even

less tolerant to revocations. We develop an application-level automated checkpointing

technique that adapts checkpointing frequency to server availability characteristics.

This allows both batch and interactive data processing workloads to run on low-cost

transient servers with minimal performance overheads (Chapter 4).

1.2.2 Transient Resource Allocation

In addition to fault-tolerance, revocations can also be mitigated if the application

is deployed on transient servers in a manner that minimizes the number and frequency

of revocations.

Server Selection: Transient server types offer different cost and availability tradeoffs.

Moreover, applications also have different requirements for cost, availability, and

performance. Existing applications usually assume that computing resources have

a fixed price and availability—which doesn’t hold in the case of transient servers

that have different cost and availability tradeoffs. Thus selecting the “right” servers

for an applications requires jointly optimizing the cost, availability, and application

requirements. This thesis develops multiple server selection policies for a range of

applications. These server selection policies have been implemented as part of the

systems we have developed (SpotCheck, Flint, and ExoSphere).

Specifically, the server selection policies developed as part of this thesis focus on

heterogeneous server selection, where a distributed application can be deployed on a

collection of servers of different types (and hence different costs and availabilities).

This thesis develops many heterogeneous server selection policies—from simple and
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application-specific (Chapters 3, 4) to more general-purpose solutions that can work

for a wide array of applications. For general-purpose heterogeneous server selection,

we use techniques that are inspired by portfolio construction in financial economics.

This allows the allocation of transient servers to applications with different resource

requirements. Server portfolios enable construction of an “optimal” mix of severs to

meet an application’s sensitivity to cost and revocation risk. Portfolios enable and

exploit diversification, and can reduce revocation risk. Such a portfolio-based transient

server selection policy is implemented as part of the ExoSphere system (Chapter 5).

1.2.3 Abstractions For Cloud Resources

One of the goals of this thesis is to enable the use of transient servers by a wide

range of applications. To this end, we develop abstractions that enable applications

to make use of transient cloud resources in an effective and seamless manner.

Derivative Clouds: We develop the notion of derivative cloud platforms, which

repackage and resell different server types. Analogous to a financial derivative, a

derivative cloud can offer resources to customers with different pricing models and

availability guarantees not provided by the native cloud platform. Derivative clouds

enable third parties to develop their own cloud platform on top of public Infrastructure-

as-a-Service clouds, by running their own virtualization layer on the cloud servers.

We develop SpotCheck as an example derivative cloud, which can be used to reduce

revocation risk by combining revocable and non-revocable servers, and transparently

moving application-state between native cloud servers in the case of revocations.

Server Portfolios: We develop an abstraction based on the portfolio-driven server

selection called server portfolios. Server portfolios allow applications to select from

a large range of heterogeneous server combinations based on the application cost

and availability preferences. Server portfolios, when combined with a fault-tolerance
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API developed as part of the ExoSphere system (Chapter 5), allow a wide range of

applications be made transiency-aware with minimal effort.

1.2.4 Transient Resource Reclamation

While the fault-tolerance mechanisms, server selection policies, and abstractions

developed as part of this thesis enable a wide range of applications to make effective

use of transient servers, they still have to contend with the ill-effects and risks of

revocations. This thesis also looks at an orthogonal approach to mitigating transient

server revocations—through the lens of resource reclamation.

Cloud and data center operators reclaim transient resources by revoking/preempting

them, and allocating them to higher paying/priority applications. We develop an

alternative resource reclamation mechanism, called resource deflation, that provides

continuous availability to applications, but at reduced average performance. This

mechanism allows cloud and data center operators to fractionally reclaim resources

from their low-priority applications during times of resource pressure.

Resource deflation attempts to shrink the resources allocated to virtual servers

dynamically based on the resource pressure. Instead of revoking servers, we reduce

their resources instead. These deflatable servers are analogous to conventional transient

servers in that they provide only transient resource availability. Deflation generalizes

transient server revocations, and offers a continuum of reclamation options.

Resource deflation ameliorates the state-loss effects of revocations, and allows

unmodified applications to continue execution even during periods of low resource

availability. We develop mechanisms for low-overhead deflation, and policies for

managing deflatable servers at a cluster-wide level (Chapter 6).
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1.3 Thesis Outline

The reminder of this thesis is structured as follows. Chapter 2 provides background

on transient servers, and discusses related work on addressing the challenges of running

applications on transient servers. Chapter 3 describes a derivative cloud platform

called SpotCheck, and focuses on the challenges in transparently masking and reducing

the risk of revocations of transient cloud servers. Chapter 4 describes application-level

fault-tolerance techniques for running distributed data-processing applications on

transient cloud servers. Chapter 5 presents a technique for transiency-aware resource

management, called server portfolios, that generalizes and improves upon resource

management policies described in Chapters 3 and 4. Chapter 6 develops and presents

resource reclamation using resource deflation as an alternative to server revocation.

Finally Chapter 7 summarizes the work done in this thesis, places it in a broader

context, and presents some directions for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides background on transient servers in clouds and data centers.

We also discuss related work on resource management and applications for transient

servers.

2.1 Cloud Computing

Cloud computing platforms are a popular choice for hosting a wide range of

applications: such as latency-sensitive web services, large-scale distributed data

analytics, machine learning, scientific computing workloads, etc. Cloud platforms

provide computing as a utility—allowing users to rent data center resources for

various timescales, and pay as they go for the resources consumed. This “on-demand”

availability of computing resources has enabled the emergence of new applications and

paradigms, such as large scale machine learning applications that power advanced

artificial intelligence applications for autonomous cars, personalized assistants, image

recognition, etc. The computing infrastructure required for these applications is

provided by public cloud platforms, allowing individuals and organizations to rapidly

develop, train, and refine their machine learning models without the need for investing

in large-scale computing infrastructure.

Public cloud platforms such as Amazon AWS [3], Google Cloud [4], Microsoft

Azure [8], IBM Cloud [5], Joyent [6], Alibaba Aliyun [1], etc., offer computing and

storage resources to a large number of applications. To handle the increase in the scale

and diversity in cloud-based applications, cloud platforms offer resources with different
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abstractions and characteristics. Cloud platforms can manage different layers of the

software stack, and offer one or more of infrastructure, software platforms, software,

or functions, as a service. Infrastructure as a service (IaaS) clouds offer computing

resources in the form of virtual machines (VMs) that are managed by the cloud

operator, and on which customers can deploy their own applications. Infrastructure

cloud platforms offer cloud VMs with a variety of different hardware configurations

(“sizes”), operating systems, geographical locations, and with different Service Level

Agreements (SLAs) that govern the price, availability, and performance of the VMs.

Large public cloud platforms such as Amazon AWS have multiple choices in each of

the above dimensions—offering servers with over 50 different hardware configurations,

with a choice of more than four operating systems, across more than ten geographic

locations, and with multiple SLA’s such as on-demand, spot, and burstable instances [2].

Deploying an application on a cloud platform entails selecting a cloud resource with

the appropriate characteristics, based on the application resource requirements.

Large public cloud platforms have millions of servers, host millions of applica-

tions [98], and are now central components in the computing infrastructure. Their

efficient operation is predicated on addressing many computer systems challenges,

such as: resource management and allocation, geographical and temporal workload

elasticity, capacity planning and provisioning, security, monitoring, programming

models, networking, data management and storage, etc. Many of these areas continue

to receive significant attention from both academia and industry.

However, the immense scale of cloud platforms has given rise to new challenges in

resource management. This thesis focuses on one such emerging facet: transiency, and

in particular, transiently available servers. Transiency is an emerging trend in cloud

computing platforms that requires rethinking many assumptions in the design and

deployment of applications and software systems. Transiency arises in many contexts,

but has only received limited attention. We look at the issues surrounding transiency
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in cloud computing platforms—why it occurs, how it affects applications, and how its

effects can be mitigated.

2.2 Data Center Resource Management

The computing, networking, and storage resources used by cloud applications are

provided by large data centers, comprising of tens of thousands of servers, storage and

networking devices, and the necessary power and cooling infrastructure. The features

and flexibility of cloud computing such as pay-as-you-go pricing, elastic scaling of

resources, and low-cost, are made possible through careful allocation and management

of resources in the data centers. In this section, we shall look at how the challenges

of providing flexibility and low-cost to cloud applications translate to challenges in

data center resource management, and how these resource management challenges are

addressed by data center operators.

2.2.1 Virtualization

Data centers host multiple applications, and to decouple applications from the hard-

ware they run on, data centers use virtualization to multiplex and manage resources.

Virtualization provides a number of benefits. It enables a flexible allocation of physical

resources to virtualized applications where the mapping of virtual to physical resources

as well as the amount of resources to each application can be varied dynamically

to adjust to changing application workloads. Furthermore, virtualization enables

multi-tenancy, which allows multiple instances of virtualized applications (“tenants”)

to share a physical server. Multi-tenancy allows data centers to consolidate and pack

applications into a smaller set of servers and reduce operating costs. Virtualization

also simplifies replication and scaling of applications.

There are two types of server virtualization technologies that are common in

data center environments—hardware-level virtualization and operating system level
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Figure 2.1: VM and Container architectures

virtualization (Figure 2.1). Hardware level virtualization involves running a hyper-

visor which virtualizes the server’s resources across multiple virtual machines. Each

hardware virtual machine (VM) runs its own operating system and applications. By

contrast, operating system virtualization virtualizes resources at the OS level. OS-level

virtualization encapsulates standard OS processes and their dependencies to create

“containers”, which are collectively managed by the underlying OS kernel. Examples

of hardware virtualization include Xen [55], KVM [126], and VMware ESX [37]. Oper-

ating system virtualization is used by Linux containers (LXC [26]), Ubuntu LXD [33],

Docker [19], BSD Jails [122], Solaris Zones [58] and Windows Containers [39].

Both types of virtualization technologies also have management frameworks that

enable VMs and applications to be deployed and managed at data center scale. Ex-

amples of VM management frameworks include commercial offerings like vCenter [38]

and open source frameworks like OpenStack [27], CloudStack [29]. Kubernetes [32]

and Docker Swarm [30] are recent container management frameworks. Hardware and

operating system virtualization have different performance, isolation, security, appli-

cation deployment, software development, and cluster management characteristics,

which are compared in [175].

Virtualization is vital in the context of cloud resource management. Hardware and

OS virtual machines serve as units of resource allocation and management, especially in
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the case of Infrastructure-as-a-Service cloud platforms. Cloud platforms can instantiate

virtual machines with different resource allocations (“sizes”) on their server clusters,

and control them dynamically via the cluster management software. Virtualization

offers easier dynamic resource allocation using overcommitment [204] and migra-

tion [217], and fault-tolerance capabilities such as checkpointing [9], migration [77],

and replication [81].

Problems in cloud resource management and transient availability often translate

to virtual machines. For instance, transient servers usually refer to transient virtual

machines, since virtual machines provide the server abstraction to applications. Thus,

many of the systems challenges in transiency, such as fault-tolerance, can be addressed

in the context of virtual machines—Chapter 3 looks at one such technique for low-

overhead continuous checkpointing for virtual machines in the cloud.

2.2.2 Cost and Energy Efficiency

To provide low-cost computing to applications, data centers must be cost efficient.

Data centers are expensive to set up and to run, and improving their efficiency is

challenging.

Computing equipment (such as servers) is energy hungry, with each server consum-

ing 100s of watts. Thus, the power consumption of data centers, which house several

thousands of servers, is several megawatts. Thus due to their large energy footprint,

improving energy efficiency is one of the primary means to improve data center cost

efficiency.

Not all energy consumed by a data center goes into powering its IT equipment

(servers, networking, and storage). As much as 50% of the energy is consumed for

cooling the IT equipment, power transmission, and other overhead [177]. The metric

for data center energy efficiency is Power Usage Effectiveness (PUE), which is defined

as:
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PUE =
Total Power Consumption

IT Power Consumption
(2.1)

Modern data centers use a plethora of design and optimization techniques to

achieve PUE’s close to 1 [177]. Improvements in cooling, power supply, and server

designs have resulted in large data centers achieving PUE’s as low as 1.1, indicating

that only 10% of the energy is consumed by non-IT components.

While improvements in energy efficiency lead to a corresponding reduction in the

operating costs of data centers, the low PUE’s indicate that any further improvements

in data center design will mostly result in diminishing returns. Another important

component of a data center’s cost is the cost of building and setting them up (also

known as the capital expenditure, or CAPEX). A large part of the data center’s

expenses are the capital expenses required to purchase the IT equipment, which is

amortized over a relatively short time period of 3-5 years, due to short lifespans of most

computing equipment. With improving energy (and hence operational) efficiency, the

amortized capital expenses contribute to a large portion of the total cost of ownership

of a data center. The breakdown of the total cost of ownership (amortized capital

expenses + operating expenses) of a data center, shows that computing equipment

accounts for more than 50% of the total expenses [105, 129], and with improving

energy efficiency, this fraction is only expected to grow.

To reduce the overall costs and recoup their large capital expenditure, data center

operators thus seek to maximize the utilization of their servers, since idle servers are

indicative of sunk costs. However, achieving high server and data center utilization is

fraught with many challenges.

The utility-computing model of cloud computing incentivizes users to only instan-

tiate cloud resources (such as cloud VMs) when needed. This leads to a high degree of

dynamism in the workloads and hence the data center utilization. In order to provide

computing “on demand”, data centers must be able to handle load spikes, time-of-day
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variations, etc. To do so, data centers are usually significantly overprovisioned, and

the average data center utilization is low and in the range of 20–40% [201, 139].

Thus a significant portion of data center resources are idle, threatening the low-cost

application deployment that the cloud promises.

Cloud data center operators have tried to address the challenge of low utilization

by incentivizing the use of data center resources during periods of low demand, by

offering low-cost transiently available cloud servers to applications. The next section

discusses transiency in cloud data centers and in other environments.

2.3 Transiency in Modern Distributed Systems

The notion of transient resource availability arises in many computing environments,

which we summarize below:

Cloud Platforms. Infrastructure-as-a-Service cloud providers have started offering

their surplus resources as low-cost transient servers. Cloud operators can unilaterally

revoke these transient servers during periods of high demand. This thesis is largely

focused on transiency in cloud computing platforms, and we provide a more detailed

background of transient cloud servers in Section 2.4.

Green Data Centers. Data centers are being increasingly powered by renewable

“green” energy sources [12, 163]. Renewable sources, such as solar and wind, generate

power intermittently, such that if a data center relies entirely on such sources, there

may be periods of energy shortfalls that result in transient availability of a portion of

the servers [191, 192].

Data Centers Connected To Smart Grids. The interactions between electric

grids and data centers also results in transiency. Data centers can participate in

demand-response schemes where the smart grid signals the data center to curtail

power usage during peak periods of energy shortfalls. Real-time pricing of electricity

by the smart grid, where the price of electricity fluctuates based on demand, also
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encourages data centers to voluntarily curtail or regulate their power usage during

peak price periods to reduce their monthly electricity bills. Both scenarios will result

in the transient availability of a portion of the servers in a data center.

Data Center Scheduling. Enterprise data centers host applications with different

roles and priorities, and cluster management software can prioritize access to data

center resources. For example, high-priority user-facing interactive services may

preempt lower-priority batch jobs. In case of resource contention between different

applications, a common strategy is to preempt the lower-priority application and offer

its resources to one with a higher priority [32, 201]. Opportunistically leveraging idle

resources within a data center can also result in transient availability for applications

running on erstwhile idle resources [237]. Thus, transiency arises in data centers as

a result of scheduling policies that are in place to maximize the utilization of data

center resources.

2.4 Transient Cloud Servers

Many enterprises, especially technology startup companies, rely in large part

on Infrastructure-as-a-Service (IaaS) cloud platforms for their computing infrastruc-

ture [52]. Today’s IaaS cloud platforms, which enable their customers to rent computing

resources on demand in the form of virtual machines (VMs), offer numerous benefits,

including a pay-as-you-use pricing model, the ability to quickly scale capacity when

necessary, and low costs due to their high degree of statistical multiplexing and massive

economies of scale.

To meet the needs of a diverse set of customers, IaaS platforms rent VM servers

under a variety of contract terms that differ in their cost and availability guarantees.

Traditional cloud servers are leased on an on-demand basis—cloud customers may

request them when needed and the cloud platform provisions these servers until the

customer relinquishes them. Since customer demand for cloud resources can be highly
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dynamic, the cloud platform needs to over-provision the aggregate server capacity to

handle peak demand. Consequently, a significant portion of the cloud server capacity

tends to be idle during non-peak periods.

Cloud providers have begun to lease this surplus capacity at highly discounted

prices to cost-sensitive customers. Doing so enables providers to earn revenue from

otherwise idle resources. These surplus servers have transient availability since the

cloud provider can reclaim them from the customer at any time, e.g., when demand

for standard on-demand servers begins to rise.

Commercial platforms such as Amazon EC2 and Google Cloud Platform now

support transient servers—Amazon EC2 started offering spot instances [17] since 2009;

Google’s Cloud Platform has been offering Preemptible VMs [24] since 2015; and

Microsoft Azure has been offering low-priority preemptible Batch VMs since 2017 [40].

Cloud providers typically provide a brief advance warning prior to preempting/revoking

a transient server to enable the customer to gracefully shutdown the machine. The

warning time currently ranges from two minutes in Amazon EC2 cloud to 30 seconds

on Google’s cloud platform.

Even though transient servers in current cloud platforms arise out of the need to

utilize surplus resources, transiency can also be a result of other allocation models.

Resource-as-a-service [44] clouds provide dynamically priced computing resources,

and charge by usage instead of allocation. In such scenarios, applications have to

explicitly bid for resources, and being “out-bid” results in loss of resources. Thus in

highly oversubscribed clouds, application resources can always be revoked by higher

paying applications, and potentially every application may have to run on transiently

available resources.
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2.4.1 Transient Server Pricing

Different cloud providers have employed different approaches for pricing transient

servers. Google’s transient servers, called preemptible instances [24], offer a fixed

80% discount but also have a maximum lifetime of 24 hours (with the possibility of

earlier preemption). In contrast, Amazon’s transient servers (which are called spot

instances [17]) offer a variable discount—the price of spot instances varies continuously

based on market supply and demand for each server type (Figure 2.2). Spot instances

are typically 0.1–0.5× the cost of non-revocable on-demand instances.

Since transient servers are surplus idle machines, the resources available in the

transient server pool fluctuate continuously depending on the supply and demand

of on-demand servers. Thus, whether a certain transient server is available depends

on current market conditions. A combination of server-type (such as large/small),

geographical region, and availability zone (data center failure domains within a

region), define a separate market of transient servers. The price and/or availability

characteristics of individual markets can differ, as seen in Figure 2.2, which shows

EC2 spot prices. In this example, the m3.medium in availability zone a has the most

stable prices, g2.2xlarge in the same availability zone has a lower average price but
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high variance, and the m3.medium in availability zone b has higher price than in zone

a. The g2.2xlarge price spikes are not correlated with the other two servers. The

example shows that larger servers may occasionally be more heavily discounted than

smaller servers, and that identical servers in two availability zones may also be priced

differently. The supply and demand of different server types across different regions

may not always be correlated, and this is reflected in the general lack of correlation in

their spot prices (Figure 2.3).

Bidding for EC2 spot instances. Amazon EC2 spot prices are determined by

continuous sealed-bid second-price auction. Users place a single, fixed bid, which

represents the maximum hourly price that they are willing to pay. The market price

is based on all the bids and the available supply. Importantly, all users pay the same

market price, which may be lower than the bid. The price of a spot instances in EC2

thus fluctuates continuously in real-time based on market demand and supply [61]. If

the spot price rises above a user’s maximum bid price due to increased market demand,

EC2 revokes the spot server from the user after providing a two minute warning (and

presumably allocates it to a higher paying user).

Bidding strategies optimize the cost-availability tradeoff for spot instances: as

a user increases their bid, they may pay more per-hour, but their availability also

increases. Since EC2 introduced its spot market, there has been significant research
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both on analyzing and modeling spot prices and developing bidding strategies based

on real data and models. One of the first papers analyzing spot price data raised

questions about whether EC2’s mechanisms for setting the spot price were market

driven [62]. However, as the authors note later, the characteristics of the spot

price changed, making it consistent with a market driven allocation [62]. A number

of related papers also analyze spot price data to better understand its statistical

characteristics [119, 149, 198, 210, 219, 234, 227, 240, 194]. Analyzing and modeling

spot price data is a prerequisite to developing bidding strategies that select the optimal

bid to ensure a target level of performance at the minimum cost.

However, our analysis of spot price traces of over 1500 spot markets from March to

August 2015, and of some markets from 2011–2015, shows that bidding strategies have

minimal effect on the cost, availability, and revocation rate for most markets [178].

This is because spot prices are “spiky”, and the resulting availability, cost, and MTBR

(Mean Time Between Revocations) CDFs are long-tailed (Figure 2.4). Thus a very wide

range of bids result in approximately the same price and availability characteristics,

and careful bid selection may not be necessary.

Appendix A provides additional discussion on transient server pricing and the role

of bidding for EC2’s spot instances.

2.5 Overview of Related Work

While the effective use of transient servers presents many challenges, their cost

and efficiency benefits have resulted in a burgeoning interest. This section looks at the

related work on addressing the systems challenges of transiency for different classes of

applications.

The low-cost cloud transient servers (such as EC2 spot instances) makes them ideal

for running delay-tolerant batch jobs requiring large amounts of computing resources.

Early research on cloud transient servers primarily targeted fault-tolerance techniques
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Application Related Work

Batch [197, 203, 125, 225]
Hadoop [136, 226, 75, 124, 130]
Spark [176, 221]
Distributed databases [65, 168]
Machine learning [108]
Web services [110, 212, 91, 167, 106], [182]
MPI [142]
Key-value stores [208, 220]

Table 2.1: A significant amount of work has gone into deploying different applications
on transient servers.

for batch jobs [75, 136, 203], with the focus being on restarting or checkpointing jobs.

A significant volume of prior work addresses cost-effective use of Amazon EC2 spot

instances that expose a price vs. availability tradeoff due to the bidding mechanism.

Since servers in the spot market are significantly cheaper than the equivalent on-

demand servers, they are attractive for running delay-tolerant batch jobs [197, 118,

226, 212, 136, 75, 91]. Checkpointing is a common fault-tolerance mechanism for

mitigating the impact of revocations on batch jobs in the spot market [203, 125, 225].

While early work on cloud transient servers limited their use to simple batch jobs

and stateless web services, there has been a growing interest to make cloud transient

servers applicable to a wider range of applications. Table 2.1 provides an overview of

related work to address transiency challenges for different classes of applications.

The challenges of running stateful interactive services are addressed through

migration-based fault-tolerance techniques in [110, 182]. Optimizing MPI jobs for

spot servers is presented in [142]. Checkpointing and task-scheduling policies for

distributed in-memory data processing applications like Spark [230] are described

in [221, 176]. Prior work has also explored running a distributed database on spot

instances [65, 168]. More recently, the use of cloud transient servers for large scale

distributed data processing and machine learning has been examined in [223, 107].
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Fault-tolerance
Checkpointing [203, 125, 225, 142, 221, 65, 168], [176]
Migration [110, 186, 184], [182]
Replication [203, 106]

Server selection
Homogenous [197, 91, 73, 226]
Hetereogenous [142], [183], [176], [180]

Spot pricing
Price analysis [185], [215], [240], [207], [179]
Price-reactive [111, 106, 184]

Table 2.2: Related work on transiency mitigation incorporates many different ap-
proaches. Work part of this thesis is in bold.

Running a wider gamut of applications has required the development of application

and transiency specific fault-tolerance and resource management techniques. Prior

work has primarily explored three classes of transiency-mitigation techniques: fault-

tolerance, server selection, and bidding/spot pricing. Table 2.2 presents an overview

of the different transiency-mitigation techniques, with related work categorized by

their main contribution.

The choice of the appropriate fault-tolerance technique (such as checkpointing,

migration, or replication) depends on the application and server availability charac-

teristics, and [197] examines the problem of selecting the appropriate fault-tolerance

technique to minimize overall cost. The small revocation warning time makes mi-

gration challenging, and checkpointing has been adapted for many different classes

of applications. Replicating applications on to different transient servers can also

mitigate revocations, but at increased cost, and is thus only applicable in a narrower

set of scenarios and applications.

Transient resource management often involves the problem of “selecting” the

right transient servers based on application requirements of cost, availability, and

performance. Prior work has looked at strategies for selecting a single cloud server [91,

197, 75, 119, 198]. In this thesis we also consider selection of a heterogeneous mix of

transient cloud servers, a problem that has received relatively little attention.
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Transiency In Enterprise Data Centers. While this thesis focuses on transient

servers in the context of cloud platforms, transiency also arises in enterprise data

centers looking to increase utilization. Recent work has sought to identify some of

the benefits and challenges of transient availability in the context of enterprise data

centers [237].

The internal dynamics of transiency in enterprise data centers are similar to the

external dynamics of transient cloud servers, as they also arise from opportunistically

leveraging idle resources. The different environments results in slightly different chal-

lenges, such as data storage [153]. The key difference is that internal supply/demand

dynamics are generally well-known by the data center, while the external supply/de-

mand dynamics of transient cloud servers are only indirectly conveyed through price

signals, if at all. Data centers can also use short lived transient servers (few minutes

instead of few hours) for distributed applications [224].
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CHAPTER 3

RUNNING INTERACTIVE APPLICATIONS ON

TRANSIENT SERVERS

While transient servers present an opportunity for low-cost computing, their re-

vocable nature presents a hindrance for many applications, especially interactive

services that require continuous availability. This chapter presents fault-tolerance

techniques for allowing unmodified interactive applications to run virtually uninter-

rupted on revocable transient cloud servers. We also present the derivative cloud

abstraction for transparently managing risks associated with transient servers. Our

fault-tolerance techniques and policies are implemented in a derivative cloud platform,

called SpotCheck [182, 183].

3.1 Motivation and Contributions

Many enterprises, especially technology startup companies, rely in large part

on Infrastructure-as-a-Service (IaaS) cloud platforms for their computing infrastruc-

ture [52]. Today’s IaaS cloud platforms, which enable their customers to rent computing

resources on demand in the form of virtual machines (VMs), offer numerous benefits,

including a pay-as-you-use pricing model, the ability to quickly scale capacity when

necessary, and low costs due to their high degree of statistical multiplexing and massive

economies of scale.

To meet the needs of a diverse set of customers, IaaS platforms rent VM servers

under a variety of contract terms that differ in their cost and availability guarantees.

The simplest type of contract is for an on-demand server, which a customer may
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request at any time and incurs a fixed cost per unit time of use. On-demand servers

are non-revocable: customers may use these servers until they explicitly decide to

relinquish them. In contrast, spot servers provide an entirely different type of contract

for the same resources. Spot servers incur a variable cost per unit time of use, where

the cost fluctuates continuously based on the spot market’s instantaneous supply and

demand. Unlike on-demand servers, spot servers are revocable: the cloud platform

may reclaim them at any time. Typically, a customer specifies an upper limit on

the price they are willing to pay for a server, and the platform reclaims the server

whenever the server’s spot price rises above the specified limit. Since spot servers

incur a risk of unexpected resource loss, they offer weaker availability guarantees than

on-demand servers and tend to be cheaper.

This chapter focuses on the design of a derivative cloud platform, which repackages

and resells resources purchased from native IaaS platforms. Analogous to a financial

derivative, a derivative cloud can offer resources to customers with different pricing

models, features, and availability guarantees not provided by native platforms using a

mix of resources purchased under different contracts. The motivation for derivative

clouds stems from the need to better support specialized use-cases that are not

directly supported (or are complex for end-users to implement) by the server types

and contracts that native platforms offer. Derivative clouds rent servers from native

platforms, and then repackage and resell them under contract terms tailored to a

specific class of user.

Nascent forms of derivative clouds already exist. PiCloud [14] offers a batch

processing service that enables customers to submit compute tasks. PiCloud charges

customers for their compute time, and is able to offer lower prices than on-demand

servers by using cheaper spot servers to execute compute tasks. Similarly, Heroku [13]

offers a Platform-as-a-Service by repackaging and reselling IaaS resources as containers.
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As with PiCloud, Heroku constrains the user’s programming model—in this case, to

containers.

In this chapter, we design a derivative IaaS cloud platform, called SpotCheck, that

intelligently uses a mix of spot and on-demand servers to provide high availability

guarantees that approach those of on-demand servers at a low cost that is near

that of spot servers. Unlike the examples above, SpotCheck does not constrain

the programming model by offering unrestricted IaaS-like VMs to users, enabling

them to execute any application. The simple, yet key, insight underlying SpotCheck

is to host customer applications (within nested VMs) on spot servers whenever

possible, and transparently migrate them to on-demand servers whenever the native

IaaS platform revokes spot servers. SpotCheck offers customers numerous benefits

compared to natively using spot servers. Most importantly, SpotCheck enables

interactive applications, such as web services, to seamlessly run on revocable spot

servers without sacrificing high availability, thereby lowering the cost of running these

applications. We show that, in practice, SpotCheck provides nearly five nines of

availability (99.9989%), which is likely adequate for all but the most mission critical

applications.

SpotCheck raises many interesting systems design questions, including i) how do

we transparently migrate a customer’s application before a spot server terminates

while minimizing performance degradation and downtime? ii) how do we manage

multiple pools of servers with different costs and availability guarantees from native

IaaS platforms and allocate (or re-sell) them to customers? iii) how do we minimize

costs, while mitigating user risk, by renting the cheapest mix of servers that minimize

spot server revocations, i.e., to yield the highest availability? In addressing these

questions, we make the following contributions:

Derivative Cloud Design. We demonstrate the feasibility of running disruption-

intolerant applications, such as interactive multi-tier web applications, on spot servers,
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by migrating them i) to on-demand servers upon spot server revocation, and ii)

back when spot servers become available again. SpotCheck requires live migrating

applications from spot servers to on-demand servers within the bounded amount of

time between the notification of a spot server revocation and its actual termination.

SpotCheck combines several existing mechanisms to implement live bounded-time

migrations, namely nested virtualization, live VM migration, bounded-time VM

migration, and lazy VM restoration.

Intelligent Server Pool Management. We design server pool management algo-

rithms that balance three competing goals: i) maximize availability, ii) reduce the

risk of spot server revocation, and iii) minimize cost. To accomplish these goals,

our algorithms intelligently map customers to multiple pools of spot and on-demand

servers of different types, and handle pool dynamics caused by sudden revocations of

spot servers or significant price changes.

Implementation and Evaluation. We implement SpotCheck on Amazon’s Elastic

Compute Cloud (EC2) and evaluate its migration mechanisms and pool management

algorithms. Our results demonstrate that SpotCheck achieves a cost that is nearly 5×

less than equivalent on-demand servers, with nearly five 9’s of availability (99.9989%),

little performance degradation, and negligible risk of losing VM state.

3.2 Background and Overview

Our work assumes a native IaaS cloud platform, such as EC2, that rents server

resources to customers in the form of VMs, and offers a variety of server types that

differ in their number of cores, memory allotment, network connectivity, and disk

capacity. We also assume the native platform offers at least two types of service

contracts—on-demand and spot—such that it cannot revoke on-demand servers once

it allocates them, but it can revoke spot servers. Finally, we assume on-demand
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Figure 3.1: Spot price of the m1.small server type in EC2 fluctuates over time and
can rise significantly above the on-demand price ($0.06 per hour) during price spikes.
Note that the y-axis is denominated in dollars and not cents.

servers incur a fixed cost per unit time of use, while the cost of spot servers varies

continuously based on the market’s supply and demand, as shown in Figure 3.1.1

Given the assumptions above, SpotCheck must manage pools of servers with

different costs and availability values. While our work focuses on spot servers, largely

as defined in EC2, such cost and availability tradeoffs arise in other scenarios. As one

example, data centers that participate in demand response (DR) programs offered by

electric utilities may have to periodically deactivate subsets of servers during periods

of high electricity demand in the grid [137]. While participation in DR programs

significantly reduces electricity rates, it also reduces server availability.

Like the underlying native IaaS platform, SpotCheck offers the illusion of dedicated

servers to its customers. In particular, SpotCheck offers its customers the equivalent

of non-revocable on-demand servers, where only the user can make the decision to

relinquish them. SpotCheck’s goal is to provide server availability that is close to that

of native on-demand servers for a cost that is near that of spot servers. To do so,

SpotCheck uses low-cost spot servers whenever possible and “fails over” to high-cost

on-demand servers, or other spot servers, whenever the native IaaS platform revokes

1Spot price data is from either Amazon’s publicly-available history of the spot price’s past six
months, or from a third-party spot price archive [119].
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Figure 3.2: A depiction of a derivative IaaS cloud platform.

spot servers. To maintain high availability, migrating from one type of native cloud

server to another must be transparent to the end-user, which requires minimizing

application performance degradation and server downtime. Section 3.7 quantifies how

well SpotCheck achieves these goals.

SpotCheck supports multiple customers, each of which may rent an arbitrary

number of servers. Since SpotCheck rents servers from a native IaaS cloud and

repackages and resells their resources to its own customers, it must manage pools of

spot and on-demand servers of different types and sizes, as depicted in Figure 3.2.

Upon receiving a customer request for a new server, SpotCheck must decide which

server pool should host the new instance. Upon revocation of one or more native

servers from a spot pool, SpotCheck must migrate hosted customers to either an on-

demand server pool or another spot pool. SpotCheck intelligently maps customers to

pools to spread the risk of concurrent revocations across customers, which reduces the

risk of a single customer experiencing a “revocation storm.” In some sense, allocating

customer requests to server pools is analogous to managing a financial portfolio where

funds are spread across multiple asset classes to reduce volatility and market risk.
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In addition to server pool management, SpotCheck’s other key design element is

its ability to seamlessly migrate customer VMs from one server pool to another, e.g.,

from a spot pool to an on-demand pool upon a revocation, or from an on-demand pool

to a spot pool when cheaper spot servers become available. To do this, we rely on the

native IaaS platform to provide a small advance warning of spot server termination.

SpotCheck then migrates its customers’ VMs to native servers in other pools upon

receiving a warning, and ensures that the migrations complete in the time between

receiving the warning and the spot server actually terminating.

3.3 SpotCheck Migration Strategies

We describe SpotCheck’s migration strategies and mechanisms from the perspective

of migrating an individual VM from one native cloud server to another. There are a

variety of reasons why such a migration may be necessary or desirable—the native

IaaS platform may force a migration by revoking the underlying spot server, or a

cheaper spot server may become available, which incentivizes migrating a VM running

on a more expensive on-demand server to it. Regardless of the reason, SpotCheck

combines several virtualization mechanisms to implement its migration strategies.

3.3.1 Nested Virtualization

SpotCheck rents VMs from native IaaS platforms that do not expose all of the

functionality of the VM hypervisor. For example, EC2 allocates VMs to its customers,

but does not expose control over VM placement or support VM migration to different

physical servers. To address this limitation, SpotCheck uses nested virtualization, where

a nested hypervisor runs atop a traditional VM, which itself runs on a conventional

hypervisor [60, 214]. The nested hypervisor enables the creation of nested VMs on

the host VM. Since the nested hypervisor does not need special support from the host

VM, SpotCheck can install it on VMs rented from native IaaS platforms and use it to
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migrate nested VMs from one cloud server to another, as depicted in Figure 3.3(a).

Nested hypervisors provide a uniform and standard platform for repackaging and

reselling virtualized server resources. Nested VMs currently provide paravirtualized

I/O devices and hide advanced features, such as SR-IOV [16], which may reduce

I/O performance. However, as with the native VM platforms, we expect nested VM

technology to continue to improve.

Our SpotCheck prototype uses the XenBlanket nested hypervisor [214]. One benefit

of using nested virtualization is that SpotCheck can create multiple nested VMs on a

single host VM, allowing it to slice large native VMs into smaller nested VMs and

allocate them to different customers, similar to how an IaaS platform slices a physical

server into multiple VMs. SpotCheck could also use lighter-weight mechanisms, such

as resource containers [54], to isolate partitions of virtualized resources. We chose

to use nested VMs in our prototype because the contemporary resource container

implementations, e.g., Linux Containers and Docker, do not support the advanced

migration features that SpotCheck requires. Besides, SpotCheck’s design requirement

is to offer an execution environment that are as similar to that provided by the IaaS

provider. SpotCheck thus uses nested VMs that are nearly identical to the IaaS VMs

from an application’s point of view.

3.3.2 VM Migration

Since SpotCheck runs nested hypervisors on VM servers acquired from native

IaaS platforms, it has the ability to migrate nested VMs from one server to another.

SpotCheck leverages two VM migration mechanisms to implement its migration

strategy: live migration and bounded-time VM migration. Live VM migration enables

SpotCheck to migrate a nested VM from one server to another, while incurring nearly

zero downtime to a customer’s resident applications, as depicted in Figure 3.3(a).
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Prior work proposes a variety of live VM migration mechanisms and optimizations,

such as the pre-copy [77] and post-copy [114] migration variants.

In general, the total latency to live migrate a VM, whether nested or not, is

proportional to the size of the VM’s memory. Thus, larger VMs with tens of gigabytes

of RAM may take several minutes, while smaller VMs with a few gigabytes of RAM

may take tens of seconds. In addition to memory size, the write (or dirtying) rate

of memory pages, which depends on application characteristics, also influences live

migration latency. As a result, live VM migration is not suitable in all of SpotCheck’s

migration scenarios. In particular, an IaaS platform may revoke a spot server at any

time, while providing only a small warning period for the server to complete a graceful

shutdown. Once the warning period ends, the IaaS platform forcibly terminates the

VM. For example, EC2 provides a warning of 120 seconds before forcibly terminating

a spot server. While the 120 second warning has always been a well-known hidden

feature of spot servers, Amazon publicly acknowledged it in January 2015 and now

supports official 120 second termination notices for spot servers through its external

web services API [56]. Importantly, if the latency to live migrate a VM exceeds the

warning period, as it often does with large memory sizes, then the IaaS platform

will terminate the spot server and any resident nested VMs before their migrations

complete, resulting in the loss of memory state at best and VM failure at worst.

In this scenario, SpotCheck leverages an alternative migration approach, called

bounded-time VM migration [189, 190], which provides a guaranteed upper bound on

migration latency that is independent of a VM’s memory size or the dirtying rate of

memory pages. Supporting bounded-time VM migration requires maintaining a partial

checkpoint of a VM’s memory state on an external disk by running a background

process that continually flushes dirty memory pages to a backup server to ensure the

size of the dirty pages does not exceed a specified threshold. This threshold is chosen

such that any outstanding dirty pages can be safely committed upon a revocation
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Figure 3.3: SpotCheck uses live and bounded-time VM migration to migrate nested
VMs within an IaaS platform.

within the time bound [189, 190]. The VM may then resume from the saved memory

state on a different server, as depicted in Figure 3.3(b).

SpotCheck adapts and applies both live [77] and bounded-time VM migration [189,

190] to nested VMs. Depending on the scenario, SpotCheck uses the most appropriate

technique for VM migration. When migrating a nested VM from an on-demand server

to a spot server, e.g., when a cheaper spot server becomes available, SpotCheck uses

live migration regardless of the nested VM’s memory size, since there is no constraint

on the migration latency. SpotCheck then voluntarily relinquishes the native VM as

soon as the migration completes. When migrating a nested VM from a revoked spot

server, bounded-time VM migration is usually necessary, since the migration must

complete before the spot server terminates. The only exception is for “small" nested
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VMs that do not use much memory, such that a live migration is able to reliably

complete within a spot server’s warning period, e.g.,120 seconds for EC2.

Of course, the shorter the warning period, the smaller the nested VM memory size

that cannot use a conventional live migration and will require a bounded-time VM

migration. SpotCheck may also perform proactive migrations from a spot server if it

predicts that a revocation is imminent. In this case, the system has less stringent time

constraints on the migration latency, since it triggers the migration before the IaaS

platform explicitly signals a revocation. Such predictive approaches make it feasible

to employ live migration with spot servers and avoid the overhead and complexity of

bounded-time VM migration, which requires continually backing up memory state to

a remote disk. However, such optimizations incur significant risk of losing VM state

unless they are able to predict an imminent revocation with high confidence, e.g., by

tracking and predicting a rise in market prices of spot servers that causes revocations.

To support bounded-time VM migration, SpotCheck must manage a pool of

backup servers that store the memory state of nested VMs on spot servers, and

continuously receive and commit updates to nested VM memory state. As we show in

our experiments in Section 6.7, each backup server is able to host tens of nested VMs

without degrading their performance, which makes the incremental cost of using such

additional backup servers small in practice.

3.3.3 Lazy VM Restoration

Bounded-time VM migration is a form of VM suspend-resume that saves, or

suspends, the VM’s memory state to a backup server within a bounded time period,

and then resumes the VM on a new server. Resuming a VM requires restoring its

memory state by reading it from the disk on the backup server into RAM on the

new server. The VM cannot function during the restoration process, which causes

downtime until the VM state is read completely into memory. Since the downtime of
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Figure 3.4: SpotCheck migrates the network interface of nested VMs from the source
to the destination host using VPN functions provided by the underlying IaaS platform.

this traditional VM restoration is disruptive to customers, SpotCheck employs lazy

VM restoration, as proposed in prior work [114, 132], to reduce the downtime to nearly

zero. Lazy VM restoration involves reading a small number of initial VM memory

pages—the skeleton state—from disk into RAM and then immediately resuming VM

execution without any further waiting.

The remaining memory pages are fetched from the backup server on demand,

akin to virtual memory paging, whenever the VM’s execution reads or writes any of

these missing pages. A background process also runs in parallel and proactively reads

memory pages into RAM to reduce the frequency of page faults. Lazy VM restoration

substantially reduces the latency to resume VM execution at the expense of a small

window of slightly degraded performance, due to any page faults that require reading

memory pages on demand. Combining lazy VM restoration with bounded-time VM

migration enables a new “live” variant of bounded-time VM migration that minimizes

the downtime when migrating VMs within a bounded time period upon revocation.

3.3.4 Virtual Private Networks

While the migration mechanisms above minimize customers’ downtime and perfor-

mance degradation during migrations, maximizing transparency also requires that the

IP address of customers’ nested VMs migrate to the new host to prevent breaking

any active network connections. In a traditional live migration, the VM emits an arp

packet to inform network switches of its new location, enabling switches to forward
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subsequent packets to the new host and ensuring uninterrupted network connections

for applications [77]. However, in SpotCheck, the underlying IaaS platform is unaware

of the presence of nested VMs on the host VMs. SpotCheck currently employs a

separate physical interface on the host VM to provide each nested VM its own IP

address, in addition to the host’s default interface and IP address. Thus, SpotCheck

configures Network Address Translation (NAT) in the nested hypervisor to forward all

network packets arriving at an IP address to its associated nested VM. IaaS platforms,

such as EC2, make this feasible by supporting the creation of multiple interfaces

and IP addresses on each host. However, since the IP address is associated with the

host VM, the address does not automatically migrate with the nested VM. Instead,

SpotCheck must take additional steps to detach a nested VM’s address from the host

VM of the source and reattach it to the destination host.

While many IaaS platforms still treat IP address creation and assignment as

privileged operations, a few platforms, including EC2, have introduced virtual private

networking (VPN) functions to provide users control over their own private IP address

space. EC2 supports VPNs through its Virtual Private Cloud (VPC) feature, which

enables users to directly assign IP addresses to their VMs. SpotCheck creates a VPC

and places all of its spot and on-demand servers into it. As a result, SpotCheck is able

to create a private IP address for each nested VM. Upon migration, SpotCheck uses

available VPC functions to deallocate the IP address associated with a nested VM on

its source server, and reassign it to a new (unused) network interface on the destination

server, as depicted in Figure 3.4. This ensures the IP address of nested VMs remains

unchanged after migration. SpotCheck currently allocates a subnet within a shared

data plane, defined by the VPC, to each customer. By default, SpotCheck assigns

one public IP address per customer, attached to a designated “head” nested VM, to

provide access to the public Internet from within the private VPC subnet.
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3.3.5 Putting it all together

SpotCheck combines nested virtualization, virtual private networks, VM migration,

and lazy VM restoration to implement its migration strategies, as summarized below.

Upon initial allocation, SpotCheck assigns a backup server to each nested VM on a

spot server, which stores its memory state, unless the nested VM’s memory size is small

enough to ensure a live migration completes within the warning period. SpotCheck

might also not assign a backup server if it decides to migrate nested VMs proactively

in advance of a revocation. Nested VMs hosted on on-demand servers do not require

a backup server, since they are always capable of a live migration. If the underlying

IaaS platform revokes a spot server, SpotCheck must migrate each resident nested

VM to a new destination server via bounded-time VM migration.

The destination server is chosen by a higher-level server pool management algorithm,

discussed in Section 4. Once the VM’s migration completes, SpotCheck uses VPC

functions to deallocate the IP address on the source server, and then reallocate the

IP address on the destination server and configure the nested hypervisor to forward

packets to the new address. SpotCheck also must detach the VM’s network-attached

disk volume and reattach it to the destination server before the VM resumes operation.

We discuss SpotCheck’s treatment of storage more in Section 5.4. If SpotCheck

employs bounded-time VM migration, it uses lazy VM restoration to minimize the

migration downtime.

3.4 Server Pool Management

SpotCheck rents VM servers from native IaaS platforms under different service

contracts that specify different levels of price and availability, and then repackages

and resells their resources to its customers. The ability to rent and manage servers of

different types, and intelligently multiplex their resources across multiple customers is

central to the design of any derivative cloud, including SpotCheck. Note that, similar

39



Assign to Pools 

Checkpointing

Memory State 

Backup Servers

Customer 1 Customer 2 Customer 3

Spot pool 1 Spot pool 2 On-Demand pool

Figure 3.5: SpotCheck’s architecture using multiple pools.

to traditional virtualization, nested virtualization enables multiple nested VMs to run

on a host VM, such that the nested hypervisor in the host VM isolates the nested

VMs and prevents cross-VM attacks. As with a native IaaS platform, SpotCheck

controls the nested hypervisor and has full access to the memory state of each of its

customer’s nested VMs. In this section, we describe the techniques SpotCheck uses to

manage resources from multiple pools of servers.

3.4.1 SpotCheck Architecture

At an architectural level, SpotCheck maintains multiple pools of servers, as shown

in Figure 3.5, where each pool contains multiple native VM servers of a particular type,

specifying an allotment of CPU cores with specified performance, memory-size, network

bandwidth, etc. For each server type, SpotCheck maintains separate spot and on-

demand pools, comprising spot and on-demand servers of the same type, respectively.

SpotCheck exposes a user interface similar to that of a native IaaS platform, where

customers may request and relinquish servers of different types. However, SpotCheck

offers its customers the abstraction of non-revocable servers, despite often executing

them on revocable spot servers.
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SpotCheck maps its customers’ nested VMs, which may be of multiple types,

to different server pools, as illustrated in Figure 3.5. In addition, SpotCheck also

maintains a pool of backup servers, each capable of maintaining checkpoints of memory

state for multiple nested VMs hosted on spot servers. Thus, SpotCheck assigns each

native server from a spot pool to a distinct backup server, such that any nested

VMs hosted on it write their dirty memory pages to their backup server in the

background. SpotCheck does not assign native servers in the on-demand pool to a

backup server, since they can live migrate any nested VMs hosted on them without

any time constraints. Given the architecture above, we next describe the techniques

and algorithms SpotCheck employs to manage server pools and handle pool dynamics.

3.4.2 Mapping Customers to Pools and Pools to Backups

When a customer requests an instance of a specific size, e.g. small server, SpotCheck

must make trade-offs between cost, stability, and the frequency of concurrent revoca-

tions. That is, SpotCheck ideally would allocate stable server resources at cheap prices

and avoid any customer losing significant (or all of their) spot servers at once. To

satisfy such a requirement, SpotCheck makes a sequences of decisions by taking into

account both a spot server’s price history and a customer’s existing spot allocation.

In the simplest case, when a customer requests a new VM of a certain type,

SpotCheck satisfies the request by allocating a native VM of the same type from the

underlying IaaS platform, and then configures a nested VM within the native VM for

use by the customer. Since nested virtualization supports the ability to run multiple

nested VMs on a single host VM, SpotCheck also has the option of i) requesting a

larger native VM than the one requested by the customer, ii) slicing it into smaller

nested VMs of the requested type, and then iii) allocating one of the nested VMs to

the customer. Slicing a native VM into smaller nested VMs is useful, since prices for

spot servers of different types vary based on market-driven supply and demand. As
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a result, the price of a spot server that is two or four times the size of a requested

nested VM may be less (or more) than two to four times the price of a smaller spot

server of the requested type.

Presented with a set of spot markets to choose from, SpotCheck employs three

different policies in choosing the spot server type. The first strategy, referred to

as cheapest-first, is a simple greedy policy that chooses the cheapest spot server,

based on the current prices, to satisfy a request. We exploit the fact that the server

size-to-price ratio is not uniform: a large server, say a m3.large, which is able to

accommodate two medium VM servers of size m3.medium may be cheaper than buying

two medium servers. Since the pricing of on-demand servers is roughly proportional to

their resource allotment, such that a server with twice the CPU and RAM of another

costs roughly twice as much, under ideal market conditions, the price of spot servers

should also be roughly proportional to their resource allotment. However, we have

observed that different server types experience different supply and demand conditions.

In general, smaller servers appear to be more in demand than larger servers because

their spot price tends to be closer to their on-demand price. As a result, larger servers

are often cheaper, on a unit cost basis, than smaller server for substantial periods

of time, which enables SpotCheck’s greedy approach to exploit the opportunity for

arbitrage. However, note that whenever SpotCheck slices a spot server into multiple

nested VMs, it does incur additional risk, as a revocation requires migrating all of its

resident nested VMs.

An alternative to the greedy cheapest-first strategy above is a conservative stability-

first policy that allocates a native spot server (from the various possible choices) with

the most stable prices. To increase availability, SpotCheck must reduce both the

frequency of revocation events and the impact of each one, e.g., due to downtime.

Allocating a spot server with a stable market price reduces the probability of a spot

server revocation, which in turn increases availability.
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Both cheapest-first and stability-first strategies do not consider the existing al-

location of a customer’s spot servers. Such strategies might be problematic when

a customer’s spot instances all belong to a single server pool, incurring concurrent

revocations upon price spikes. A revocation event due to a price spike for a partic-

ular type of spot server can cause concurrent revocations within a single spot pool.

However, different pools are independent, since spot prices of different server types

fluctuate independently of one another and are uncorrelated, as seen in Figures 3.6(c)

and (d). Hence, SpotCheck also supports a more sophisticated policy that bounds

the maximum concurrent revocations per customer, defined as r, by distributing a

customer’s nested VMs across multiple pools. Revocation storms degrade nested

VM performance and increase downtime by overloading backup servers, which must

simultaneously broker the migration of every revoked nested VM. SpotCheck employs

this policy to reduce the risk of a sudden price spike causing mass revocations of spot

servers of a particular type at one location (or availability zone in EC2 parlance).

The key idea of this bounded greedy algorithm is to first identify the cost and

stability ranges using cheapest-first and stability-first strategies, and then search for a

specific spot server type that has cost and stability within the above ranges without

violating concurrent threshold r. SpotCheck also favors the spot server type that

incurs fewer concurrent revocations, i.e. smaller instances, as a tie breaker. This tie

breaker is beneficial because it allows SpotCheck to maintain a reasonable amount of

sliced servers, in case of customer shortage. Further, SpotCheck sets up a threshold

of maximum number of concurrent revocations allowed, constraining the candidate

server types.

Finally, SpotCheck must assign each nested VM within a spot pool to a distinct

backup server. SpotCheck also distributes nested VMs in a spot pool across multiple

backup servers. Since each spot pool is subject to concurrent revocations, spreading

one pool’s VMs across different backup servers reduces the probability of any one
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backup server experiencing a large number of concurrent revocations. The approach

also spreads the read and write load due to supporting bounded-time VM migration

across multiple backup servers. SpotCheck employs a simple round-robin policy to

map nested VMs within each pool across the set of backup servers. Once every

backup server becomes fully utilized, SpotCheck provisions a native VM from the

IaaS platform to serve as a new backup server, and adds it to the backup server pool.

Of course, a backup server is not necessary for running stateless services on nested

VMs, e.g., a single web server that is part of a tier of replicated web servers, since

these services are designed to tolerate failures. However, as with any IaaS platform,

SpotCheck does not make any assumptions about the applications that run on it.

This does mean that SpotCheck may incur slightly higher costs than necessary for

stateless services, since these servers can use spot servers directly without incurring

extra costs for a backup server or requiring any application modifications. The policies

for mapping VMs to backup servers are expanded on in Section 3.5.2.

3.4.3 Handling Pool Dynamics

After the initial mapping of a nested VM onto a server in a pool, SpotCheck will

likely migrate it to servers in other pools over the course of its lifetime due to pool

dynamics. There are two types of pool dynamics caused by changing spot prices that

SpotCheck must handle. The first is revocation dynamics, which cause the sudden

revocation of one or more spot servers within a pool due to prices rising above the

bid price. The second is allocation dynamics, which dictates when to transition a

nested VM back from an on-demand to a spot server when a price spike abates and

the spot price again drops below the on-demand price. Note that, in EC2, spot prices

often rise substantially above the on-demand price during a price spike, as depicted in

Figure 3.1.

44



Although SpotCheck has no control over the fluctuating price of spot servers, it

does have the ability to determine a maximum bid price it is willing to pay for servers

in each of its spot pools. Designing “optimal” bidding strategies in spot markets in

various contexts is an active research area, and prior work has proposed a number of

different policies [119, 219, 61]. Adapting these policies to SpotCheck’s context may be

possible. However, since our focus is on designing a derivative IaaS cloud, rather than

bidding strategies, SpotCheck currently employs one of two simple policies: either bid

the equivalent on-demand price for a spot server or bid k times the on-demand price.

With the first policy, SpotCheck retains spot servers in a pool as long as those servers’

spot price remains below the equivalent on-demand price of the servers. If the spot

price rises above the on-demand price, the IaaS platform revokes the spot servers in

the pool, which forces SpotCheck to migrate them to on-demand servers. Of course,

this revocation only occurs if the equivalent on-demand servers are now cheaper than

the spot servers, so migrating to on-demand servers at these times is the cheapest,

most cost-effective strategy.

The second policy bids a price that is k times the on-demand price, where k > 1.

In general, the higher the bid price, the lower the probability of an IaaS platform

revoking the spot servers in a pool. Bidding a high price that exceeds the on-demand

price lowers a pool’s revocation frequency at the expense of a higher cost. This

policy also makes proactive migrations more feasible, since SpotCheck can periodically

monitor prices and proactively trigger live migrations to on-demand servers whenever

prices rise above the on-demand price, but are still lower than the bid price. Thus,

SpotCheck currently only uses proactive migrations in conjunction with this second

policy.

In the case of EC2’s spot market, empirical data shows that the probability of

revocation decreases with higher bid prices, but it flattens quickly, such that the

“knee” of the curve, as depicted in Figure 3.6(a), is slightly lower than the on-demand
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Figure 3.6: Price dynamics across EC2 spot markets from April to October 2014 for
all m3.* types: the spot price distribution (a) has a long tail, (b) exhibits large price
changes, and (c) is uncorrelated across locations and server types (d).

price. Thus, simply bidding the on-demand price is an approximation of bidding an

“optimal" value that is equal to the knee of this availability-bid curve. This implies that

large price spikes are the norm, with spot prices frequently going from well below the

on-demand price to well above it, as shown in Figure 3.6(b). Figure 3.6(a) also shows

that the spot prices are extremely low on average compared to the equivalent prices

for on-demand servers. This is likely due to the complexity of modifying applications

to effectively use the spot market, which suppresses demand by limiting spot servers

to a narrow class of batch applications.

In either case, in SpotCheck’s current implementation, all servers within a spot

pool have the same bid price. As a result, when the market price rises above the bid

price, the IaaS platform revokes all servers within a pool at the same time, resulting in

a revocation storm. A simple approach to handling concurrent revocations is to request

46



an equivalent number of on-demand servers from the IaaS platform and migrate each

nested VM to a new on-demand server. An alternative approach is to request spot

servers of a different, larger type where prices are stable, and then migrate to new

spot servers. However, requesting new servers in a lazy fashion when necessary is only

feasible if the latency to obtain them is smaller than the warning period granted to

a revoked server. For example, empirical studies have shown that it takes up to 90

seconds to start up a new on-demand server in EC2 [141], while the warning period

for a spot server is two minutes, which leaves only 30 seconds to migrate the spot

server’s state to the new server. If the allocation latency were to exceed the warning

time, such a lazy strategy is not possible due to the risk of significant VM downtime.

To handle this scenario, SpotCheck is able to maintain a pool of hot spares to

immediately receive nested VMs from revoked spot servers without waiting for a new

server to come online. Hot spares increase SpotCheck’s overhead cost, while reducing

the risk of downtime. Note that there is never a risk of losing nested VM state, since

the backup server stores it even if there is not a destination server available to execute

the nested VM. An alternative approach to using dedicated hot spares is to use existing

servers in other stable pools as staging servers. This approach is attractive if these

existing servers are not fully utilized by the nested VMs running on them. Here, the

staging servers only run the nested VMs from a revoked spot server temporarily, while

SpotCheck makes concurrent requests for new on-demand or spot servers to serve

as the final destination. Of course, this strategy doubles the number of migrations

and the associated overhead, but it also enables the system to reduce risk without

increasing its costs. Hot spares and staging servers may also serve as a temporary

haven for displaced spot VMs, in the rare case when requests for on-demand servers

fail because they are unavailable from the IaaS platform. While native IaaS platforms

attempt to provision resources to stay ahead of the demand curve, they occasionally

run out of on-demand servers if the demand for them exceeds their supply.
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Of course, regardless of the risk mitigation strategies above, SpotCheck cannot

provide higher availability than the underlying IaaS platform. For example, if the

IaaS platform fails or becomes disconnected, as occasionally happens to EC2 [78],

SpotCheck would also fail. Since we do not have access to long-term availability data

for EC2 or other IaaS platforms, in our experiments, the term “availability” refers to

relative availability with respect to the underlying IaaS platform, which we assume in

this paper is 100% available.

3.4.4 Cost and Availability Analysis

SpotCheck’s goal is to provide resources, in the form of nested VMs, with high

availability that resembles that of on-demand servers, but at low prices that resembles

those of spot servers. In this section, we analyze the costs incurred by SpotCheck’s

server pool management and migration strategies, and their resulting availability.

Given n customers, each with Ci servers, SpotCheck must provision a total of

V =
∑n

i Ci nested VMs. Since SpotCheck maps these V nested VMs onto multiple

pools, the total cost L of renting native servers from the IaaS platform is equal

to the cost of the necessary spot servers plus the cost of the necessary on-demand

servers plus the cost of any backup servers. Thus, the amortized cost per nested

VM is L/V . We represent the expected cost E(c) of an individual nested VM as

E(c) = (1−p)E(cspot(t))+p ·cod, where p denotes the probability of a revocation when

it resides on a spot server, cspot(t) denotes the variable price of the spot server, and

cod denotes the price of the equivalent on-demand server. We note that p is simply

the probability of the spot price rising above the bid price, i.e., p = P (cspot(t) > bid),

which is given by the cumulative distribution shown in Figure 3.6(a) that we derive

empirically for different spot pools.

To compute a nested VM’s availability, assume that the market price of a spot

server changes once every T time units, such that the server will be revoked once every
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T/p time units, yielding a revocation rate of R = p/T . Here, we assume live migration

does not result in significant downtime, while bounded-time VM migration incurs the

downtime required to i) read sufficient memory state after a lazy restoration, ii) attach

a networked disk volume to the new server, and iii) reassign the IP address to the new

server. If D denotes the delay to perform these operations, the downtime experienced

by the nested VM is D · R per unit time, i.e., D · p/T . Thus, our expected cost

equation above allows us to analyze different pool management and bidding policies.

This expected cost includes the cost of running the nested VM on either a spot or

on-demand server, and the cost of any backup servers. We also assume that nested

VMs use an associated EBS volume in EC2 to provide persistent network-attached

storage. However, we do not include storage costs, since they are negligible at the

backup server, and thus the same when using SpotCheck or the native IaaS platform.

Similarly, our analysis does not include costs associated with external network traffic,

since these costs are the same when using SpotCheck or the native IaaS platform.

Note that there is no cost in EC2 associated with the network traffic between nested

VMs and their backup server, since network traffic between EC2 servers incurs no

charge.

One caveat in our analysis is that we do not consider the second-order effects

of our system on spot prices and availability. While it is certainly possible that

widespread use of SpotCheck may perturb the spot market and affect prices, our

analysis assumes that the market is large enough to absorb these changes. Regardless,

our work demonstrates that a substantial opportunity for arbitrage exists between

the spot and on-demand markets. Consumers have a strong incentive to exploit this

arbitrage opportunity until it no longer exists. SpotCheck also benefits the IaaS

platform, since it should raise the demand and price for spot servers by opening them

up to a wider range of applications. Thus, there is no incentive for EC2 to hinder (or
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prevent) SpotCheck by reducing (or eliminating) the warning notification for spot

servers.

The increasing popularity and demand of derivative clouds might also incentivize

IaaS platforms to increase their pool of spot servers. However, our analysis assumes

that on-demand servers of some type will always be available. While on-demand

servers of a particular type may become unavailable, we assume the market is large

enough such that on-demand servers of some type are always available somewhere. As

we discuss, SpotCheck’s pool management strategies operate across multiple markets

by permitting the unrestricted choice of server types and availability zones (within a

region). These strategies protect against the rare event where one type of on-demand

server becomes unavailable.

3.5 Risk Management

This section describes the various risks encountered when running a derivative cloud

on inherently volatile markets and presents multiple policies to manage these risks.

SpotCheck’s migration strategies provide system-level mechanisms that leverage spot

servers by migrating applications away from spot servers upon revocation. However,

running applications using these revocable spot servers requires managing multiple risks

in order to reduce the number of revocation events, reduce the impact of revocation

storms, and maintain the efficiency of restoration. SpotCheck manages potential risks

in all three facets with a combination of policies that intelligently manages customer

server pools, the backup server pool, and hot spare servers.

3.5.1 Reducing Revocation Risks using Bidding

Once a spot market has been decided for a VM, SpotCheck must determine a bid

price. Although SpotCheck has no control over the fluctuating price of spot servers, it

does have the ability to determine a maximum bid price it is willing to pay for servers
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in each of its spot pools. Designing “optimal” bidding strategies in spot markets in

various contexts is an active research area, and prior work has proposed a number

of different policies [119, 219, 61]. Adapting these policies to SpotCheck’s context

may be possible. However, since our focus is on designing a derivative IaaS cloud,

rather than bidding strategies, SpotCheck currently employs one of two simple policies:

either place a single bid or bid at multiple different prices for a specific server type.

3.5.1.1 Single Level Bidding

With the single bid policy, SpotCheck picks a single bid price for every spot pool.

The bid is chosen to minimize the expected cost of running on the spot instances and

on-demand instances due to the revocation. A low bid implies a higher revocation

rate and more time spent running on on-demand servers, and thus nullifies the lower

average spot price. Similarly, a high bid price reduces revocations, but results in

increased spot instance costs. In order to balance the tradeoff, SpotCheck finds a

biding price b∗ that is at the “knee” point of the revocation probability curve. Put

simply, a “knee” point appears when the probability curve flattens out and can be

found by calculating the local maxima of the curve.

In the case of EC2’s spot market, empirical data shows that the probability of

revocation decreases with higher bid prices, but it flattens quickly, such that the

“knee” of the curve, as depicted in Figure 3.6(a), is slightly lower than the on-demand

price. Thus, simply bidding the on-demand price is an approximation of bidding an

“optimal” value that is equal to the knee of this availability-bid curve. This implies that

large price spikes are the norm, with spot prices frequently going from well below the

on-demand price to well above it, as shown in Figure 3.6(b). Figure 3.6(a) also shows

that the spot prices are extremely low on average compared to the equivalent prices

for on-demand servers. This is likely due to the complexity of modifying applications
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to effectively use the spot market, which suppresses demand by limiting spot servers

to a narrow class of batch applications.

The cost-optimal bidding level can be found with the following model. Given

n customers, each with Ci servers, SpotCheck must provision a total of V =
∑n

i Ci

nested VMs. Since SpotCheck maps these V nested VMs onto multiple pools, the

total cost L of renting native servers from the IaaS platform is equal to the cost of

the necessary spot servers plus the cost of the necessary on-demand servers plus the

cost of any backup servers. Thus, the amortized cost per nested VM is L/V .

We represent the expected cost of running a spot server with a bid b as E[c(b)]

and it is:

E[c(b)] = (1−p) ·E[cspot(b)]+p · cod + ǫ (3.1)

where p denotes the probability of a revocation when it resides on a spot server,

E[cspot(b)] denotes the average price of the spot server at a bid b, and cod denotes the

price of the equivalent on-demand server. We note that p is simply the probability

of the spot price rising above the bid price, i.e., p = P (cspot(b) > bid), which is given

by the cumulative distribution shown in Figure 3.6(a) that we derive empirically

for different spot pools. Finally, the additional small constant cost, ǫ denotes the

amortized cost to run the backup servers. A single backup server with cost cb can be

shared by multiple (N) VMs, yielding ǫ = cb/N . SpotCheck’s optimized backup server

design can support upto 40 VMs, and thus the extra cost associated with backup

servers is quite small.

The expected costs can be calculated for any bid level, and only requires availability

and price information, both of which are obtained using the publicly available price

traces published by Amazon. In order to find the optimum bid level b∗ which minimizes

E[C(b)] in Equation 3.1, a simple numerical search using gradient descent is used to

find the minima and the associated bid level. This operation is performed only once

per spot market, and is re-run only upon significant price changes.
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To compute a nested VM’s availability, assume that the market price of a spot

server changes once every T time units, such that the server will be revoked once every

T/p time units, yielding a revocation rate of R = p/T . Here, we assume live migration

does not result in significant downtime, while bounded-time VM migration incurs

the downtime required to i) read sufficient memory state after a lazy restoration, ii)

attach a networked disk volume to the new server, and iii) reassign the IP address

to the new server. If D denotes the delay to perform these operations, the downtime

experienced by the nested VM is D ·R per unit time, i.e., D ·p/T .

Thus, our expected cost equation above allows us to analyze different pool man-

agement and bidding policies. This expected cost includes the cost of running the

nested VM on either a spot or on-demand server, and the cost of any backup servers.

We also assume that nested VMs use an associated EBS volume in EC2 to provide

persistent network-attached storage. However, we do not include storage costs, since

they are negligible at the backup server, and thus the same when using SpotCheck

or the native IaaS platform. Similarly, our analysis does not include costs associated

with external network traffic, since these costs are the same when using SpotCheck

or the native IaaS platform. Note that there is no cost in EC2 associated with the

network traffic between nested VMs and their backup server, since network traffic

between EC2 servers incurs no charge.

3.5.1.2 Multi Level Bidding

Alternatively, SpotCheck also supports multi-level bidding within a spot market.

The goal of this bidding strategy is to reduce the number of concurrent revocations

and thus mitigate the occurrence of revocation storms. Bidding at multiple levels

means that a price increase does not necessarily affect all the servers in a market.

We use a simple, two-level bidding strategy wherein we have a low and a high bid.

Servers are randomly placed either in the low bid pool or the high bid pool. A spot
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price increase is going to affect the low-bid servers first and cause them to be revoked;

it only affects the high-bid servers when the price crosses the high bid, which may

happen after a small delay as the price ramps up, or may not happen at all. Of

course, a sudden increase in price above the high-bid mark will cause all the servers

to be revoked simultaneously. If the gap between revocation of the low and high bid

servers is large enough, then the impact of the revocation storm is reduced, because

the backup server will have to bear the brunt of only half the number of concurrent

migrations. Additionally, requesting a smaller number of on-demand servers may also

reduce the latency of server acquisition [141].

Our two-level bidding strategy is as follows. The low-bid is set to the on-demand

price (as before), and then we use a numerical search approach to find the high-bid.

Servers are equally and randomly distributed among the two bid levels. Just like in

single level bidding, there is a tradeoff between the bid and the cost. A bid higher

than the on-demand price means that we are ready to pay that price, and thus bidding

too high is not cost optimal.

Therefore, when choosing the bid levels, we seek to minimize the i) revocation

storm size and ii) expected cost. In single level bidding, a revocation storm affects all

n of the servers in that market. With two-level bidding, some storms affect only n/2

servers, and thus their impact is said to be mitigated. We thus use the fraction of

revocation storms mitigated, fr as a metric. A storm is mitigated if the gap between

revocation of high and low bid servers is at least th. Once the th threshold is crossed,

the high and low bid revocations will not be simultaneous because the backup server

will have finished lazily restoring the VMs. Based on experimental analysis, we set

th = 10 minutes.

Since the low-bid is fixed (equal to on-demand price), we use a simple numerical

search for the high-bid which maximizes the fraction of revocation storms mitigated,

fr, such that the increase in cost stays under a threshold. Thus, we have the constraint:
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E[cr] ≤ α · E[C], where E[C] is the expected cost for the single-level bidding policy.

Expectations for both fr, cr are obtained by using historical price traces, and we use

an α = 0.2, i.e., we limit the increase in cost to 20%. The upper bound on the search

for the high-bid is enforced by Amazon, which limits the maximum bid to be 10 times

the on-demand price.

3.5.2 Reducing Concurrent Revocations with Backup Servers

After requesting spot servers from the native IaaS platform, SpotCheck must

assign each nested VM within a spot pool to a distinct backup server. SpotCheck

also distributes nested VMs in a spot pool across multiple backup servers. The

task of assignning VMs to backup servers is analogous to VM placement and server

consolidation [150] where the goal is to pack VMs onto a minimum number of physical

servers.

Since each spot pool is subject to concurrent revocations, spreading one pool’s

VMs across different backup servers reduces the probability of any one backup server

experiencing a large number of concurrent revocations. The approach also spreads the

read and write load due to supporting bounded-time VM migration across multiple

backup servers. To this end, SpotCheck employs a round-robin policy to map the

nested VMs within each pool across the set of backup servers. With the round-robin

policy, SpotCheck simply assigns each nested VM to the next available backup server2.

If any backup server becomes fully utilized, SpotCheck provisions a native VM from

the IaaS platform to serve as a new backup server, and adds it to the backup server

pool. A backup server in SpotCheck can host multiple(N = 40) VMs, and may not

always be fully utilized. The under-utilization can occur because VM arrivals and

lifetimes are dynamic, and SpotCheck does not have apriori knowledge about VM
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creation/termination requests which it can use to provision the minimum number of

backup servers.

SpotCheck’s round-robin policy might lead to unbalanced backup servers in terms

of concurrent revocations. The optimal mapping from spot servers to backup servers

to minimize the maximum number of concurrent revocations can be formulated as an

integer linear program (ILP).

Let N spot servers belong to different spot pools (S), and pis denote the mapping

between servers and server-pools. The backup servers are denoted by M , and their

capacity is denoted by U . Our goal is to find an optimal mapping X for every spot

server, where xij denotes assignment of server i to backup j. We can then represent the

number of concurrent revocations crj of backup server j: crj = argmaxs∈S

m
∑

i=0
psixijwi.

Intuitively, crj is defined by the largest server pool hosted. We define revocation storm

severity to be the maximum concurrent revocations on any backup server cr = max
j

crj .

Our objective is to minimize cr with the following constraints:

∑

i∈N

wixij ≤ U ∀j ∈ M (3.2)

∑

j∈M

xij = 1 ∀i ∈ N (3.3)

xij ∈ {0,1} ∀i ∈ N,j ∈ M

Constraint 3.2 ensures no backup servers will be overloaded and the other con-

straints make sure all spot servers are assigned to only one backup server. This ILP

can be solved by an off-the-shelf solver like CPLEX. However, this ILP formulation

2A backup server is not necessary for running stateless services e.g., a single web server that is
part of a tier of replicated web servers, since these services are designed to tolerate failures. However,
as with any IaaS platform, SpotCheck does not make any assumptions about applications that run
on it, and may incur slightly higher costs than necessary for stateless services.
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requires remapping of VMs to backup servers periodically, and is not feasible in the

current SpotCheck implementation. We develop an online version of this backup

assignment which doesn’t require remappings below.

Online greedy backup assignment policy. The round-robin policy discussed

earlier does not try to minimize the number of concurrent revocations, and the ILP

formulation is an offline approach. We have developed an online policy (called online-

greedy) which seeks to minimize the number of concurrent revocations, and can be

run dynamically as VMs are launched.

The online-greedy policy runs after a VM has been assigned to a server pool i. It

places the VM into a backup server which has the least number of VMs from pool

i, and which still has capacity available to host one more VM. Since the number of

concurrent revocations is simply the number of VMs from the same pool, by picking

the backup server with the smallest number of VMs from that pool, the backup servers

are not overloaded with VMs from the same pool. Thus, the online-greedy policy

seeks to equalize the number of VMs from each pool across all the backup servers.

3.5.3 Reducing Downtime with Hot Spares

When the market price rises above the bid price, the IaaS platform revokes all

servers within a pool at the same time, resulting in a revocation storm. A simple

approach to handling concurrent revocations is to request an equivalent number of

on-demand servers from the IaaS platform and migrate each nested VM to a new

on-demand server. However, requesting new servers in a lazy fashion when necessary is

only feasible if the latency to obtain them is smaller than the warning period granted

to a revoked server. Note that there is never a risk of losing nested VM state, since

the backup server stores it even if there is not a destination server available to execute

the nested VM. For example, empirical studies have shown that it takes up to 90

seconds to start up a new on-demand server in EC2 [141], while the warning period
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for a spot server is two minutes, which leaves only 30 seconds to migrate the spot

servers state to the new server. If the allocation latency were to exceed the warning

time, such a lazy strategy is not possible due to the risk of significant VM downtime.

To handle this scenario, SpotCheck proactively acquires a pool of hot spares, servers

that are ready to receive nested VMs from revoked spot servers immediately without

waiting for a new server to come online. While reducing the risk of downtime, hot

spares inevitably increase SpotCheck’s overhead cost. Therefore, it is important to

only maintain a necessary amount of hot spare servers.

SpotCheck’s hot-spare policy seeks to ensure that a small fraction of VMs affected

by a revocation storm have a stand-by on-demand server. If the expected maximum

number of simultaneous revocations is E[RM ], then we deploy β ·E[RM ] hot spares.

Thus the cost of the hot spares is proportional to the simultaneous revocations, which

in turn is a result of pool management and bidding policy. For example, we can set

β = 0.1, which means that 10% of VMs migrating face minimal downtime, while the

rest could potentially be affected due to the delay in acquiring on-demand servers

from the native IaaS. The hot-spare pool is replenished after the hot spares are used

up during migrations.

An alternative approach to using dedicated hot spares is to use existing servers

in other stable pools as staging servers. This approach is attractive if these existing

servers are not fully utilized by the nested VMs. Here, the staging servers only run

the nested VMs from a revoked spot server temporarily, while SpotCheck makes

concurrent requests for new on-demand or spot servers to serve as the final destination.

This strategy doubles the number of migrations and the associated overhead, but it

also enables the system to reduce risk without increasing its costs. Hot spares and

staging servers may also serve as a temporary haven for displaced spot VMs, in the
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rare case when requests for on-demand servers fail because they are unavailable from

the IaaS platform3.

3.5.4 Providing Security Isolation using VPCs

By default, SpotCheck VMs share the cloud servers (using nested virtualization)

and the backup servers with different VMs belonging to other customers. This sharing

may reduce both the performance and security isolation among VMs. To provide

improved isolation, SpotCheck also provides a Private Cloud mode, which removes

sharing of cloud servers and backup servers between different customers.

In private cloud mode, SpotCheck does not place different customers’ VMs on

the same cloud server, but instead provides a dedicated VPC to each customer to

improve network isolation. More importantly, VMs which run in this mode have their

own dedicated backup servers. All the bidding, pool management, and other policies

are still applicable in this mode, and the VMs among different VPCs do not interact

in any way. The key difference is the non-sharing of backup servers, which prevents

VMs from one user from interfering with other users’ VMs. Multiple VMs sharing a

backup server amortizes the backup server cost among them, and in the private cloud

mode, the number of VMs run by a customer may not be large enough to completely

pack the backup servers. This under-utilization backup servers increases the cost of

running in private cloud mode if the number of VMs is small. Thus, the private cloud

mode provides increased isolation, at a potentially higher cost, which is a function

of the number of VMs that a customer is running in this mode. While we use a

relatively large and powerful backup server (m3.xlarge) which can service up to 40

VMs, it may be excessive for smaller private clouds. If the number of customer VMs is

significantly less than 40, SpotCheck automatically chooses progressively smaller and

3IaaS platforms attempt to provision resources to stay ahead of the demand curve, but they may
run out of on-demand servers if demand exceeds supply.
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cheaper backup servers. For example, 20 VMs can be serviced by the m3.large server

type, at half the cost of the extra large server. Note that the ratio of computing and

storage resources on the backup servers to the multiplexing factor remains the same,

and the performance of VMs in the private cloud mode is unaffected. This allows the

private cloud mode to be cost feasible even at small sizes.

While the above private cloud mode provides isolation, it can also result in higher

costs for customers with low VM requirements. To address this, SpotCheck also offers

a VPC-only mode, which provides VPCs to customers but shares backup servers

among VPCs. The VPCs provide network isolation, and the shared backup servers

remove the cost overhead. Thus, foregoing the backup server isolation results in lower

costs. Backup servers can be shared among VPCs by EC2’s VPC-peering mechanism.

3.5.5 Arbitrage Risks

One caveat in our analysis is that we do not consider the second-order effects

of our system on spot prices and availability. While it is certainly possible that

widespread use of SpotCheck may perturb the spot market and affect prices, our

analysis assumes that the market is large enough to absorb these changes. Regardless,

our work demonstrates that a substantial opportunity for arbitrage exists between

the spot and on-demand markets. Consumers have a strong incentive to exploit this

arbitrage opportunity until it no longer exists. SpotCheck also benefits EC2, since it

should raise the demand and price for spot servers by opening them up to a wider

range of applications.

The increasing popularity and demand of derivative clouds might also incentivize

IaaS platforms to increase their pool of spot servers. However, our analysis assumes

that on-demand servers of some type will always be available. While on-demand

servers of a particular type may become unavailable, we assume the market is large

enough, so that on-demand servers of some type are always available somewhere. As
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we discuss, SpotCheck’s pool management strategies operate across multiple markets

by permitting the unrestricted choice of server types and availability zones (within a

region). These strategies protect against the rare event where one type of on-demand

server becomes unavailable.

Of course, regardless of the risk mitigation strategies above, SpotCheck cannot

provide higher availability than the underlying IaaS platform. For example, if the

IaaS platform fails or becomes disconnected, as occasionally happens to EC2 [78],

SpotCheck would also fail. Since we do not have access to long-term availability data

for EC2 or other IaaS platforms, in our experiments, the term “availability” refers to

relative availability with respect to the underlying IaaS platform, which we assume is

100% available.

3.6 SpotCheck Implementation

We implemented a prototype of SpotCheck on EC2 that is capable of exercising the

different policy options from the previous section, allowing us to experiment with the

cost-availability tradeoffs from using different policies. SpotCheck provides a similar

interface as EC2 to its customers for managing virtualized cloud servers, although the

servers are provisioned in the form of nested VMs.

SpotCheck Controller. The controller, which we implement in python, is SpotCheck’s

main component, and interfaces between customers and the underlying native IaaS

platform. The controller is centralized, runs on a dedicated server, and maintains a

global and consistent view of SpotCheck’s state, e.g., the information about all of its

provisioned spot and on-demand servers and all of its customers’ nested VMs and

their location. While we do not expect the controller’s performance to be a bottleneck,

if it is, replicating it by partitioning customers across multiple independent controllers

is straightforward. In addition, we do not include controller costs in our estimates,
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since we expect them to be negligible, as they are amortized across all the VMs of all

the customers.

Customers interact with SpotCheck’s controller via an API that is similar to the

management API EC2 provides for controlling VMs. Internally, the controller uses the

EC2 REST APIs to issue requests to EC2 and manage its server pools. The controller

monitors SpotCheck’s state by tracking the cloud server each nested VM runs on, the

IP address associated with the nested VM, and the customer’s access credentials, and

stores this information in a database.

The controller also implements the various pool management strategies from the

previous section, e.g., by determining the bids for spot instances and triggering nested

VM migrations from one server pool to another. Finally, the controller monitors the

load of nested VMs, the mapping of nested VMs to backup servers, and the current

spot price in each spot pool. Our prototype implementation uses the XenBlanket [214]

nested hypervisor running on a modified version of Xen 4.1.1. The driver domain

(dom-0) runs Linux 3.1.2 with modifications for supporting XenBlanket. XenBlanket

is compatible with all EC2 instance types that support hardware virtual machines

(HVM). SpotCheck assumes that the customer-provided disk image used to boot the

nested VM resides on a network-attached disk volume in EBS. Due to the use of Xen

as the nested hypervisor, the image must support Xen’s paravirtualization extensions.

Since network-attached storage is the primary storage medium in many IaaS

platforms, including EC2, our current prototype requires the VM to use one (or more)

network-attached EBS volumes to store the root disk and any persistent state, and

does not support backing up local storage to a remote disk. However, since the speed

of the local disk and a backup server’s disk are similar in magnitude, EC2’s warning

period permits asynchronous mirroring of local disk state to the backup server, e.g.,

using DRBD [90], without significant performance degradation. Our experiments

primarily focus on memory-intensive workloads, since using a backup server to store
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the live in-memory state of multiple nested VMs imposes a significantly larger cost

and performance overhead than maintaining disk backups.

To implement SpotCheck, we modified XenBlanket to support bounded-time

VM migration in addition to live migration. For the former, we adapt a version of

the bounded-time VM migration technique implemented in Yank [189] for use with

nested virtualization and implement additional optimizations to reduce downtime

during migration. In particular, the continuous checkpoints due to bounded-time VM

migration guarantee that during the last checkpoint the nested VM is able to transfer

the stale state within the warning time. In Yank [189], the VM pauses execution

and incurs downtime when transferring the stale state after receiving a warning. To

reduce this downtime, our implementation increases the checkpointing frequency after

receiving a warning, which reduces the amount of dirty pages the nested VM must

transfer. By gradually increasing the checkpointing frequency, we reduce downtime at

the cost of slightly degrading VM performance during the warning period.

SpotCheck configures nested VMs mapped to a spot server pool to use bounded-

time VM migration, while it configures those mapped to an on-demand pool to use live

migration. Nested VMs mapped to a spot server pool are also mapped to a backup

server, which must process a write-intensive workload during normal operation and

must process a workload that includes a mix of reads and writes during revocation

events, e.g., to read the memory state of a revoked nested VM and migrate it. As a

result, we optimize each backup server’s file system and kernel memory management

options for write-heavy traffic. Specifically, we use the ext4 filesystem, and avoid

costly metadata updates by using the write-back journalling mode and the noatime

option. This is safe, since the backup server stores a small number of large files,

representing the memory state of each nested VM it backs up, with no read/write

concurrency, i.e., the files storing VM memory state are either being written or read

but not both. To maximize the use of the page cache and absorb write storms, we
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set a high dirty_ratio and dirty_background_ratio, which retains file data in the

page cache for a long period, allowing the I/O scheduler to increase batching of write

requests.

During revocations, the backup server prepares for nested VM restoration by

loading images into memory using fadvise, setting the WILL_NEED flag, and using the

appropriate RANDOM or SEQUENTIAL access flags, depending on whether SpotCheck is

lazily restoring the VM or not. In addition, we also implement bandwidth throttling

using tc on a per-VM basis to limit the network bandwidth used for each migra-

tion/restoration operation, and to avoid affecting nested VMs that are not migrating.

Thus, we optimize our backup server implementation for the common case of efficiently

handling a large number of concurrent revocations without degrading performance for

long durations. Our SpotCheck prototype uses the m3.xlarge type as backup servers,

since they currently offer the best price/performance ratio for our workload mix. Our

prototype uses a combination of SSDs and EBS volumes to store the memory images.

Lazy restoration requires transferring the “skeleton” state of a VM, comprising

the vCPU state, all associated VM page tables, and other hardware state maintained

by the hypervisor, to the destination host and immediately beginning execution. This

skeleton state is small, typically around 5MB, and is dominated by the the size of the

page tables. The skeleton state represents the minimum amount of state sufficient

for the hypervisor on the destination host to create the domain for VM and begin

executing instructions. To allow the hypervisor to trap accesses to missing memory

pages during execution, our implementation of lazy restoration enables shadow paging

during the restore process. As a result, the missing memory pages, which reside on

the backup server’s disk, are mapped to the domain’s memory when available and the

VM resumes execution. A background process concurrently reads all other unrestored

pages without waiting for them to be paged in by the executing VM.
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We conducted extensive measurements on EC2 to profile the latency of SpotCheck’s

various operations. Table 3.1 shows the results for one particular server type, the

m3.medium. We conducted these experiments when there was no explicit documen-

tation of a revocation warning for spot servers on EC2. Our measurements found

that, at that the time, EC2 provided an opportunity to gracefully shutdown the VM,

by issuing a shutdown command, before forcibly terminating the VM two minutes

after issuing the shutdown. Thus, we replaced the default shutdown script with our

own script, which EC2 would invoke upon revocation to notify SpotCheck of the

two minute warning. However, as we mention previously, as of January 2015 [56],

EC2 now provides an explicit two minute notification of shutdown through the EC2

management interface.

When employed natively our live bounded-time VM migration incurs a brief

millisecond-scale downtime similar to that of a post-copy live migration. However,

Table 3.1 shows that EC2’s operations also contribute to downtime. In particular,

SpotCheck can only detach a VM’s EBS volumes and its network interface after

the VM is paused, and it can only reattach them after the VM is resumed. From

Table 3.1, these operations (in bold) cause an average downtime of 22.65 seconds.

While significant, this downtime is not fundamental to SpotCheck: EC2 and other

IaaS platforms could likely significantly reduce the latency of these operations, which

would further improve the performance and availability we report in Section 6. Even

now, this ∼23 second downtime is not long enough to break TCP connections, which

generally requires a timeout of greater than one minute.

Finally, SpotCheck’s implementation builds on our prior work on Yank [189] by

including the performance optimizations above. In particular, these optimizations

enable i) SpotCheck’s backup servers to support a much larger number of VMs and

ii) lazy on-demand fetching of VM memory pages to drastically reduce restoration
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Median(sec) Mean(sec) Max(sec) Min(sec)
Start spot instance 227 224 409 100
Start on-demand instance 61 62 86 47
Terminate instance 135 136 147 133
Unmount and detach EBS 10.3 10.3 11.3 9.6
Attach and mount EBS 5 5.1 9.3 4.4
Attach Network interface 3 3.75 14 1
Detach Network interface 2 3.5 12 1

Table 3.1: Latency for various SpotCheck operations on EC2 for the m3.medium server
type based on 20 separate measurements executed over a one week period.

time, e.g., to <0.1 seconds. We quantify the impact of these optimizations on cost,

performance, and availability in the next section.

3.7 SpotCheck Evaluation

Our evaluation consists of a mix of end-to-end experiments and simulations. For

our end-to-end experiments, we quantify SpotCheck’s performance under different

scenarios using a combination of EC2 servers and our own local servers. For our

simulations, we combine performance measurements from our end-to-end experiments

with historical spot pricing data on EC2 to estimate SpotCheck’s cost savings and

availability at scale over a long period. As mentioned previously, SpotCheck uses

Virtual Private Clouds (VPCs) in EC2 to create and assign IP addresses to nested VMs.

We run all the microbenchmark experiments in a single EC2 availability zone, while our

simulations include cross-availability zone experiments within a single region. Since

XenBlanket is only compatible with servers that have HVM capabilities, SpotCheck

is only capable of using HVM-enabled EC2 servers. Thus, for our experiments, we

primarily use m3.* server types. In particular, we use m3.xlarge server types for

our backup servers, and, by default, host nested VMs on m3.medium server types.

The m3.medium is the smallest HVM-enabled server. We evaluate SpotCheck using

two well-known benchmarks for interactive multi-tier web applications: TPC-W [11]
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and SPECjbb2005 [10]. We are primarily interested in memory-intensive workloads,

since the continuous checkpointing of memory pages imposes the most performance

overhead for these workloads.

TPC-W simulates an interactive web application. We use Apache Tomcat (v6.26) as

the application server and MySQL (v5.0.96) as the database. We configure clients to

perform the “ordering workload” in our experiments.

SPECjbb is a server-side benchmark that is generally more memory-intensive than

TPC-W. The benchmark emulates a three-tier web application, and particularly

stresses the middle application server tier when executing the test suite.

All nested VMs run the same benchmark with the same 30 second time bound

for bounded-time migration, which we choose conservatively to be significantly lower

than the two minute warning provided by EC2. Thus, our cost and availability results

are worse than possible if using a more liberal time bound closer to the two minute

warning time. In our experiments, we compare SpotCheck against i) Xen’s pre-copy

live migration, ii) an unoptimized bounded-time VM migration that fully restores a

nested VM before starting it (akin to Yank [189]), (iii) SpotCheck’s optimized Full

restore, iv) an unoptimized bounded-time VM migration that uses lazy restoration, and

finally v) SpotCheck’s optimized bounded-time VM migration with lazy restoration.

3.7.1 End-to-End Experiments

SpotCheck uses a backup server to checkpoint VM state and support bounded-time

VM migration. SpotCheck’s cost overhead is primarily a function of the number

of VMs each backup server multiplexes: the more VMs it multiplexes on a backup

server, the lower its cost (see Section 3.4.4). Figure 3.7 shows the effect on nested VM

performance for SpecJBB and TPC-W as the load on the backup server increases.

First, we evaluate the overhead of continuously checkpointing memory and sending

it over the network to the backup server. The “0” and “1” columns in Figure 3.7
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Figure 3.7: Effect on performance as the number of nested VMs backing up to a single
backup server increases.

represent performance difference between no checkpointing and checkpointing using a

dedicated backup server, respectively. By simply turning checkpointing on and using

a dedicated backup server, we see that TPC-W experiences a 15% increase in response

time, while SpecJBB experiences no noticeable performance degradation during normal

operation. With an increasing number of nested VMs all backing up to a single server,

saturation of the disk and network bandwidth on the backup server leads to a decrease

in nested VM performance after 35 VMs, where SpecJBB throughput decreases and

TPC-W response time increases significantly, e.g., by roughly 30% each. Note that

the nested VM incurs this performance degradation as long as it is running on a spot

server. Thus, to ensure minimal performance degradation during normal operation,

SpotCheck assigns at most 35-40 VMs per backup server. As a result, SpotCheck’s

cost overhead for backing up each nested VM is roughly 1/40 = 2.5% of the price of a

backup server. For our m3.xlarge backup server, which costs $0.28 per hour in the
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East region of EC2, the amortized cost per-VM across 40 nested VMs is $0.007 or less

than one cent per VM.

In addition to performance during normal operation, spot server revocations and

the resulting nested VM migrations and restorations impose additional load on the

backup server. Figure 3.8 shows the length of the period of downtime or performance

degradation when migrating nested VMs via the backup server. In this case, we

compare migrations that utilize lazy restoration with those that use a simple stop-and-

copy migration. A stop-and-copy approach results in high downtime, whereas a lazy

restore approach results in much less downtime but some performance degradation

when memory pages must be fetched on-demand across the network on their first

access. Since lazy restore incurs less downtime, it reduces the effect of migrations on

interactive applications. Figure 3.8 shows that when concurrently restoring 1 and

5 nested VMs the time required to complete the migration is similar for both lazy

restoration and stop-and-copy migration, which results in performance degradation or

downtime, respectively, over the time window.

However, when executing 10 concurrent restorations, the length of the lazy restora-

tion is much longer than that of the stop-and-copy migration. This occurs because

lazy restoration uses random reads that benefit less from prefetching and caching

optimizations than a stop-and-copy migration, which uses sequential reads. This

motivates SpotCheck’s lazy restoration optimization that uses the fadvise system call

to inform the kernel how SpotCheck will use the VM memory images stored on disk,

e.g., to expect references in random order in the near future. The optimization results

in a significant decrease in the restoration time for lazy restore. Thus, SpotCheck’s

optimizations significantly reduce the length of the period of performance degradation

during lazy restorations. Of course, SpotCheck also assigns VMs to backup servers

to reduce the number of revocation storms that cause concurrent migrations. We

evaluate SpotCheck’s bidding and pool assignment policies below.
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(b) Duration of degraded performance with Lazy restore

Figure 3.8: Duration of downtime during a traditional VM restore, and performance
degradation during a lazy restore.

Finally, in addition to the time to complete a migration, SpotCheck also attempts

to mitigate the magnitude of performance degradation during a migration and lazy

VM restoration. During the lazy restoration phase the VM experiences some perfor-

mance degradation, which may impact latency-sensitive applications, such as TPC-W.

Since the first access to each page results in a fault that must be serviced over the

network, lazy restoration may cause a temporary increase in application response

time. Figure 3.9 shows TPC-W’s average response time as a function of the number

of nested VMs being concurrently restored, where zero represents normal operation.

The graph shows that when restoring a single VM the response time increases from

29ms to 60ms for the period of the restoration. Additional concurrent restorations

do not significantly degrade performance, since SpotCheck partitions the available

bandwidth equally among nested VMs to ensure restoring one VM does not negatively

affect the performance of VMs using the same backup server.
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Figure 3.9: Effect of lazy restoration on VM performance.

Policy Description

1P-M VMs mapped to a single m3.medium
pool

2P-ML VMs equally distributed between
two pools : m3.medium and
m3.large.

4P-ED VMs equally distributed to four
pools consisting of four m3 server
types

4P-COST VMs distributed based on past
prices. The lower the cost of the
pool over a period, the higher the
probability of mapping a VM into
that pool.

4P-ST VMs distributed based on number of
past migrations. The fewer the num-
ber of migrations over a period, the
higher the probability of mapping a
VM into that pool.

Table 3.2: SpotCheck’s customer-to-pool mapping policies.

Note that SpotCheck’s policies attempt to minimize the number of evictions and

migrations via pool management, and thus the performance degradation of applications

during the migration process is a rare event. Even so, our evaluation above shows

that application performance is not adversely affected even when the policies cannot

prevent migrations.

Result: SpotCheck executes nested VMs with little performance degradation and cost

overhead during normal operation using a high VM-to-backup ratio and migrates/re-

stores them with only a brief period of performance degradation.
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3.7.2 SpotCheck Policies and Cost Analysis

As we discuss in Section 4, SpotCheck may employ a variety of bidding and VM

assignment policies that tradeoff performance and risk. Here, we evaluate SpotCheck’s

cost using various bidding policies based on the EC2 spot price history from April

2014 to October 2014. In particular, Table 3.2 describes the policies we use to assign

VMs to spot pools. The simplest policy is to place all VMs on servers from a single

spot market (1P-M); this policy minimizes costs if SpotCheck selects the lowest price

pool, but increases risk, since it may need to concurrently migrate all VMs if a price

spike occurs. We examine two policies (2P-ML and 4P-ED) that distribute VMs across

servers from different spot markets to reduce risk, albeit at a potentially higher cost.

We also examine two policies (4P-COST and 4P-ST) that probabilistically select pools

based on either their weighted historical (rather than current) cost or their weighted

historical price volatility. The former lowers cost, while the latter reduces performance

degradation from frequent migrations.

Figure 3.10 shows SpotCheck’s average cost per hour when using each policy. As

expected, the average cost for running a nested VM using live migration, i.e., without

a backup server, is less than the average cost using SpotCheck, since live migration

does not require a backup server. Of course, using only live migration is not practical,

since, without a backup server, SpotCheck risks losing VMs before a live migration

completes. In this case, 1P-M has the lowest average cost, since SpotCheck maps VMs

to the lowest priced spot pool. Distributing VMs across two (2P-ML) and then four

(4P-ED) pools marginally increases costs. The two policies that probabilistically select

pools based on either their historical cost or volatility have roughly the same cost as

the policy that distributes across all pools. Note that the average cost SpotCheck

incurs for the equivalent of an m3.medium server type is ∼$0.015 per hour, while the

cost of an m3.medium on-demand server type is $0.07, or a savings of nearly 5×.

72



1P-M 2P-ML 4P-ED 4P-COST 4P-ST
0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e 

co
st

 p
er

 h
ou

r (
$) Xen Live migration

Unoptimized Full restore
SpotCheck with Full restore
SpotCheck with Lazy restore

Figure 3.10: Average cost per VM under various policies.

The cost of SpotCheck VMs also depends on the utilization of the backup servers,

since the backup server costs are shared by all the VMs. Due to the dynamic arrival

and lifetimes of VMs, SpotCheck’s online backup server policy may leave backup

servers under-utilized, and thus increase effective costs. We evaluate the costs of

backup servers using the Eucalyptus cloud workload trace [23]. Figure 3.11 shows

the backup server costs of SpotCheck’s backup-server allocation policy relative to the

optimal bin-packing policy which minimizes the number of backup servers. We can see

from Figure 3.11 that the increase in backup-server costs (compared to the optimal)

ranges from 2% to 65% (for the short trace #5). This translates to a per-VM cost

increase of 1-33% compared to the full utilization scenario. Taking under-utilization

of backup servers into account, the worst-case cost savings for SpotCheck is still more

than 2× compared to the on-demand instances.

While reducing cost is important, maximizing nested VM availability and perfor-

mance by minimizing the number of migrations is also important. Here, we evaluate

the unavailability of VMs due to spot server revocations. For these experiments,

we assume a period of performance degradation due to detaching and reattaching

EBS volumes, network reconfiguration, and migration. We seed our simulation with

measurements from Table 3.1 and the microbenchmarks from the previous section. In

particular, we assume a downtime of 23 seconds per migration due to the latency of
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Figure 3.11: Cost of backup servers relative to optimal packing for the Eucalyptus
cloud traces.

EC2 operations. Based on these values and the spot price history, Figure 3.12 shows

nested VM unavailability as a percentage over the six month period from April to

October for each of our policies. As above, we see that live migration has the lowest

unavailability, since it incurs almost no downtime, but is not practical, since it risks

losing VM state. We also examine both an unoptimized version of bounded-time

VM migration requiring a full restoration before resuming (akin to Yank) and our

optimized version that also requires a full restoration. The graph demonstrates that

the optimizations in Section 5 increase the availability. The graph also shows that,

even without lazy restoration, SpotCheck’s unavailability is below 0.25% in all cases,

or an availability of 99.75%.

However, we see that using lazy restore brings SpotCheck’s unavailability close to

that of live migration. Since the m3.medium spot prices over our six month period are

highly stable, the 1P-M policy results in the highest availability of 99.9989%, as well

as the lowest cost from above. This level of availability is roughly 10× that of directly

using spot servers, which, as Figure 3.6(a) shows, have an availability between 90%

and 99%. The other policies exhibit slightly lower availability ranging from 99.91% for

2P-ML to 99.8% for 4P-ED. In addition to availability, performance degradation is also

important. Figure 3.13 plots the percentage of time over the six month period a nested
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Figure 3.12: Unavailability for live migration and SpotCheck (with and without
optimizations and lazy restore).

VM experiences performance degradation due to a migration and restoration. The

graph shows that, while SpotCheck with lazy restoration has the most availability, it

has the longest period of performance degradation. However, for the single pool 1P-M

policy, the percentage of time the nested VM operates under degraded performance

is only 0.02%, while the maximum length of performance degradation (for 4P-ED)

is only 0.25%. For perspective, over a six month period, SpotCheck using the 1P-M

policy has only 2.85 combined minutes of degraded performance due to migrations

and restorations.

Result: SpotCheck achieves nearly 5× savings compared to using an equivalent on-

demand server from an IaaS platform, while providing 99.9989% availability with

migration-related performance degradation only 0.02% of the time.

The cost-risk tradeoff between choosing a single pool versus two pools versus four

pools is not obvious. While, in the experiments above, 1P-M provides the lowest cost

and the highest availability, the risk of SpotCheck having to concurrently migrate all

nested VMs at one time is high, since all VMs mapped to a backup server are from a

single pool. For the six month period we chose, the spot price in the m3.medium pool

rarely rises above the on-demand price, which triggers the migrations and accounts for

its high availability. The other policies mitigate this risk by increasing the number of
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Figure 3.13: Performance degradation during migration.

pools by distributing the VMs across these pools. Since the price spikes in these pools

are not correlated, the risk of losing all VMs at once is much lower. Table 3.5 shows the

probability of concurrent revocations of various sizes as a factor of the total number of

VMs N . We note that the probability of all N VMs migrating in a single pool scenario

is higher compared to the two-pool scenario and nearly non-existent in the case of

the four-pool policy. Also, by distributing VMs across pools, SpotCheck increases the

overall frequency of migration, but reduces the number of mass migrations.

Result: Distributing nested VMs mapped to each backup server across pools enables

SpotCheck to lower the risk of large concurrent migrations. For example, comparing

1P-M to 4P-ED, the average VM cost in 4P-ED increases by $0.002 and the availability

reduces by 0.15%, but the approach avoids all mass revocations.

Policy Comparison. Our results demonstrate that each of SpotCheck’s policies

provide similar cost savings (Figure 3.10) and availability (Figure 3.12). Performance

degradation is lowest for single-pool policy (1P-M), but negligible even for the worst-

performing policy (4P-ED as shown in Figure 3.13), while the four-pool policies

drastically reduce the risk of mass migration events (from Table 3.5).
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Figure 3.14: Two-level bidding reduces impact of revocation storms because only
half the servers are affected. As the high-bid is increased, the percentage of storms
mitigated increases upto a limit, and so does the cost (compared to single-level
bidding).

3.7.3 Comparison of Risk Mitigation Policies

Two-level Bidding: To evaluate the impact of two-level bidding, we use pick two

bids and observe the impact on the revocations and the expected cost. For two-level

bidding, the low-bid is the on-demand price. Thus we keep the low-bid equal to the

on-demand price and vary the high-bid. We are interested in comparing with the

single-level bidding policy, and keep all parameters such as the workload and other

policies constant. The impact of two-level bidding is shown in Figure 3.14, which shows

the decrease in revocation storms and increase in cost vs. the high-bid. As the high-bid

increases, the fraction of revocation storms which are mitigated (only low-bid servers

affected) increases upto a limit, after which it starts to flatten out. Correspondingly,

the cost also increases because of the higher bids. For the m1.2xlarge instance, the

two-level bidding strategy can mitigate almost 60% of revocation storms with a 20%

increase in cost. That is, whenever a revocation event occurs, it will only affect half

of the servers 60% of the time. Thus, two-level bidding can be an effective strategy to

increase the number of effective pools and mitigate revocation storms.

Backup Selection: The backup server selection policies determine the load on the

backup server during revocations, for which we measure the number of concurrent

revocations faced by each backup server. During a revocation, the backup server
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Num. Spot Pools Reduction in concurrent revocations
1 Pool 2%
2 Pool 13.7%
4 Pool 18.3%

Table 3.3: Reduction in max number of concurrent revocations with the online greedy
backup server selection, when compared to round-robin.

is faced with increased checkpointing frequency and must provide pages to the lazy

restoration process. An overloaded backup server servicing a large number of lazy

restorations is detrimental to smooth migrations. Accordingly, we compare the different

backup selection policies in terms of the number of concurrent revocations in Table 3.3.

For different pool management policies, the impact of backup selection varies, because

the number of pools determines the “spread” of VMs. We compare the online-greedy

policy with the default round-robin policy. When using a single pool, there is a slight

reduction in the number of concurrent revocations with the online-greedy policy (2%),

whereas the reduction is 18% with 4 pools. Thus, the online-greedy backup selection

policy reduces the concurrent revocation load on the backup servers.

Hot spares: Hot spares are readily available, already running on-demand servers

used to migrate VMs upon a revocation. Hot spares reduce the downtime during

migration, but incur an additional cost, which is shown in Table 3.4. For different

policies, the number of simultaneous revocations (size of revocation storm) affects

the hot spare cost, and is lower when the number of markets is larger, and also when

two-level bidding is employed. With a single pool, having 10% servers as hot spares

results in a 50% increase in expected cost, whereas the overhead of hot spares is only

15% when using 2 pools and 2-level bidding.

VPC: The cost of running in the private cloud mode is higher than the default shared

mode of operation because the backup server cost is not shared by a larger number of

VMs. The cost of running VMs in the private cloud mode is shown in Figure 3.15.

As the private cluster size increases, the cost decreases because the multiplexing of
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Policy Price Increase
1 Pool 50%
2 Pool 25%

1 Pool 2-level bidding 30%
2 Pool 2-level bidding 15%

Table 3.4: Percentage increase in cost due to hot spares
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Figure 3.15: Cost of running in private cloud mode for different sizes.

backup servers increases. SpotCheck is able to select smaller backup servers for smaller

number of VMs, and cost of running 5 VMs is 40% higher per VM when compared to

the default shared-everything mode.

3.8 Related Work

Designing Derivative Clouds. Prior work on interclouds [63] and super-

clouds [213, 133] propose managing resources across multiple IaaS platforms by

using nested virtualization [214, 60, 233] to provide a common homogeneous platform.

While SpotCheck also leverages nested virtualization, it focuses on exploiting it to

transparently reduce the cost and manage the risk of using revocable spot servers

on behalf of a large customer base. Our current prototype does not support storage

migration or inter-cloud operation; these functions are the subject of future work.

Cloud Service Brokers [164], such as RightScale [15], offer tools that aid users in

aggregating and integrating resources from multiple IaaS platforms, but without

abstracting the underlying resources like SpotCheck. PiCloud [14] abstracts spot and
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Max. num. of concurrent revocations
N/4 N/2 3N/4 N

1-Pool 0 0 0 1.74×10−4

2-Pool 0 3.75×10−3 0 2.25×10−5

4-Pool 7.4×10−3 7.71×10−5 1.92×10−5 0

Table 3.5: Probability of the maximum number of concurrent revocations for different
pools. N is the number of VMs.

on-demand servers rented from IaaS platforms by exposing an interface to consumers

that allows them to submit batch jobs. Derivative clouds can also offer containers

instead of nested VMs, and [151, 165] look at the problem of resource management

in this context. In contrast, SpotCheck provides the abstraction of a complete IaaS

platform that supports any application. Finally, SpotCheck builds on a long history of

research in market-based resource allocation [64], which envisions systems with a fluid

mapping of software to hardware that enable computation and data to flow wherever

prices are lowest.

Spot Market Bidding Policies. Prior work on optimizing bidding policies for EC2

spot instances are either based on analyses of spot price history [119, 219, 61] or include

varying assumptions about application workload, e.g., job lengths, deadlines [231, 194,

227, 198, 144], which primarily focus on batch applications. By contrast, SpotCheck’s

bidding strategy focuses on reducing the probability of mass revocations due to spot

price spikes, which, as we discuss, may significantly degrade nested VM performance

in SpotCheck.

Virtualization Mechanisms. Prior work handles the sudden revocation of spot

servers either by checkpointing application state at coarse intervals [203, 125, 225] or

eliminating the use of local storage [75, 136]. In some cases, application modifications

are necessary to eliminate the use of local storage for storing intermediate state,

e.g., MapReduce [75, 136]. SpotCheck adapts a recently proposed bounded-time

VM migration mechanism [189, 190],which is based on Remus [81] and similar to

microcheckpointing [9], to aggressively checkpoint memory state and migrate nested
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VMs away from spot servers upon revocation. Our lazy restore technique is similar to

migration mechanisms, such as post-copy live migration [114] and SnowFlock [132].

3.9 SpotCheck Summary

SpotCheck is a derivative IaaS cloud that offers low-cost, high-availability servers

using cheap but volatile servers from a native IaaS platforms. To do this, SpotCheck

must simultaneously ensure high availability, reduce the risk of mass server revo-

cations, maintain high performance for applications, and keep its costs down. We

design SpotCheck to balance these competing goals. By combining recently proposed

virtualization techniques, SpotCheck is able to provide more than four 9’s availability

to its customers, which is more than 10× that provided by the native spot servers. At

the same time, SpotCheck’s VMs cost nearly 5× less than the equivalent on-demand

servers
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CHAPTER 4

BATCH-INTERACTIVE DATA-INTENSIVE

PROCESSING ON TRANSIENT SERVERS

The previous chapter tackled the problem of running interactive applications using

nested virtualization and bounded-time live migration, resulting in low application

downtime.

In this chapter, we look at the problem of running distributed data processing

workloads on transient servers with low performance overheads and cost. In particular,

we look at an emerging class of workloads, which we call Batch-Interactive Data-

Intensive (BIDI), that are becoming increasingly important for data analytics. BIDI

workloads require large sets of servers to cache massive datasets in memory to enable

low latency operation. We illustrate the challenges of executing BIDI workloads

on transient servers, and address them in our system called Flint, which includes

automated checkpointing and server selection policies.

We evaluate a prototype of Flint using EC2 spot instances, and show that it yields

cost savings of up to 90% compared to using on-demand servers, while increasing

running time by < 2%.

4.1 Motivation

The distributed data-parallel processing frameworks, such as MapReduce [83],

that now dominate cloud platforms, have historically executed their workload as

non-interactive batch jobs. Since these frameworks were intended to operate at large

scales, they were also designed from the outset to handle server failures by replicating
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their input and output data in a distributed file system. As a result, they required

few modifications to run efficiently on transient servers [75, 136], where revocations

are akin to failures. However, recently, there has been an increasing interest in

better supporting interactivity in data-parallel frameworks. Interactivity enables data

exploration, stream processing, and data visualization through ad-hoc queries. These

new batch-interactive frameworks, including Spark [230] and Naiad [154], execute

both batch and interactive applications and effectively enable a new class of workload,

which we call Batch-Interactive Data-Intensive (BIDI).

BIDI workloads differ from the Online Data-Intensive (OLDI) workloads [146]

processed by web applications in that the magnitude and variance of their acceptable

response latency is much larger. For example, to avoid frustrating users, web appli-

cations often target strict latency bounds for rendering and serving each web page,

typically on the order of 100 milliseconds with low variance. In contrast, users interac-

tively executing a BIDI workload often have much more relaxed latency expectations,

in part, because the amount of data each operation acts on (and the time it takes

to complete) varies widely. Thus, users may expect query latency to vary anywhere

between a few seconds to a few minutes. We argue that BIDI workloads’ relaxed

performance requirements still make them amenable to transient servers. Further, the

low price of transient servers is particularly attractive to these new frameworks, since

they require large sets of servers to cache massive datasets in memory.

Applications can employ fault-tolerance mechanisms, such as checkpointing and

replication, to mitigate the impact of server revocations without rerunning the ap-

plication. Checkpointing intermediate state enables restarting an application on a

new server, and requires only partial recomputation from the last checkpoint. Of

course, each checkpoint introduces an overhead proportional to the size of the local

disk and memory state. Likewise, replicating the computation across multiple tran-

sient servers enables the application to continue execution if a subset of servers are
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revoked. However, replication is only feasible if the cost of renting multiple transient

servers is less than the cost of an on-demand server. Prior work has only applied such

fault-tolerance mechanisms at the systems level, e.g., using virtual machines (VMs) or

containers [197]. While a systems-level approach is transparent to applications, we

argue that an application-aware approach is preferable for distributed BIDI workloads,

as it can i) improve efficiency by adapting the fault-tolerance policy, e.g., the checkpoint

frequency and the subset of state to checkpoint, to each application’s characteristics

and ii) avoid implementing complex distributed snapshotting [72] schemes.

Since BIDI workloads support interactivity and low latency by caching large

datasets in memory, revocations may result in a significant loss of volatile in-memory

state. To handle such losses, batch-interactive frameworks natively embed fault-

tolerance mechanisms into their programming model. For example, Naiad periodically

checkpoints the in-memory state of each vertex, and automatically restores from these

checkpoints on failure [154]. Similarly, Spark enables programmers to explicitly check-

point distributed in-memory datasets—if no checkpoints exist, Spark automatically

recomputes in-memory data lost due to server failures from its source data on disk [230].

Importantly, since failures are rare, these systems do not exercise sophisticated control

over these fault-tolerance mechanisms. However, an application-aware approach can

leverage these existing mechanisms to implement automated policies to optimize BIDI

workloads for transient servers.

Since cloud providers offer many different types of transient servers with different

price and availability characteristics, selecting the set of transient servers that best

balances the per unit-time price of resources, the risk of revocation, and the overhead

of fault-tolerance presents a complex problem. To address the problem, we design

Flint, a batch-interactive framework based on Spark tailored to run on, and exploits

the characteristics of, transient servers. Specifically, Flint includes automated fault-

tolerance and server selection policies to optimize the cost and performance of executing
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BIDI workloads on transient servers. Our hypothesis is that Flint’s application-level

approach can significantly decrease the cost of running Spark programs by using

transient servers efficiently to maintain high performance—near that of using on-

demand servers. In evaluating our hypothesis, we make the following contributions:

Checkpointing Policies. Flint defines automated checkpointing policies to bound

the time spent recomputing lost in-memory data after a revocation. Flint extends prior

work on optimal checkpointing for single node batch jobs in the presence of failures

to a BIDI programming model that decomposes program actions into collections of

fine-grained parallel tasks. Flint dynamically adapts its checkpointing policy based on

transient server characteristics and the characteristics of each distributed in-memory

dataset.

Transient Server Selection Policies. Flint defines server selection policies for

batch and interactive workloads. For batch workloads, the policy selects transient

servers to minimize expected running time and cost, while considering both the current

price of resources and their probability of revocation. In contrast, for interactive

workloads, the policy selects transient servers to provide more consistent performance

by reducing the likelihood of excessively long running times that frustrate users (for a

small increase in cost).

Implementation and Evaluation. We implement Flint on top of Spark and Mesos,

and deploy it on spot instances on EC2. We evaluate its cost and performance benefits

for multiple BIDI-style workloads relative to running unmodified Spark on on-demand

and spot instances using existing systems-level checkpointing and server selection

policies. Our results show that compared to unmodified Spark, Flint yields cost

savings of up to 90% compared to on-demand instances and 50% when compared to

spot instances, while increasing running time by < 2%. For interactive workloads,

Flint achieves 10× lower response times when compared to running unmodified Spark

on spot instances.
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4.2 Spark Background

We use Spark [230] as a representative distributed data-parallel data processing

framework. Spark is a general-purpose data-parallel processing engine that supports a

rich set of data transformation primitives. Spark supports both long-running “big-data”

batch jobs, as well as interactive data processing. Interactive jobs may come in several

varieties. For example, users can used a Read-Eval-Print-Loop (REPL) for interactive

and exploratory analysis. As another example, Spark can be employed as a database

engine with SQL queries executed via a translation layer such as Spark-SQL [51].

Spark’s growing popularity is due to its performance and scalability, as well as the

ease with which many tasks can be implemented as Spark programs. For example,

Spark supports batch and MapReduce jobs, streaming jobs [229], SQL queries [51],

graph processing [218], and machine learning [147] tasks on a single platform with

high performance.

Spark programs access APIs that operate on and control special distributed in-

memory datasets called Resilient Distributed Datasets (RDDs). Spark divides an

RDD into partitions, which are stored in memory on individual servers. Since RDDs

reside in volatile memory, a server failure results in the loss of any RDD partitions

stored on it. To handle such failures, Spark automatically recomputes lost partitions

from the set of operations that created it. To facilitate efficient recomputation, Spark

restricts the set of operations, called transformations, that create RDDs, and explicitly

records these operations. In particular, each RDD is an immutable read-only data

structure created either from data in stable storage, or through a transformation on

an existing RDD.

Spark records RDD transformations in a lineage graph, which is a directed acyclic

graph (DAG) where each vertex is an RDD partition and each incoming edge is the

transformation that created the RDD. Importantly, transformations are coarse-grained

in that they apply the same operation to each of an RDD’s partitions in parallel.
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Figure 4.1: The loss of RDD-b’s partition #2 results in recomputation using lineage
information. Partitions may be computed in parallel on different nodes.

Thus, Spark may use the lineage graph to recompute any individual RDD partition

lost due to a server failure from its youngest ancestor resident in memory, or, in

the worst case, from its origin data on disk. In addition, Spark allows programmers

to save, i.e., checkpoint, RDDs, including all of their partitions, to disk, e.g., in a

distributed file system, such as HDFS [188]. In this case, rather than recompute a

lost RDD partition from its origin data (or its youngest ancestor resident in memory),

as depicted in Figure 4.1a, Spark may recompute it from its youngest saved ancestor,

as depicted in Figure 4.1b. Importantly, Spark provides no policies for checkpointing,

and leaves checkpointing decisions to the programmer. Flint provides an automated

checkpointing policy that we discuss in the subsequent sections.

Spark’s RDD abstraction is versatile and has been used for long-running “big-data”

batch jobs, as well as interactive data processing. For example, users can used a

Read-Eval-Print-Loop (REPL) for interactive and exploratory analysis. As another

example, Spark can be employed as a database engine with SQL queries executed

via a translation layer such as Spark-SQL. Both examples require the Spark cluster

to remain available for long periods of time: an exploratory REPL analysis may

take several hours, and a database engine must be continuously available. Hence, if

transient servers are used as cluster nodes, there is a risk of losing in-memory state,

requiring significant overhead to regenerate and thus severely degrading interactivity.
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Flint includes automated policies to mitigate and respond to resources losses due to

transient server revocations.

4.3 Flint Overview

Flint is an application-aware framework for executing BIDI jobs on transient cloud

servers. Flint’s current design supports Spark-based BIDI jobs, implements application-

aware, i.e., Spark-aware, policies for selecting and provisioning which transient servers

to run on (based on their price and revocation rate characteristics), and determines

when and how frequently to checkpoint application state, e.g., RDDs, based on the

expected transient server revocation rates. To ensure transparency to end-users, Flint

runs unmodified Spark programs. While Spark exposes a checkpointing interface for

RDDs (via the rdd.checkpoint() operation), it requires the programmer to explicitly

use it in Spark programs. Flint automates the use of Spark’s RDD checkpointing

mechanism by intelligently determining what RDDs to checkpoint and how often to

do so.

Flint selects transient servers to minimize the overall cost of running a BIDI job

that takes into account the average per-hour price of each transient server and the

overhead of recomputing lost work based on the revocation rate. Since Flint’s objective

is to achieve performance near that of on-demand servers, on a revocation, it always

requests and provisions a new transient server to maintain the original cluster size.

As noted earlier, Spark exposes an interface to checkpoint RDD state to disk,

but leaves it to the programmer to determine what RDDs to checkpoint, when, and

how frequently. Flint exploits this flexibility to implement an intelligent, automated

checkpointing strategy tailored for transient servers. While EC2 provides a two minute

revocation warning, it is not sufficient to complete Spark checkpoints of arbitrary

size and restarting from incomplete checkpoints is not safe. Google provides an even
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Figure 4.2: Empirically obtained availability CDFs and MTTFs of transient servers
on Amazon EC2 and Google GCE.

smaller warning of only 30 seconds. Thus, Flint does periodic checkpointing in advance

so there is always some checkpoint of previous RDDs.

In general, the overhead of recomputing lost work due to a transient server

revocation poses a challenging problem, since it requires Flint to balance the overhead

of checkpointing RDDs with the time required to recompute them. At low revocation

rates, checkpointing too frequently increases running time by introducing unnecessary

checkpointing overhead, while similarly, at high revocation rates, checkpointing too

rarely increases running time by causing significant recomputation. In addition, for

interactive BIDI jobs, Flint must consider not only the overall cost of running a

program to completion, but also the latency of completing each action within the

program. For example, an interactive program might trade a small increase in overall

cost (and running time) for a more consistent latency per action. Because of the

performance and cost requirements of batch and interactive applications differ, we

propose separate policies for batch and for interactive Spark applications in the

subsequent sections.
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4.4 Flint Design

Flint has two main components: a checkpointing policy implemented as part of the

Spark runtime, and a per-job server selection policy. Flint’s transient server selection

policy runs as a separate node manager that monitors transient server characteristics,

such as the recent spot price history for different instance types on EC2, to initially

select transient servers for the cluster and to replace revoked transient servers while

the program is running. We first discuss Flint’s checkpointing and server selection

policy for batch applications, and then extend it to support interactive applications.

4.4.1 Batch Applications

For batch BIDI jobs, Flint’s goal is to execute batch-oriented Spark programs with

near the performance of on-demand servers, but at a cost near that of transient servers.

In this case, Flint provisions a homogeneous cluster of transient servers for each user.

Since all transient servers in the cluster are of the same type, and the same bid price

is used to provision them, it follows that when the market-driven spot price rises

above this bid price, all servers in the cluster will be simultaneously revoked. Flint’s

checkpointing policy, discussed below, is derived from this insight and is specifically

designed to handle the case where all servers of a cluster are concurrently revoked. We

then outline the optimal server selection policy for batch applications, which leverages

our assumption above that all transient servers are homogeneous.

4.4.1.1 Checkpointing Policy

Running a batch-oriented Spark program on a homogeneous cluster of transient

servers, where a revocation causes the entire cluster to be lost simultaneously, is

analogous to a single-node batch job that experiences a node failure—in both cases

the job loses all of its compute resources. We adapt a well-known result from the fault

tolerance literature [82] for deriving the optimal checkpointing interval for single node

batch jobs for a given Mean-Time-to-Failure (MTTF). This optimal checkpointing
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interval minimizes the running time of a batch application when considering the rate of

failures (or revocations), the overhead of checkpointing, and overhead of recomputation.

Note that minimizing a batch application’s running time also minimizes its cost on

cloud platforms, since cost is structured as a price per unit time of use.

For a single-node batch job, running on a server with a given MTTF and a time

to checkpoint δ, a first-order approximation of the optimal checkpointing interval is

τopt ∼
√

2 · δ ·MTTF [82]. This approximation assumes the time to write the checkpoint

is constant at all intervals and δ ≪ MTTF ; if the MTTF is smaller than δ then there

is no guarantee the job will finish, as it will continue to fail before completing each

checkpoint and not make forward progress. In Flint’s case, the δ ≪ MTTF constraint

holds, since δ is on the order of minutes (to write RDD partitions of varying sizes to

remote disk) and the MTTF for transient servers in EC2 and GCE is on the order of

hours (see Figure 4.2). We also assume that the failures occur according to a poisson

process (inter-arrival times between revocations are exponentially distributed).

Note that in the single-node case, the optimal checkpointing interval depends

only on the MTTF and the checkpointing time δ, and not the running time of the

job. In Flint’s case, we can derive the expected MTTF of each type of transient

servers on both EC2 and GCE. Since Amazon EC2 revokes spot instances whenever

their spot price rises above a user’s bid price, we can use historical prices for each

instance type to estimate their MTTF for a given bid price. Amazon provides three

months of price history for each spot market, and longer traces are available from

third-party repositories [119]. While GCE does not expose a similar type of indirect

information about revocation rates, we know that GCE always revokes a server within

24 hours of launching it. In addition, users may estimate the MTTF for a small cost by

issuing requests for different server types and recording their time to revocation. We

performed such measurements, and found that currently in GCE the MTTF is near

24 hours (see Figure 4.2). In contrast, the MTTF varies much more widely between
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server types in EC2 due its dynamic pricing. For example, with a bid price equal to

the on-demand price for the equivalent server, the MTTF ranges from 18–700 hours.

In addition to deriving the MTTF, Flint must also determine what in-memory

state to checkpoint during each interval τ , which dictates the checkpointing time δ.

Flint’s checkpoint policy for batch applications is as follows.

Policy 1: Every τ time units, checkpoint RDDs that are at the current frontier of the

program’s lineage graph.

Thus, rather than checkpoint all state in the RDD cache on each server, which

spans both memory and disk, every τ time units, Flint only checkpoints each new

RDD at the frontier of the lineage graph every interval. The frontier of the lineage

graph contains the most recent RDDs for which all partitions have been computed,

and whose dependencies have not been fully generated.

Thus, in the lineage graph, the frontier includes all RDDs that have no descendants,

i.e., the current set of sink nodes in the graph. Note that although the complete lineage

graph is not known a priori since it generates new RDDs and evolves dynamically as

the program executes, the lineage graph’s frontier is always well-known. Specifically,

Flint signals that a checkpoint is due every interval τ . After signaling, each new RDD

generated at the frontier of its lineage graph is marked for checkpointing. Note that

RDDs that are already (or are in the process of) being computed have no guarantee of

being in memory, and may require recomputation. Spark maintains a cache of RDD

partitions on each server that swaps RDD partitions to and from disk based on their

usage, and may delete RDD partitions if the cache becomes full.

Once each RDD at the frontier of each lineage graph has been checkpointed, Flint

will not checkpoint any subsequent RDDs that are derived from them in the lineage

graph until the next interval τ . We assume here that the computation time for RDDs

does not exceed the checkpointing interval τ . Since most RDD transformations, such

as map and filter, have narrow dependencies, the computation time for any single
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RDD is brief. However, we treat shuffle actions with wide dependencies as a special

case, since each RDD partition that results from a shuffle depends on all partitions in

the dependent RDD, resulting in a longer computation time. Because shuffles involve a

larger amount of recomputation due to their wide dependencies, we checkpoint shuffle

RDDs more frequently at an interval of τ divided by the number of RDD partitions

that are being shuffled from. If server revocations occur during a shuffle operation

(which act as barriers), then it is possible that the other nodes might end up waiting

until the shuffle data is recomputed, as in a bulk synchronous parallel system. In all

other cases, the recomputation operation does not cause waiting.

Finally, unlike in the optimal formulation above, the number of RDDs and the time

required to write them to disk, i.e., the checkpointing time, is not static, but dictated

by each program. Thus, Flint maintains a current estimate of the checkpointing time

δ based on the time it takes to write all RDD partitions, which have a well-known size,

in parallel to the distributed file system. As δ changes, Flint dynamically updates the

checkpointing interval τ as the application executes. Although an accurate δ estimate

improves the accuracy of the checkpoint interval τ , we note that τ is proportional to

the square root of δ, which reduces estimation errors. More importantly, since we only

checkpoint when RDDs are generated and not at arbitrary times, the system is not

particularly sensitive to an accurate estimation of τ .

Flint supports general Spark programs with arbitrary characteristics. Thus, Flint’s

dynamic checkpointing interval automatically adapts to the characteristics of the

program, checkpointing more or less frequently as the overhead due to checkpointing

falls and rises, respectively. Note that, since RDDs are read-only data structures, the

checkpoint operation in Spark is asynchronous and does not strictly block the execution

of other tasks. However, checkpointing tasks consume CPU and I/O resources that

proportionally degrade the performance of other tasks run as part of a Spark program.
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4.4.1.2 Server Selection Policy

Based on the checkpointing policy above, we can compute the expected percentage

increase in running time for a Spark program when running on transient servers with

different price and revocation rate characteristics. Our goal is to choose a single type

of transient server that has the least increase in running time (and thus, the least cost)

to provision a homogenous cluster to execute the program. Specifically, in the case

of spot instances, for a market k with an MTTFk based on the revocation rate at a

certain bid price over the recent spot price history, the overall expected running time

E[Tk] for the program with a running time of T without any revocations is as follows.

E[Tk] = T +
T

τ
∗ δ +

T

MTTFk

(

τ

2
+ rd

)

(4.1)

The first term is the running time of the program without any revocations, the

second term is the additional overhead over the running time of the program due to

checkpointing, and the third term is the additional overhead over the running time

T due to provisioning new replacement servers (rd) and recomputing the lost work,

assuming that revocations are uniformly distributed over the checkpointing interval τ .

The delay rd for replacing a server is a constant—for EC2, it is typically two minutes.

Factoring out T yields, E[Tk] = T (1 + 1
τ

∗ δ + 1
MT T Fk

(τ
2

+ rd)). Thus, we only need to

know δ in addition to MTTFk to compute the percentage increase in running time on

a market k. We conservatively estimate an initial δ by assuming our Spark cluster is

properly sized for the application, and derive δ assuming that all memory is in use by

active RDD partitions that must be checkpointed. We record the computation time

for each RDD partition, and assume that the recomputation time for a partition will

be the same as its initial computation time, given the same resources available. The

immutable nature of RDDs, the lack of external state dependencies, and the static

RDD dependency graph means that we can safely make this assumption.
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Given E[Tk] above, if the average per-unit price of each market k is pk, we can

derive the expected cost simply as :

E[Ck] = E[Tk]∗pk = T (1+
1
τ

∗ δ +
1

MTTFk

∗ τ

2
)∗pk (4.2)

Since T is a constant, minimizing E[Ck] requires choosing the market where the

product of pk and (1+ 1
τ

∗δ + 1
MT T Fk

∗ τ
2
) is minimized. To do so, Flint simply evaluates

this product across all potential spot markets, and provisions all servers in the cluster

from the market that yields the minimum overall cost. Of course, for each market,

a different bid price yields a different MTTFk and pk. By default, Flint bids the

equivalent on-demand price for all spot instances, as spot instances are cheaper if the

spot price is less than the on-demand price. Note that we include on-demand instances

as a spot market with an infinite MTTF (where checkpointing is not required). If the

average price pk exceeds the on-demand price, Flint transitions to using on-demand

instances.

Note that, selecting servers from any other market than the one that yields the

minimum overall cost will increase the overall cost for executing a batch application.

Since batch applications are delay tolerant and are concerned with overall running

time and cost, they can tolerate simultaneous revocations of all servers—the job can

resume from a prior checkpoint. This insight enables us to model parallel Spark

programs similarly to single-node batch applications. The performance characteristics

under different number of simultaneous failures are shown in Section 4.6.3.

Restoration Policy. Whenever a revocation event occurs, Flint uses the same

process as above to immediately select a new market to resume execution. When

selecting a new market, Flint does not consider the market that experienced the

revocation event, since the instantaneous price of that market has risen and the servers

are not available. In addition, while Flint bases its selection on the average market

price over a recent window, it does not consider markets with an instantaneous price
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Figure 4.3: Simultaneous server revocations substantially increase running time if
Spark runs out of available memory.

that is not within a threshold percentage, e.g., 10%, of the average market price. In

the worst case, where prices across all markets are high, Flint resumes execution on

on-demand servers, which are non-revocable.

4.4.2 Interactive Applications

While large simultaneous revocations do not degrade the running time of batch

applications (relative to the same number of individual revocations), they do degrade

the response latency of interactive BIDI jobs. Large simultaneous server revocations

result in the need to concurrently recompute many RDD partitions, creating contention

for resources on the surviving servers, which must multiplex their current work with

recomputing lost RDD partitions. In the worst case, if the RDD working set is

larger than the available memory on the remaining servers, Spark must swap RDD

partitions between memory and disk as necessary to execute each task. Figure 4.3

shows the impact on performance under memory pressure due to large revocations.

Such swapping increases the latency for interactive BIDI jobs.

Thus, applying the above policies designed for batch BIDI jobs to interactive

ones will result in highly variable response latencies. Hence, rather than minimizing
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the expected cost and running time on transient servers, interactive BIDI jobs also

value minimizing the variance between the maximum latency and the average latency

of actions to provide more consistent performance, as opposed to excessively long

latencies for some actions and short latencies for others. We can reduce this variance

in latency by constructing a heterogeneous cluster for each interactive BIDI job—by

mixing together different types of transient servers, e.g., from different spot markets,

in the same cluster. Assuming that the demand and supply dynamics, and hence spot

prices, for different transient server types are uncorrelated, a price spike in one market

is independent of others. Hence, the revocation of one type of transient server due to

a price increase in its market is independent of others and the cluster will only lose

a fraction of the servers on each revocation event. In this case, the Spark program

will continue execution on the remaining nodes, albeit more slowly, and can resume

normal execution after Flint restores the revoked nodes to the cluster. We describe

this policy as follows.

Policy 2: Reduce risk through diversification—choose transient servers of different

types with uncorrelated prices to reduce the risk of simultaneous revocations.

Figure 4.4 shows that revocations on many (but not all) spot markets in EC2 are

in fact independent and uncorrelated. However, as discussed above, selecting any

market other than the one that minimizes the overall cost will increase the overall

cost and running time of the application. Thus, even for interactive BIDI jobs, it is

important to intelligently mix transient servers from different markets to reduce the

variance in latency without significantly increasing the overall cost and running time

of the application.

4.4.2.1 Checkpointing Policy

Before discussing our selection policy for interactive applications, we must first

determine the appropriate checkpointing policy. Of course, we could also reduce our
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variance in latency by checkpointing more frequently, and thus enabling recovery from

each large revocation event by simply reading in the checkpointed state. However,

checkpointing too frequently degrades the average case performance. Instead, we

extend the same checkpointing policy as above, assuming that we equally divide

our cluster of size N across transient servers selected from m markets. In this case,

we must estimate the aggregate MTTF for the heterogeneous cluster by computing

the harmonic mean of MTTF1 · · ·MTTFm of each individual server type within the

cluster.

MTTF =
1

1
MT T F1

+ · · ·+ 1
MT T Fm

(4.3)

Note that the aggregate MTTF will be smaller than the MTTF for each individual

market, in that there will be more revocation events, but each one will only result in

the revocation of N/m servers. Thus, our checkpointing interval above will decrease,

causing more frequent checkpoints. However, the size of each revocation event will

also decrease, compared to using a single market. If we assume the overhead of

recomputation for a Spark program is linear in the number of revoked servers, then

when using more markets, the overhead of recomputation due revocation events

decreases, while the number of revocation events increases. This decrease in the

recomputation overhead for each event tends to balance out the increased number of

revocation events due to the lower MTTF, although we leave a formal proof of this

property to future work.

4.4.2.2 Server Selection

To intelligently provision a heterogeneous cluster, we first construct a subset L

of mutually uncorrelated markets among all the possible markets. We construct L

for two reasons. First, published price histories show that revocations usually do not

happen simultaneously in different spot markets (in Figure 4.4, darker squares indicate
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Figure 4.4: Publicly available EC2 spot price traces show that prices (and hence
revocations) are pairwise uncorrelated (shown by darker squares) for most pairs of
markets.

less correlated failures between any two markets). This observation confirms the

feasibility of diversifying across markets to reduce concurrent revocation risk. Second,

since there are potentially many markets to choose from—over 1000 markets in EC2’s

US-east region alone—constructing a smaller set of L markets prunes the search space.

We greedily construct L by adding the most pairwise uncorrelated markets to L.

As before, we do not consider markets where the instantaneous risk of revocation

is high, i.e., the spot price is not within some threshold of the average spot price.

We then sort these candidate markets in order of their expected cost using the same

approach as above for batch applications. After sorting the candidate markets, we

greedily add markets to our set of selected markets S in order, as follows.

We first select the market that yields the minimum expected cost and then compute

the expected variance in its running time based on the market’s revocation rate.

We compute the variance in the expected running time σ2 = E[T (S) − E[T (S)]]2 =

E[T (S)2] − E[T (S)]2 for a set of markets S, where servers are equally distributed

among the markets in S. In Equation 4.1 we have shown the scenario for a single

market k; extending it to m = |S| markets yields:
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With multiple independent markets, when one market fails, only 1/m fraction of

the servers are lost (because they are equally distributed among all markets). Note

that the MTTF for multiple markets above is given by Equation 4.3.

We then select the market with the next lowest cost, and equally divide our servers

between the two markets. For the mixed cluster, we again compute the expected

variance in running time. If the expected variance is higher than the single market,

we stop and do not add the second market; if the expected variance is lower, we

evaluate the expected variance from dividing the servers among the three lowest cost

markets. We continue adding markets until adding an additional market does not

decrease the variance in running time. We also stop if the expected cost ever rises

above the expected cost of running the application on on-demand servers. As shown

in our evaluation, the result of this server selection algorithm is a mix of servers from

different markets that decrease the variance in running time, providing consistent

response latency, without significantly increasing the cost relative to the optimal cost

in the batch case.

Restoration Policy. In addition to determining the initial mix of servers from

different markets for the cluster, Flint must also replace a set of revoked instances

from a particular market with instances from another market. To do so, Flint simply

replaces these revoked instances with instances from the lowest-cost unused market in

set L. As above, Flint does not consider markets with instantaneous prices that are

significantly higher than their average price.

Bidding Policy. Flint uses a simple bidding policy to place bids for each spot

server—we bid the on-demand price. Bidding in the current EC2 spot market has only

a negligible effect on the average cost and the MTTF—these metrics stay the same for

a very large range of bids. In Figure 4.11, which shows the expected costs for three
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instance types, we can see that the range of bids for which the cost remains unaffected

is quite large. For example, bidding anywhere from 0.5 to 2× the on-demand price for

the m2.2xlarge instance type yields the same cost. For all three types shown in the

figure, the on-demand price is inside the wide range that yields the minimum price.

Our simple bidding policy is thus motivated by the insensitivity of expected cost and

MTTF on the bid [179], as well as a focus on systems mechanisms to handle spot

revocations which can work even in environments where no bidding mechanisms apply,

as in the case of GCE Preemptible Instances, which have a fixed price.

If market characteristics were to change, a modification to the simple bidding

strategy might be necessary. Since Amazon provides up to three months of price

history, the empirical relation between bids and the average price and MTTFs can be

used to select bids that will minimize the expected cost using Equation 4.2. A similar

approach can be found in [182, 179]. Lastly, we bid the same price for all the instances

in a given market. However, a more sophisticated policy could stratify the bids within

a market such that instances with different bid prices fail at different times. However,

stratifying bids is not currently effective, as price spikes in the current spot markets

are large and cause servers with a wide range of bids to all fail simultaneously [182].

Arbitrage. Flint reduces costs by using low-cost spot instances and spreads revocation

risks by exploiting the uncorrelated prices across different spot instance markets. A

concern is that neither of these characteristics of the spot markets might hold if

systems such as Flint gain in popularity and the demand for spot instances increases.

This increased demand might drive up market prices and volatility, causing the cost

savings of spot servers to vanish. However, we believe that as infrastructure clouds

continue to grow and add capacity, the surplus capacity (which is sold as spot servers)

would also grow, such that the increase in demand would be matched by an increase

in supply. Furthermore, systems like Flint only represent a small portion of users of

the spot market: other users and systems utilize spot instances in different ways and
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Figure 4.5: Flint architecture and system components.

have different spot instance demand characteristics. A more detailed analysis of the

second-order market effects and other “game-theoretic” analysis is outside the scope

of this paper, and we assume that the large numbers and sizes of the spot market will

absorb the effects of the arbitrage opportunities Flint exploits.

4.5 Flint Implementation

We implemented a Flint prototype based on Spark 1.3.1 in about 3000 lines of

Scala and Python. The prototype includes the policies for batch and interactive Spark

applications from the previous section. Users interact with Flint via the command-line

to submit, monitor, and interact with their Spark programs. Flint’s implementation

is split into two main components: a node manager that interfaces with Mesos and

EC2, and implements the server selection policy, as well as a fault-tolerance manager

embedded in Spark that implements the checkpointing policy (Figure 4.5). Our

implementation primarily integrates with EC2 and supports spot instances. However,

our approach is compatible with GCE, which offers transient servers at a fixed price

per unit time.

To implement the server selection policy, the node manager accepts user requests

for Spark clusters of size N to run their application, and selects the specific spot

market(s) to provision the servers. To implement the batch and interactive server

selection policy, the node manager monitors the real-time spot price in each EC2
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spot market and maintains each market’s historical average spot price and revocation

rate (and MTTF) over a recent time window, e.g., the past week. The node manager

acquires one or more servers in a particular market by placing a bid for them in the

spot market at the on-demand price via EC2’s REST API. Each Spark cluster in

Flint runs in its own Virtual Private Cloud (VPC) that is isolated from other users.

Flint launches the instances with its own customized disk image, e.g., an Amazon

Machine Image (AMI), which contains a pre-configured version of a Spark master and

worker. After the initial setup, Flint provides users with a web interface, as well as

SSH connectivity, to the master and worker nodes to monitor job progress and use

Spark interactively via the Spark shell.

Flint’s fault-tolerance manager is written as a core Spark component so it may

interact with Spark’s internal APIs for scheduling, RDD creation, and checkpointing.

The fault-tolerance manager monitors the set of RDDs at the frontier of the lineage

chain, checkpoints them to stable storage every interval τ , and updates δ and τ as new

RDDs are created. To compute τ , the fault-tolerance manager must interact with the

node manager to retrieve the MTTF of each server in the cluster. To implement the

checkpointing interval, the fault-tolerance manager maintains an internal timer for τ ,

and marks the first RDD in the queue from each active stage after the timer expires

for checkpointing. If Flint marks an RDD for checkpointing, it checkpoints each

individual partition of that RDD. To support automated checkpointing, we modify

Spark’s existing checkpointing implementation to enable fine-grained partition-level

checkpointing. In Flint, once a task finishes computing its partition, it notifies Spark’s

DAG scheduler, which then invokes the fault-tolerance manager to check if it has

marked the corresponding RDD for checkpointing. If so, it creates a new checkpointing

task, which handles the asynchronous checkpoint write operation.

Checkpoint Garbage Collection. We have also implemented a garbage collector for

checkpointed RDDs to reduce storage requirements. Checkpointing an RDD terminates
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its lineage graph and its ancestor RDDs are no longer “reachable.” Checkpoints for

these unreachable RDDs are redundant and thus periodically removed. Lastly, to

mitigate the impact of spot instance revocations, the node manager monitors the 120

second spot termination warning provided by EC2’s /spot/termination-time API.

If Flint detects a warning on any worker, it immediately triggers the market selection

on the node manager which selects and requests replacement instances. As part of

this notification, the fault-tolerance manager informs the node manager of the most

current values for δ and τ based on the collective size of the RDDs at the frontier of

the lineage chain. The node manager needs these values to execute its server selection

policy to replace revoked servers.

Checkpoint Storage. Flint stores all partition checkpoints that belong to a single

RDD inside the same directory on HDFS. On recovery, we first check if the partition

exists in the corresponding directory before any starting any RDD (re)computation.

We use Elastic Block Store (EBS) volumes and treat them as durable storage. Using

EBS instead of local, on-node storage has several advantages. Data on local disks is

lost upon revocation, and a revocation event can cause the data loss such that HDFS

cannot recover even using 3-way replication. In addition, the amount of local storage

in EC2 is limited, e.g., 10GB on most nodes. However, unlike local storage which

is free, there is an extra cost for EBS volumes which depends on their size and I/O

rate. Because we use EBS to only store checkpoints, which we frequently garbage

collect, the EBS disk size required is small. In addition, the I/O rate is limited as

Flint judiciously regulates checkpointing frequency. We use the two minute revocation

warning to pause all nodes, flush data, and cleanly unmount all EBS volumes. After

revocation, we first let HDFS recover the missing chunks. If that fails for any reason,

since the data on EBS volumes persists even after revocations, we copy all the data

from the EBS volumes to the newly launched instances [31].
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The SSD EBS volumes that Flint uses are currently charged $0.10 per GB per

month by Amazon. Because Flint provides Spark as a managed service, these EBS

volumes are reused among jobs, and the EBS costs are thus amortized. EBS volumes

required for storing Flint checkpoints cost about 1-2% of on-demand instances, adding

an overhead of about 10-20% to the final cost using spot instances. A more detailed

cost analysis and breakdown of storage is presented in the next section. We are

not constrained in the choice of checkpoint storage and there are other options

that are feasible as well. For example, Amazon’s S3 object store is about 20 times

cheaper than EBS, and is a viable option for reducing storage costs, albeit at worse

read/write performance. Amazon’s Elastic MapReduce File System (EMRFS [18])

uses a combination of S3 and DynamoDB database for low-cost storage for Spark. A

similar storage configuration can be used for storing Flint checkpoints at low cost.

4.6 Flint Evaluation

We conducted our experiments by running popular Spark programs on Amazon

EC2 to quantify Flint’s performance and cost benefits for both batch and interactive

BIDI workloads. We run all experiments on a Spark cluster of 10 r3.large instances

in EC2’s US-East region. Each r3.large instance has 2 VCPUs, 15GB memory, and

32GB of local SSD storage. We use persistent network-attached disk volumes from

Amazon’s Elastic Block Store (EBS) to set up the HDFS filesystem (with a replication

factor of three) and use it to store RDD checkpoints.

Our evaluation includes systems experiments using our Flint prototype to evaluate

the effect of recomputation and checkpointing on real Spark applications, as well as

simulation experiments to examine the cost and performance characteristics of Flint

over long periods under realistic market conditions. We use a range of batch and

interactive workloads in our evaluation, as described below. The input data sizes for

each workload listed below were carefully chosen to max out the total cluster memory
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Figure 4.6: Performance overhead of system- and application-level checkpointing.

used by intermediate RDDs and to ensure stable Spark behaviour even under node

revocations.

4.6.1 Workloads

PageRank. PageRank is a graph-processing workload that computes the rank of each

page in a web graph iteratively based on the rank of the pages that link to it. PageRank

is a good candidate for evaluating our checkpointing policy, since it creates a large

number of RDDs—proportional to the number of vertices in the graph—and involves

a large number of shuffle operations. We use the optimized PageRank implementation

from Spark’s graphx library. For our experiments, we use the Live Journal [25] dataset

of size 2GB.

KMeans Clustering. KMeans is a clustering algorithm that partitions data points

into k clusters with the nearest mean. We use KMeans clustering as an example of a

compute-intensive application: it consists of applying a series of narrow dependencies

to an RDD and then a large shuffle operation per iteration. We use the optimized

implementation from Spark’s mllib.DenseKMeans library with a randomly generated

dataset of size 16GB. KMeans is a prototypical example of a iterative machine learning

technique.

Alternating Least Squares. Alternating Least Squares (ALS) is a linear regression

model that fits a set of data points to a function with the minimum sum of squared

errors between the model and the data points. ALS’s RDD lineage graph is similar
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in structure to KMeans. However, ALS is more shuffle-intensive where each transfor-

mation takes more time than with KMeans. We use Spark’s mllib.MovieLensALS

implementation on a 10GB dataset.

TPC-H. We use Spark as an in-memory database server that services clients issuing

SQL queries from the TPC-H database benchmark with a data size of 10GB [28]. Since

TPC-H queries are data-intensive, to accelerate query execution, Flint de-serializes

and re-partitions the raw files stored on disk first and then persists them in memory

as RDDs. Each time a new query arrives, Flint executes it using in-memory data

rather than loading the data from disk again. TPC-H is an interactive workload where

the query response latency is the primary metric, rather than the running time. The

workload is shuffle- and join-intensive, as many SQL queries translate to shuffle and

join operations on RDDs.

4.6.2 Quantifying the Checkpointing Overhead

We first verify and quantify the overhead due to checkpointing RDDs in Flint

and compare it with both the performance of running on on-demand servers without

checkpointing, and with a systems-level checkpointing approach. The overhead due to

checkpointing dictates how close Flint’s performance on transient servers comes to

the performance of on-demand servers. For these experiments, we use a relatively low

MTTF of 50 hours to highlight the checkpointing overhead—the MTTFs in current

EC2 spot markets range from 20 to 2000 hours.

We first measure the checkpointing overhead for three batch workloads when the

MTTF is equal to 50 hours using Flint’s intelligent checkpointing algorithm. As

Figure 4.6a shows, the performance overhead due to checkpointing, as percentage

increase in running time, for all three batch applications is small, ranging from 2%

to 10%. Of these three applications, ALS has the largest collective set of RDDs and

hence also has the highest checkpointing overhead. Due to the larger data sizes and
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Figure 4.7: Recomputation of lost RDD partitions due to a single revocation causes a
50-90% increase in running time.

higher network utilization (the most constrained and bottlenecked resource for Flint),

the checkpointing overhead for ALS is also the highest.

Next, we compare the performance overhead of Flint’s intelligent application-level

checkpointing with a systems-level approach using the same checkpointing frequency.

A systems-level distributed checkpointing approach must checkpoint the entire memory

state of each Spark worker, including all active RDDs, cached RDDs, shuffle buffers etc.

In contrast, by checkpointing only the frontier of the RDD lineage graph from within the

application, Flint can avoid checkpointing stale application state or unnecessary system

state. Figure 4.6b compares the performance overhead of system-level checkpointing

with FLint’s RDD checkpointing for the ALS workload. The system-level approach

increases the running time by 50% compared to our application-level approach that

only checkpoints selective RDDs. The result demonstrates the benefit of leveraging

fault-tolerance mechanisms that are already embedded into data-parallel frameworks

for high failure-rate environments like transient servers.

Last, we measure the change in checkpointing overhead when running the ALS

workload on transient servers with varying volatility. Figure 4.6c shows that, as

expected, the checkpointing overhead increases as the transient servers become more

volatile (with a higher revocation rate and a lower MTTF). With a highly volatile

market, where the MTTF is 1 hour, Flint’s checkpointing overhead increases from 10%
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Figure 4.8: Application running times under various failure scenarios with and without
checkpointing. Applications are running on a cluster of size ten. Zero indicates the
baseline case of no failures.

to 50% of the application’s typical running time. This result represents an upper bound

on Flint’s checkpointing overhead, since any further increase in the checkpointing

overhead will exceed the RDD recomputation time.

Spreading application nodes across multiple availability zones also does not seem

to hurt application performance significantly. We found no noticeable decrease in the

performance of KMeans, and only a 7% degradation for the ALS workload. While

the inter-availability zone network latencies are certainly much higher compared to

within a zone, we conjecture that large checkpoint writes are bandwidth-sensitive and

not latency-sensitive, and multiple availability zones can thus be used without a large

performance penalty.

Result: Flint’s checkpointing overhead is low, increasing application running time

between 2 and 10% even with relatively low MTTF values. In addition, even for

extremely volatile markets, Flint’s checkpointing overhead increases running time by

less than 50%. Further, Flint’s application-level approach significantly reduces the

overhead relative to systems-level checkpointing (from a 50% increase in running time

to a 10% increase in running time for ALS).
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4.6.3 Impact of Server Revocations

We now consider various transient server revocation scenarios and system configu-

rations to demonstrate their impact on running time. We are interested in evaluating

the overhead of recomputation triggered by server revocations. In all experiments,

revoked servers are replaced by new transient spot servers, such that Flint maintains

a cluster size of ten.

Figure 4.7 shows the performance impact of a single server revocation out of a

cluster of size ten without Flint’s intelligent checkpointing policy. The figure illustrates

that a single revocation can cause running time to increase sharply, up to 90% in the

case of PageRank. Since Flint immediately replaces any revoked server, the increase

in running time is due to two factors: i) recomputing RDD partitions lost due to the

revocation and ii) the time to acquire replacement servers. For PageRank, the time to

acquire a new server contributes 5% of the increase in running time with the rest of

the increase coming from recomputing RDDs. For the other two applications, which

have longer running times, the time to acquire replacement servers is negligible, and

all of the increase is due to recomputing lost RDDs.

We also evaluate the impact of the number of concurrent revocations on perfor-

mance. Figure 4.8 shows the total running time for the three batch applications when

varying the number of concurrent server revocations without checkpointing. Here,

a value of zero represents the baseline case with no failures. Figure 4.8 shows that

application running time increases as the number of concurrent revocations increases,

by up to 100%. The large overhead is due to the recomputation of lost RDD partitions,

as well as their recursive dependencies. The graph also shows that running time is

not strictly a linear function of the number of concurrent revocations: the impact on

performance decreases with each additional revocation. Thus, for batch jobs, Flint’s

approach of using only a single market where all transient servers are concurrently
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revoked incurs less overhead than spreading servers across multiple markets with more

frequent, but smaller, revocation events.

Result: Without checkpointing, recomputation due to revocation of even a few servers,

causes a significant increase in running time and cost. The impact on running time

for batch applications tends to decrease as the size of the revocation event increases,

which supports Flint’s batch checkpointing policy for that selects spot instances from

the same market.

Figure 4.8 also compares the running time with and without Flint’s checkpointing

policy as the size of the revocation events increase. Since checkpointing bounds

the amount of recomputation, the running time with checkpointing is significantly

smaller than the recomputation-only configuration for all the three workloads. For

PageRank(Figure 4.8a), checkpointing is particularly beneficial—periodically saving

the shuffle output drastically reduces and bounds the recomputation required on a

revocation. Similarly, checkpointing the RDDs in KMeans (Figure 4.8c) bounds the

performance degradation when moving from 5 to 10 simultaneous failures. Further,

the sublinear relationship between the size of the revocation event and the running

time is even stronger when using checkpointing. That is, as the size of the revocation

event increases, with checkpointing, the increase in running time flattens out, reflecting

the bound on performance degradation due to checkpointing. Of course, with no

revocation events, applying the checkpointing policy slightly increases running time

due to the overhead of checkpointing, although this increase is not significant.

So far we have evaluated Flint’s performance on a cluster with ten machines. As

cluster size grows, system scalability is governed by the scalability of the underlying

Spark engine, as well as performance of the checkpoint storage backend (HDFS in our

case). Flint’s policies for market selection are applicable when an application starts

and after revocation events and thus incur little run-time overhead. Both Spark and

HDFS have been known to scale well to cluster sizes in the hundreds of nodes [50].
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Figure 4.9: Flint’s interactive mode results in 10-20× improvement in TPC-H response
times during failures.

However, we leave a more detailed analysis of Flint on larger cluster sizes to future

work.

Result: Flint’s checkpointing policy significantly reduces the increase in running

time due to revocations, by 15-100% for our three representative batch applications.

4.6.4 Support for Interactive Workloads

Checkpointing is even more essential for interactive applications. Figure 4.9 shows

the response time of two queries—query three and query one of TPC-H—with and

without revocations. In this case, our revocation scenario is either all ten servers

are concurrently revoked (when using either recomputation without checkpointing or

Flint’s batch checkpointing policy), or a single server is revoked ten times (when using

Flint’s interactive policies).

Without revocations, the checkpointing overhead for Flint’s batch and interactive

modes is low (~10%). The response time without revocations is low for all three of

our policies: recomputation without checkpointing, Flint’s batch checkpointing policy,

and Flint’s interactive checkpointing policy. For a small query, the latency is a few

seconds, and for a larger query, the latency remains less than ten seconds. However,

with revocations, the response time rises substantially to 400-500 seconds for both
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query types without any checkpointing. The rise occurs because recomputing the

RDDs lost due to revocation requires re-fetching the input data from Amazon’s S3

storage service, and then again re-partitioning and de-serializing the data.

Using Flint’s batch checkpointing policy, the response time reduces by a factor

of 4×. In addition, using Flint’s interactive checkpointing policy, which is explicitly

designed to trade-off cost for interactive performance, reduces the response time even

further: from 100-150 seconds with the batch checkpointing policy to 28-55 seconds

with the interactive checkpointing policy. This additional reduction (3×) in the

response time is due to the interactive checkpointing policy and the market selection

that mixes different types of servers in the same cluster. Flint’s batch policies select

markets to minimize the expected cost, while Flint’s interactive policy also considers

the variance in response time when selecting markets. This experiment demonstrates

the benefit of considering response time.

Result: Flint’s checkpointing and server selection policies decrease the response time

of interactive workloads by an order of magnitude (∼10×). Flint’s interactive policy

results in lower response times than its batch policy, since it spreads risk by mixing

transient servers from different markets.

4.6.5 Cost-Performance Tradeoff

To quantify the impact of Flint on cost and performance, we use traces of EC2

spot prices from January to June 2015. We also use empirically collected availability

statistics for over 100 GCE Preemptible Instances that we requested and were revoked

over a one month period in August 2015. In addition to examining Flint’s cost and

performance on real data, we also present results on synthetic data with lower MTTFs

to demonstrate Flint’s performance under extreme conditions, i.e., with high market

volatility. For these experiments, we simulate the performance of a canonical program

that checkpoints 4GB RDD partitions every interval.
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Figure 4.10: Flint’s increase in running time compared to using on-demand servers is
small in today’s spot market, and is low even for highly volatile markets equivalent to
GCE.

We first demonstrate the decrease in running time as the MTTF of the transient

servers increases. As shown in Figure 4.10a, once the MTTF extends beyond twenty

hours, Flint’s increase in running time is less than 10% compared to using on-demand

servers. Since MTTFs of twenty hours are on the low end for EC2 spot markets

(assuming a bid equal to the on-demand price), Flint’s performance on transient servers

will be on par with on-demand servers. Figure 4.10b quantifies this performance by

showing the increase in running time when using Flint on spot instances compared

to using on-demand servers. The graph shows that in the current spot market there

is little increase (<1%) in running time when using Flint versus using on-demand

servers. By contrast, when running unmodified Spark on spot instances (while still

employing Flint’s server selection policies), the increase in running time is over 5%.

Of course, the existing spot market in EC2 is under-utilized and not particularly

volatile. Thus, we also show results for a higher volatility market based on our GCE

data with an MTTF close to 20 hours. In this case, running unmodified Spark on

spot instances increased running time by 12%—Flint’s increase is <5%.

Result: Flint causes a small increase in running time (1%-7%) compared to on-

demand servers for transient servers with both high and low volatilities, represented by

EC2 spot markets and GCE preemptible instances, respectively.
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Figure 4.11: Flint determines the bid for each market based on our expected cost
model. Flint is able to run both batch and interactive applications at 10% of the
on-demand cost.

Lastly, we quantify Flint’s cost savings for batch and interactive workloads com-

pared to running on equivalent on-demand instances. We compare Flint’s server

selection policies from Section 3 with multiple existing approaches for running Spark

on EC2 spot instances. In particular, we compare against EC2’s Elastic MapReduce

(EMR) managed service to execute unmodified Spark programs on spot instances.

Note that Spark-EMR on EC2 incurs an additional flat fee of 25% of the on-demand

price per hour in addition to the cost of the spot instances. We also examine using

SpotFleets in EC2, since this is an application-agnostic service that EC2 provides

to automatically replace revoked spot instances with a spot instance from another

market. Interestingly, this EC2 service, like Flint, automatically bids the on-demand

price for spot instances on behalf of users. SpotFleets enable users to set a policy

that automatically selects an instance from either the cheapest market or the least

volatile market (without considering the impact of revocations on performance). Thus,

comparing Flint with SpotFleet represents the benefit of embedding the server selection

and replacement policy into Flint and making these policy decisions based on the

application characteristics.
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For this experiment, we configure SpotFleets to use two r3 instance types in the

fleet. Flint’s cost-aware server selection (for both batch and interactive jobs) results

in 90% cost savings compared to executing on on-demand servers. Combined with our

previous result that showed the overhead of Flint compared to using on-demand servers

in the current spot market, this demonstrates that Flint achieves its goal of executing

BIDI workloads at a performance level near that of on-demand servers, but at a

price near that of transient servers. In addition, Flint’s batch and interactive policies

also lower costs relative to using Spark-EMR on spot instances by 66%, and lower

costs relative to using SpotFleets by 50%. These results are important in that they

demonstrate Flint’s cost savings are not simply due to the fact that spot instances are

significantly cheaper than on-demand servers. Since Spark-EMR and SpotFleets also

use spot instances, the savings stem solely from Flint’s intelligent application-aware

checkpointing and server selection policies.

At current spot prices, improving on the cost of using on-demand servers is not

challenging—even simple strategies for using spot instances are capable of improving

on on-demand costs. In contrast, by comparing with Spark-EMR and SpotFleets,

we show that Flint not only results in lower costs than using on-demand servers,

but also lower costs than using spot instances when using unmodified Spark and

application-agnostic bidding strategies, respectively.

Flint uses EBS for checkpoint storage, which incurs an extra cost. Due to the low

space requirements of periodic checkpointing and garbage collection, these storage costs

are also low. EBS volumes cost $0.1 per GB per month, and because Flint provides

Spark “as a service,” these volumes can be reused among different jobs, and thus their

monthly cost is amortized. The r3.large servers we use have 15GB of main memory,

and we conservatively provision twice that memory for storing checkpoints. Note that

Spark only uses 40% of RAM for storing the RDD data—the rest is used as an RDD

cache—thus we effectively over-provision by more than a factor of four, and can always
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add more EBS volumes if storage space is running low by dynamically extending

HDFS. The hourly cost for EBS volumes has an overhead of 0.1 ∗ 30/(24∗ 30) = 0.004.

This extra cost is ∼2% of the on-demand cost and 20% of the average spot instance

costs. We account for these storage costs in our cost analysis.

Finally, Figure 4.11b shows the cost of using different spot instance types on EC2

as a function Flint’s bid price. This figure demonstrates that in the current EC2 spot

market, Flint’s default policy of bidding the on-demand price results in the lowest cost.

As the figure shows, there is a wide range of bid prices for each market, ranging from

roughly half the on-demand price to 1.5× the on-demand price that yield the lowest

cost. This behavior results from the spot prices in EC2 being “peaky” where they

frequently spike from very low to very high, and then return to a low level. As a result,

placing a bid price somewhere above the low steady state, but below the average

peak, results in the same cost. Thus, unlike prior work that focuses on optimizing

bidding strategies for EC2 spot instances, we find that in practice simply bidding the

on-demand price is optimal, and that there is actually a wide range of bid prices that

result in this optimal cost.

Result: Flint executes applications at near the performance of on-demand servers

(within 2-10%) but at a cost near that of spot servers, which is 90% less than using

on-demand servers and 50-66% less than using existing managed services such as

SpotFleets and Spark-EMR.

4.7 Related Work

Our work builds upon a large amount of prior work on spot instances, as well as

fault tolerance mechanisms.

Spot Markets. Since servers in the spot market are significantly cheaper than

the equivalent on-demand servers, they are attractive for running delay-tolerant

batch jobs [197, 118, 14]. Checkpointing is a common fault-tolerance mechanism
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for mitigating the impact of revocations on batch jobs in the spot market [203, 125,

225]. However, Flint employs fine-grained application-level checkpointing, rather

than systems-level checkpointing, as in previous work. In addition, Flint focuses

on distributed data-parallel jobs and not simple single-node batch jobs, as in recent

work [197].

Prior work has also used spot instances for data-parallel tasks. For example, EC2’s

EMR service that we compare against [18] allows Hadoop and Spark jobs to run on

spot instances, and may be combined with SpotFleets to define an automated policy

to replace revoked spot instances. However, these services are application-agnostic

and, as we show, by not considering the application characteristics they may make

non-optimal decisions. In addition, prior work has explored running Hadoop jobs

on spot instances [136, 75]. However, Hadoop lacks the built-in checkpointing and

recomputation mechanisms that Flint leverages in Spark. Prior work has also explored

running a distributed database on spot instance [65, 168]. This work addresses the

problem of deciding serialization points for database operations, which differs from

Flint’s focus on defining checkpointing and server selection policies. Finally, Flint also

supports interactive workloads. Prior work demonstrates that single-node interactive

applications can be run on spot instances using continuous system-level checkpointing

and nested virtualization [182]. However, Flint is a distributed data-parallel system

for running BIDI workloads on transient servers.

Fault-tolerance Mechanisms. The performance effects of server failures has been

well studied for Hadoop [89, 95]. Similarly, our work models the impact of server

failures and revocations in Spark. Flint’s intelligent checkpointing approach to mini-

mize running time is based on the optimal approach for single-node batch jobs [82].

Other checkpointing mechanisms and policies have been developed for other types

of applications. For example, Zorro uses checkpointing and other optimizations to

recover from failures in distributed graph processing frameworks [166]. Similarly,
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Naiad also includes a policy for automatically checkpointing vertices and recovering

from server failures [154]. Spark Streaming [229] incorporates automated periodic

checkpointing of RDDs to enable real-time data processing, but does not take into

account recomputation overhead and cluster volatility. These systems’ policies may

also benefit BIDI workloads running on transient servers, and are future work.

Bidding Policies. Spot market prices are determined by a second price auction and

have been modeled in prior work [61]. Numerous bidding strategies for individual spot

markets to optimize the cost/performance of batch jobs exist [240, 210, 231, 234, 194,

198]. However, as we show, a simple bidding strategy of bidding the on-demand price

is optimal for Flint. By focusing on the checkpointing and server selection, Flint is

applicable to transient servers that do not permit bidding, such as GCE’s Preemptible

Instances that offer transient servers at a fixed price.

4.8 Flint Summary

The low price of transient servers is attractive for recent cluster-based in-memory

data-parallel processing frameworks, since these frameworks need to cache large

datasets in memory across a large number of servers. However, transient server

revocations degrade the performance and increase the cost of these frameworks. In this

chapter, we designed Flint, which includes intelligent, application-specific checkpointing

and server selection policies to optimize the use of transient servers for data-parallel

processing. In particular, Flint’s policies support BIDI workloads that may be either

batch or interactive. Our results show Flint enables a 90% cost saving compared to

using on-demand instances and a slight decrease in performance of 2%.
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CHAPTER 5

PORTFOLIO-DRIVEN RESOURCE MANAGEMENT FOR

TRANSIENT SERVERS

The previous two chapters presented transiency-specific fault-tolerance techniques

for running interactive and batch-interactive applications. The risk of transient server

revocations can also be mitigated through smartly selecting transient servers.

This chapter presents server portfolios for selecting a heterogenous collection

of transient servers with different costs and availabilities. Server portfolios enable

construction of an “optimal” mix of severs to meet an application’s sensitivity to

cost and revocation risk. We implement model-driven portfolios in a system called

ExoSphere, and show how applications can implement custom policies for handling

transiency.

5.1 Motivation and Overview

Transient servers typically incur a fraction of the cost of their regular (“on-

demand”) server counterparts, making them a popular choice for running large-scale

data-intensive jobs involving tens or hundreds of servers due to their low cost. However,

revocations of some, or all, of an application’s transient servers can seriously disrupt

its performance or cause it to fail entirely.

Despite the low cost of transient servers, effectively using them remains challenging.

On some cloud platforms, such as Amazon EC2, transient servers have dynamically

varying prices that fluctuate continuously based on supply and demand. In addition,

the availability of transient servers (in terms of their mean time to revocation), can
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also vary significantly across server configurations and based on changing market

conditions. Thus, it is challenging for a cloud application to judiciously select the

most appropriate server configuration based on historical pricing or availability data

to satisfy its needs. The problem is compounded by the large number of transient

server configurations available to applications—there are over 2,500 distinct types of

transient servers in EC2 and over 300 in Google’s cloud platform.

The preemptible nature of transient servers also imposes new requirements on

cloud applications. Specifically, applications must determine whether and how to save

their computation’s intermediate state to gracefully handle server revocations, which

are akin to server failures. Further, they must also define recovery policies to determine

how to re-acquire new transient servers upon revocation, and how to restore state

and resume their computation on these new servers. Different applications, such as

Spark, MapReduce, and MPI, also have different tolerances to revocations, and require

different application-specific mechanisms to handle revocations and their subsequent

recovery. However, prior research has largely focused on separately designing custom

modifications to support transiency for each narrow class of application [176, 221, 142].

To address this problem, we introduce a model-driven framework called server

portfolios. Portfolios represent a virtual cloud cluster composed of a mix of transient

server types with a configurable cost and availability depending on the application’s

tolerance to revocation risk and price sensitivity. Our portfolio model derives from

Modern Portfolio Theory in financial economics [148, 143], which enables investors to

methodically construct a financial portfolio from a large number of underlying assets

with various risks and rewards.

The flexibility and explicit risk-awareness that portfolios offer is not provided by

prior work on transient server selection. A majority of prior work [91, 197, 73, 226] on

transient servers solves the problem of choosing one server type (among the hundreds

that cloud providers offer). Choosing multiple server types has received relatively little
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attention, and mostly relies on application-specific, ad-hoc approaches to optimize

either cost or revocation-risk [176]. In contrast, portfolios are a general technique that

allow server selection for a wide range of risk tolerances and application preferences.

This diversification of servers is crucial because it reduces revocation risk. If the server

markets are not correlated, then a revocation in one market may not necessarily affect

the other—thus allowing distributed applications to continue running on the available

markets.

We use portfolio modeling as part of the design of an application-independent

framework for supporting transiency, called ExoSphere. ExoSphere uses portfolio

modeling to expose virtual clusters of transient servers of different types to differ-

ent applications. Along with portfolio modeling, ExoSphere also supports custom

application-specific policies for handling transiency. In particular, ExoSphere adopts

an Exokernel approach [93] by exposing a set of basic mechanisms that are common to

all transient server environments. These mechanisms can be used by applications to

design policies for handling revocations, saving state, and performing recovery. Thus,

ExoSphere’s mechanisms simplify modifying distributed applications to effectively run

on transient servers.

5.2 Server Portfolios

A key factor in making effective use of transient servers is judiciously choosing the

most appropriate server configuration for each application. Due to their preemptible

nature and variable pricing, picking the “correct” server configuration is surprisingly

complex in today’s cloud platforms due to the following reasons:

Large number of potential choices. A typical cloud platform offers a large number

of transient server markets. Amazon’s EC2 cloud offers 2500 distinct markets, while

Google Cloud Platform offers more than 300 markets for predefined machine types

alone. Assuming an application imposes a certain base requirement on the desired
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per-server compute and memory capacity, it must still choose from a large number of

feasible configurations.

Pricing idiosyncrasies. Cloud operators such as Amazon EC2 use demand-supply

driven pricing to price their spot servers [41, 61]. Each server type has different

demand-supply characteristics, and this can lead to some interesting idiosyncrasies,

which can be seen in Figure 2.2. In this example, the m3.medium in availability zone

a has the most stable prices, g2.2xlarge in the same availability zone has a lower

average price but high variance, and the m3.medium in availability zone b has higher

price than in zone a. The g2.2xlarge price spikes are not correlated with the other

two servers. The example shows that smaller servers may occasionally be more heavily

discounted than smaller servers, and that identical servers in two availability zones

may also be discounted differently.

Importantly, choosing a server configuration based on price alone may yield sub-

optimal results. For instance, server configurations with cheap prices may also see

higher customer demand and consequently higher volatility and frequent revocations.

Frequent revocations add substantial overheads to an application in terms of increasing

checkpointing costs and adding recovery overheads. Instead, sometimes the choice of

a slightly more expensive server configuration that sees a lower revocation rate may

be a better choice and yield lower overall costs.

Revocation rates may also not be related to average prices—neither the willingness

to pay higher prices (by using a higher bid) nor choosing higher priced configurations

necessarily yield lower revocation rates [178]. It is not practical to expect applications

to analyze detailed price histories and volatilities across hundreds of transient servers

when choosing a server type.

Due to the challenges above, cloud providers such as Amazon have begun offering

server selection tools. Amazon SpotFleet [22] automatically replaces revoked servers.

However, SpotFleet provides a limited choice in terms of the combinations of server
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configurations it offers, and does not alleviate many of the challenges above. While it

enables applications to specify their combination of server configurations, it is up to

applications to choose their specific server configuration. While tools, such as Amazon

Spot Bid Advisor [20], may help users in selecting servers based on price, they expose

only coarse volatility information, e.g., low, medium, or high.

5.2.1 Reducing Risk through Diversification

We use two key insights for reducing server revocation risk for a distributed batch-

oriented application. The first insight is to choose servers whose mean time between

revocations (MTTR) significantly exceeds the expected job length. For example, if a

batch job has an expected length of 5 hours, then it will have a higher probability of

completion if it runs on a server with MTTR of 100 hours, when compared to running

it on a server with MTTR of 10 hours. Thus, choosing server configurations where

the MTTR is much greater than the job length also increases the chances of a job

completing without any revocations.

Each transient server configuration in a cloud platform represents a market with

its own supply and demand conditions. If a parallel batch-oriented job chooses

homogeneous servers from a single cloud market, then any revocation event will cause

all servers to be lost simultaneously (in Amazon’s EC2 spot market, if the spot price

rises above bid price, then all the servers with that bid-price are revoked.). Our second

insight for reducing the impact of concurrent revocations is to choose a heterogeneous

mix of transient servers drawn from multiple markets.

Empirical analysis indicates that price fluctuations across markets are largely

uncorrelated with each other (Figure 2.3). Thus, revocation events in one market may

not cause revocations in certain other markets, since surging demand and revocations

in one market will not impact available capacity in other independent markets. As

a result, use of a heterogeneous mix of transient servers drawn from independent or
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weakly correlated markets can mitigate the impact of revocations—since revocations

now only impact a fraction of an application’s servers. This enables jobs to make

forward, albeit degraded, progress on the remaining transient servers.

However, constructing such a heterogeneous mix of servers from multiple markets

is not trivial. It involves selecting transient servers that are “cheap” and yield high

savings compared to their on-demand counterparts, yet at the same time we must

minimize the risk of simultaneous revocations—if all markets fail simultaneously, there

is little value in diversification. Thus we must satisfy two objectives: pick markets to

minimize cost and minimize their failure correlation. The large number of possible

markets (>2,500 spot markets on Amazon EC2), means that achieving this dual

objective is intractable with ad-hoc techniques [182] and heuristics [176] that past

work on multiple transient server selection has used. We describe our solution to this

multiple server selection problem using portfolio theory next.

5.2.2 Server Portfolios

Intelligent server selection is key to minimizing the frequency and magnitude of

disruptions seen by applications running on transient servers. To address this problem,

we present server portfolios, a new model-driven framework to create virtual clusters

composed of a mix of transient server types which offer flexible costs and availability.

Portfolios enable ExoSphere to construct a mix of cloud servers tailored to applica-

tion needs. Server portfolios draw inspiration from finance [148, 69, 143]. Intuitively,

a financial portfolio involves creating a suitable mix of financial investments for an

investor that are drawn from an underlying mix of assets such as stocks, bonds, etc.

The goal is to construct a mix that matches the investor’s tolerance for risk and

reward. The risk tolerance dictates whether the portfolio contains a more risky mix of

high-reward assets, or a mix of lower-reward but lower-risk assets.
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Similarly, server portfolios comprise a mix of transient servers that are drawn from

an underlying mix of all transient server markets. Like financial assets, transient

server markets exhibit different price and revocation characteristics. Some markets

may have low prices but higher revocation rates, while others have higher, more stable,

prices with infrequent revocations. Consequently, depending on the risk tolerance of

an application, server portfolio construction involves maximizing the risk-adjusted

returns by designing an appropriate mix of server markets.

ExoSphere instantiates the model-driven portfolio mechanism to create virtual

clusters for applications. At startup time, applications specify their aggregate resource

requirements (CPU-cores and memory) in the form of a resource vector r = [rcpu, rmem]

, and their risk tolerance1. It then uses portfolio creation models and algorithms that

are rooted in Modern Portfolio Theory [148, 143] to construct a mix of servers for the

application, as discussed next.

5.2.3 Model-driven Portfolio Construction

We now present ExoSphere’s portfolio model, which is based on Modern Portfolio

Theory2from financial economics [69, 148, 143]. The goal in ExoSphere is to maximize

risk-adjusted returns for each application, where the returns are the cost savings from

using transient servers (over the on-demand prices), while risk is the application’s

tolerance to server revocation events.

Formally, ExoSphere finds a suitable mix of transient servers that maximize the

risk-adjusted expected return given by:

1If available, the estimated job length can be provided, and only markets with MTTR >>

job-length are considered.

1Modern Portfolio Theory was first proposed in 1952 [143] and remains the foundational basis for
much of portfolio optimization in finance even today [148].
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E[Return]−α ·Risk (5.1)

where E[Return] is the difference between the cost of an on-demand server and the

expected cost of the transient server. To formally define E[Return], assume that the

cloud platform offers servers in n distinct markets. Let Di denote the on-demand

price, and let E[Si] denote the mean of the transient server price. Then,

E[Returni] = 1− E[Si]
Di

(5.2)

Let c denote the vector representing the returns for all n markets, where c =

[Return1, . . . ,Returnn]. Let xi denote the fraction of servers from market i chosen in

our portfolio (0 ≤ xi ≤ 1). Then x = [x1, · · ·xn] denotes the portfolio allocation vector,

and xT is its transpose. The effective expected return of a portfolio is then:

E[Return] = cxT (5.3)

The parameter α (in Equation 5.1) denotes the risk-averseness of the application or

user. A low value of α indicates that the application places lower emphasis on avoiding

server revocation risk. Conversely, a high value of α indicates that an application is

highly risk-averse, and is willing to incur an extra cost for this. We also use the term

risk tolerance to mean the inverse of risk-averseness.

To capture risk, we draw an analogy with financial portfolio selection, where

investments are chosen such that their prices are not correlated. The rationale is that

if one asset (say, a particular stock) sees a decline in price, then the other assets (e.g.,

a bond) are unlikely to see a concurrent decline. This way, we avoid large declines in

the overall portfolio value.
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In our case, we wish to select server markets with independent revocation events—

thus if there is a revocation in one market, others will not see a concurrent revocation.

This reduces the total number of allocated servers that are revoked. To do so, we

define a covariance matrix V that captures pairwise correlations between all pairs of

markets. Vij is the correlation between markets i, j, and captures their simultaneous

revocations. Higher values indicate that the two markets are highly correlated in their

revocations, and the chances of closely spaced revocations are greater. We use this

formulation to define the revocation risk of a portfolio as:

Risk = xVxT (5.4)

Our portfolio construction problem can then be formulated as the following opti-

mization problem:

Maximize: cxT −αxVxT (5.5)

Subject to:
n

∑

1

xi = 1

x ≥ 0

We can solve Equation 5.5 for a wide range of risk-aversion parameters (α) to

compute the lowest-cost portfolios for any given risk. The expected returns and

revocation risks of these portfolios are shown in Figure 5.1, which shows the expected

cost savings for a range of revocation risks. As the revocation risk is reduced, so is the

cost savings. We also see from Figure 5.1 that expanding the candidate-set from r3

servers in the US-east-1 region to all the servers in the US-east-1 region results in a

1% increase in savings, and a 20-50% reduction in revocation risk. This occurs because

a larger set of candidate markets both allows more freedom in choosing markets, and

increases the number of markets with low correlations.
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Figure 5.1: Cost savings and revoca-
tion risks of portfolios with different risk-
averseness. Choosing a portfolio from a
larger collection of servers (all US-east-1
vs. only r3-type servers) results in higher
returns at lower risk.

0 100 200 300 400 500

Revocat ion risk averseness (alpha)

0.0

0.2

0.4

0.6

0.8

1.0

M
a

rk
e

t 
w

e
ig

h
t

r3.large-e

r3.large-b

m 3.m edium -b

r3.large-a

m 3.m edium -a

Figure 5.2: The effect of risk-averseness
in portfolio diversity. A single market
(r3-large-b) dominates the portfolio
when α = 0, but the portfolio’s diversity
increases with increasing risk-averseness.

The effectiveness of the risk-averseness parameter can also be seen in Figure 5.2,

which shows the distribution of servers in portfolios with different risk-averseness

parameters. We can see that portfolios become more diversified as the risk-averseness

increases.

Constructing the covariance matrix. The covariance matrix V captures the

pairwise correlation between markets. Our formulation allows multiple types of

correlation to be used. The different correlation functions (and their corresponding V

matrices) allows ExoSphere to adjust the portfolios to the users’ perceptions of risk.

The first and most basic form of correlation is simply the correlation between spot

prices. In the case of Amazon EC2, we can use price histories of spot servers, which

are publicly available, to compute the mean returns and the covariance matrix. That

is, we compute the pairwise covariances by using spot prices to capture revocation

events and using the standard covariance formulation. Let Xt,Yt denote the spot price

of markets X,Y respectively at time t. Then the standard definition of covariance

applies:

V price
XY =

1
T

T
∑

t=1

(X(t)−E[X])(Y (t)−E[Y ]) (5.6)
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This captures the correlation between the prices in different markets, and is useful

metric for price sensitive users, since they may not want prices of all markets to

increase simultaneously.

In transient server environments, simultaneous market revocations can lead to

disruption of application availability or performance. To capture simultaneous revoca-

tion risk between two markets, we use the likelihood of simultaneous revocation. We

again use the spot price traces to find simultaneous revocations between markets—we

say that two markets have a simultaneous revocation if servers in those markets get

revoked within a small time window (5 minutes). This allows us to define the entries

in the similarity matrix using the probability of simultaneous revocations.

V revoc
XY = Probability of simultaneous revocation of X,Y (5.7)

Lastly, we also provide a hybrid risk formulation that captures both simultaneous

revocations and changes in prices. We first transform the spot prices to capture

revocation events, and then compute the covariance of these transformed prices. Since

a spot server is revoked if its price increases above the bid price, we capture the

revocation and unavailability by setting the price to the maximum spot price. For

a given market, if we are given a trace of the spot prices S and the bid price B, we

define the transformed prices as:

S′(t) = S(t) if S(t) < B

= Maximum spot price = 10∗On-demand price otherwise

This ensures that we impose a very high uniform penalty when there are revocations.

Because we set the prices to the maximum spot price during a revocation, this

results in a high correlation if two markets fail at near the same time. The final

step is to compute the covariances between pairwise markets (after applying the
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above price transformation) by using the standard covariance formulation : V hybrid
ij =

1
T

∑T
t=1(S′

i(t)−E[S′
i])(S

′
j(t)−E[S′

j ]).

Our portfolio model (Equation 5.5) formulation closely mirrors portfolio construc-

tion found in Modern Portfolio Theory. Infact, it is a quadratic convex optimization

problem.

First, we note that the covariance matrix V is positive semidefinite. V is a matrix

of covariances that are always non-negative. To establish semidefiniteness, it is enough

to show that for any vector a, aTVa ≥ 0. By using the definition of co-variance, we

get:

aTVa = aTE[(x−µ)(x−µ)]a

= E[(aT · (x−µ))((x−µ) ·a)] = E[((x−µ)a)2] ≥ 0

Since the covariance matrix is positive semidefinite, xTVx is strictly convex, and

thus the problem formulation in Equation 5.5 is a quadratic convex optimization

problem [68, 148]. The formulation can be solved by an off-the-shelf convex solver,

such as cvxopt [36]. This allows us to exactly solve the portfolio modeling problem

and get portfolios that maximize the risk adjusted returns, without having to rely

on heuristics or approximation. For Amazon EC2 spot instance portfolios, we use

the publicly available time series of spot prices for each spot market. We can then

compute the average spot price for each market and can get the returns vector c, as

well as the covariance matrix V.

5.2.4 Server Allocation using Portfolios

ExoSphere considers the risk-averseness requirements of the application along with

the computing resource requirements. Based on these requirements, ExoSphere first

constructs a portfolio of resources on cloud servers, and then allocates the resources

to the applications in the form of containers on these servers.
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Applications submit CPU and memory resource requests in the form a resource-

vector r = (rcpu, rmem), and their placement constraints. The placement constraints

comprise primarily of the risk-averseness factor α ∈ [0, inf), and any server preferences

they might have (gpu-enabled servers only, no small servers, etc).

We then construct portfolios based on these requirements, which gives us the

weights for each market in the form of a weight-vector x. These weights represent

the fraction of resources that must be allocated in a market. For each market i,

we compute the CPU and memory resources that must be allocated in that market

by multiplying the portfolio-weight of that market (xi) by the resource-vector (r).

ExoSphere then determines the actual number of servers to allocate in market ni

based on the CPU and memory capacities of the servers in that market (CPUi,MEMi)

as follows:

ni = max
{

xircpu

CPUi
,
xirmem

MEMi

}

(5.8)

We take the maximum of the servers required to satisfy both the CPU and

memory requirements so that the application’s resource allocation meets or exceeds

the requirements in all resource dimensions. This approach can be extended to other

resource types (disk/network bandwidth, etc.). Upon deciding the number of servers

that an application needs in each market, ExoSphere then requests new servers (with

bid price set as the on-demand price) from the cloud operator. ExoSphere also allows

applications to dynamically adjust their resource requirements, which is useful for

auto-scaling. Applications can adjust their CPU and memory requirements (r) at any

time, and ExoSphere adds or removes servers from each market.

5.2.5 Statistical Multiplexing of Servers

In the above described server allocation policy, it may be possible for an applica-

tion’s resource requirements to be smaller than the resources offered by the server
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portfolio. This can occur because of two reasons. The first reason is that ExoSphere

maximizes the (risk adjusted) cost-savings relative to the on-demand price, which

may require selection of larger servers. Such price inversions are common in EC2 spot

markets, and can occur if smaller transient servers have a larger demand compared

to their larger counterparts. The second reason for surplus resources in a portfolio

is that ExoSphere’s allocation ensures that sufficient servers are available to meet

the demands across all resource types i.e., both CPU and memory. For example, an

application requesting 2 CPUs and 10 GB memory may be allocated a portfolio of 2

m3.large servers each having 2 CPUs and 7.5 GB memory, resulting in 2 free CPUs

and 5 GB of free memory across both the servers.

ExoSphere reduces the surplus unused resources in a portfolio by relying on

statistical multiplexing. The key idea is that transient servers can be multiplexed

across multiple portfolios. This allows multiple applications to share the servers in

their virtual clusters such that the free and unused resources of a server can be used

by other applications. In addition to increasing server utilization, this also reduces

costs, since the cost of transient servers is also proportionally shared between the

applications sharing a server.

ExoSphere’s statistical multiplexing, also referred to as the shared-cluster policy,

works as follows. We use the portfolio modeling and creation process described earlier.

This gives us the portfolio weights vector x, indicating the weights of each market in

the portfolio. The application’s actual resource requirements (r) are first met by trying

to use as many surplus resources as possible across all the servers in a given market.

That is, for each market in the application’s portfolio, we first find surplus resources

on existing servers in that market, and then request the cloud servers required to meet

the unmet resource demand in that market instead of all ni servers (Equation 5.8).

Finding surplus resources involves finding servers such that their allocated-resource

vector is less than the available resources. ExoSphere uses the “best-fit” policy: it sorts
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the servers in each market in descending order of their free resource availability, and

then proceeds to allocate resources (as containers) from these servers until either all

free resources in the market are allocated or if the application’s resource requirements

in that market are satisfied.

Finally, we note that this multiplexing of servers is only effective if there exist

multiple applications to exploit the free resources, and if there is a steady stream

of applications leaving and entering a system. We evaluate the cost effectiveness

of this multiplexing scheme in Section 5.5.3. In the next section, we describe how

applications can use the API provided by ExoSphere to design and implement their

own transiency-specific policies.

5.3 ExoSphere Design and API

In addition to supporting the portfolio abstraction, ExoSphere provides a number

of key mechanisms to support the execution of batch-oriented applications on transient

servers. ExoSphere’s design is based on the Exokernel philosophy, where it provides

a small set of mechanisms to make an application transiency-aware, and leaves the

design of transiency-specific policies to the application.

Unlike much of prior work on running applications on transient servers, ExoSphere

gives applications the ability to define their own policies for handling revocations. This

allows applications to define policies to suit their fault tolerance requirements, and

also allows more efficient fault tolerance. For example, using application-level fault

tolerance such as application-level checkpointing [176] may significantly reduce the

overhead of checkpointing compared to application-agnostic system-level checkpointing.

ExoSphere uses a two-level architecture (Figure 5.3), where ExoSphere provides

the portfolio abstraction and transiency-specific “up-calls” to the applications, which

may use them to implement their own policies. Associated with each application is a

job-manager, which communicates with ExoSphere to implement these policies.
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Figure 5.3: ExoSphere’s design architec-
ture. The job managers for each appli-
cation implement the resource allocation
requests and the fault tolerance policies.

Down-Calls

portfolio	=	reqResources(cpu,	mem,	alpha,	job-

len)

Up-Calls

mttrList	=	portfolioMTTR(portfolio)

Notify(event,	serverList)

event	=	{hardRevocation,	softRevocation,

priceThreshold}

Figure 5.4: ExoSphere API. Applications
allocate portfolios by using down-calls,
and receive transiency-specific notifica-
tions using the up-calls provided by Exo-
Sphere.

Given any vanilla batch-oriented application, converting it into a transiency-aware

variant of that application involves defining three policies: a (i) portfolio policy,

which specifies its resource needs and risk tolerance, (ii) fault-tolerance policy, which

specifies whether and how the application state is saved to deal with potential server

revocation, and (iii) recovery policy, which specifies the policy to replenish servers

upon a revocation event and to resume the application after recovering saved state.

The portfolio policy is implemented using ExoSphere’s portfolio abstraction de-

scribed in the previous section. To implement a broad range of fault-tolerance and

recovery policies, ExoSphere supports three key mechanisms via the up-call API

described in Figure 5.4:

Exposing the Portfolio MTTRs: Since cloud platforms only expose transient server

prices but not revocation statistics, ExoSphere provides MTTR information immedi-

ately after portfolio creation and periodically (every 5 minutes) via the portfolioMTTR

upcall. ExoSphere provides the mean MTTR of an application’s portfolio, as well

as the specific MTTRs of the individual transient servers within the portfolio. An

application can use this knowledge of how frequently a portfolio server is likely to be

revoked to tune how frequently to save its state.
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Hard revocation signals: ExoSphere tracks a cloud platform’s termination warning

for one or more servers and signals the application about imminent revocation of these

servers via the Notify(hardRevocation) upcall.

Soft signals: Soft signals are provided to signal specific conditions to the appli-

cation. ExoSphere currently supports two types of soft-signals: (i) price threshold

signals and (ii) soft revocation. Price threshold signals are used by price sensitive

applications to track when the price exceeds a specified threshold, by using the

Notify(priceThreshold) upcall, which it can use to relinquish servers and restart

computation later to avoid going over budget. Soft revocation signals are upcalls from

ExoSphere when it detects early signs of revocation—they serve as an early warning

(but not a guarantee) that revocation may occur in the near future (e.g., when the

signature of a price spike is detected). The soft-revocation notification provides more

time for applications to take action (e.g. checkpoint, migrate, etc).

Next, we describe how these mechanisms can be used to create transiency-aware

versions of three common batch-oriented applications with modest effort.

5.3.1 Data-parallel Application: Spark

The low-cost of transient servers makes them very appealing for running data-

parallel data-intensive frameworks like Hadoop, Spark, Naiad, etc. Such frameworks

run two broad classes of jobs. Traditionally, they run data intensive batch jobs that

perform computation over large amounts of data in parallel. These frameworks also

support batch-interactive [176] jobs such as SQL queries, interactive machine-learning,

or streaming analytics, which have lower-latency requirements.

We use Spark [228] as a representative data-processing framework to build a

transiency-aware application using ExoSphere. Spark is a popular data-parallel frame-

work and supports both batch and batch-interactive computation. Spark performs

data transformations on in-memory distributed datasets called Resilient Distributed
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Datasets (RDDs [228]). The loss of servers leads to the loss of the in-memory RDD

partitions, which can lead to recursive recomputation. While batch workloads can

tolerate the delay due to recomputation, such recomputation significantly increases

the latency for batch-interactive workloads, such as SQL queries or REPL-based

environments.

Portfolio Policy. The portfolio policy for a Spark cluster depends on the Spark

workload characteristics. Purely batch workloads are more disruption tolerant and

may choose to optimize for lower cloud costs. Thus, when instantiating a Spark

cluster for a batch workload, a low risk-averseness portfolio (low α) can be requested.

Doing so will skew the portfolio towards lower costs. In contrast, batch-interactive

and streaming workloads are highly risk-averse, and thus request highly diversified

portfolios with a high α to reduce the performance impact of revocations (but at

potentially higher cost).

Fault-tolerance Policy. Spark includes a built-in RDD checkpointing mechanism,

which serializes RDDs to stable storage. However, Spark leaves it to the application to

decide which RDD to checkpoint. A checkpoint operation imposes significant overhead,

since it causes a substantial amount of in-memory data to be written to disk.

Designing a fault-tolerance policy for our transiency-aware version of Spark is

straightforward using this checkpoint operation—we periodically checkpoint recent

RDDs. Due to the overhead imposed by checkpointing, the checkpoint interval must

be carefully chosen. Since ExoSphere exposes the MTTR of the portfolio, we can use

it to set the checkpointing interval to τ =
√

2 · δ ·MTTR, where δ is the time it takes

to write a checkpoint to disk, and the MTTR is Mean Time To Revocation of the

portfolio. This expression follows directly from a classic result in fault-tolerance [82]

and has been used in other Spark-based systems such as Flint [176]. To implement

this policy, we modify the Spark job-manager to periodically checkpoint RDDs, and
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use saved checkpoints when resuming after a revocation. The pseudo-code for the

Spark periodic checkpointing is below:

while ( t rue ) :

mttr = portfolioMTTR ( p o r t f o l i o ) . get ( )

tau = math . s q r t (2∗ mttr∗ de l t a )

s l e e p ( tau )

for rdd in job . rdds . SortBy ( ‘ ‘ age ’ ’ ) [ 0 ] :

rdd . checkpo int ( )

Recovery Policy. The recovery policy comprises of two parts: how to recover the

application upon a revocation event, and how to resize the cluster to handle lost servers.

Upon receiving a hard revocation signal from ExoSphere, the job-manager in our

transiency-aware Spark triggers recomputation from the last saved RDD checkpoint.

The decision on whether to replenish lost servers depends on the job progress and

workload characteristics. Due to Spark’s in-built fault-tolerance mechanisms, jobs are

able to continue execution on remaining servers. However, continuing in this degraded

mode increases job completion times (even when resuming from a saved checkpoint),

due to the potential of spilling RDDs to disk, or reduction in the size of the RDD

cache.

For pure batch jobs, we can use job progress (by comparing against estimated

job-length), and intelligently decide whether to replenish (e.g., replenish if job-progress

< 70%). For batch-interactive or streaming workloads, an immediate replenishment

policy is always preferred due to the latency requirements.

Comparison with other Spark-based systems. Flint [176] and TR-Spark [221]

are two recently proposed transiency-aware versions of Spark. Both systems use an

application-level fault-tolerance and require significant complex modifications in Spark

to embed new mechanisms and policies. Our version uses ExoSphere abstractions and

mechanisms to implement similar policies. We model our version on Flint’s design.
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However, while Flint requires 3000 lines of code changes [176] to Spark, ExoSphere

requires adding only 400 lines, and benefits from separating issues such as portfolio

construction out of the application. ExoSphere also allows a richer server selection

policy, since portfolios can be tailored to the workload’s risk tolerance.

TR-Spark [221] is another attempt to make Spark transiency-friendly, and changes

task-scheduling in Spark to avoid scheduling jobs to nodes that face imminent revoca-

tion. These changes can also be supported by ExoSphere, since TR-Spark also uses

MTTR information. Mostly, ExoSphere’s Spark benefits from separation of concerns

and requires less changes to the application (Spark) in order to run on transient

servers.

5.3.2 Parallel HPC Application: MPI

Message Passing Interface (MPI) is the predominant framework for scientific and

high-performance computing. MPI jobs tend to be parallel compute-intensive tasks

and their large degree of parallelism can benefit from running on low-cost transient

cloud servers [142]. However, unlike Spark, MPI’s message-passing model is highly

intolerant to revocations. In particular, revocation of a single server can cause the

entire MPI job to fail.

Portfolio policy. Since even a single server revocation requires the entire job to be

restarted (from the beginning or from a checkpoint), a policy that attempts to limit

failures to a fraction of the servers is not adequate—any revocation, whether it is one

server or all servers, has the same impact. Thus, stability is more important than

server diversity, i.e., choosing servers with MTTR >> the job length, which reduces

the probability of revocation, is more important than portfolio diversity. Thus, MPI’s

job-manager requests portfolios by specifying the expected job-length, and specifies a

low risk-averseness parameter to ensure selecting high-MTTR servers.
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Fault-tolerance policy. Many MPI platforms, such as OpenMPI [35], support

checkpointing. In such cases, the MPI job can periodically checkpoint its state similar

to ExoSphere’s Spark. If checkpointing is not supported or is undesirable, then no

fault-tolerance policy is necessary and the job is simply restarted from the beginning.

Recovery policy. Due to the inability of MPI jobs to continue computation after

partial failures, the immediate replenishment policy must be used to restore the cluster

to its original size upon a failure of one or more servers. Once replenished, the job is

restarted from the most recent checkpoint or the beginning. The pseudo-code of the

revocation-handling policy for MPI is shown below:

def Not i fy ( hardRevocation , s e r v e r s ) :

Kill_MPI_Job ( )

p o r t f o l i o = reqResources ( cpu , mem, alpha=0)

Start_MPI_Job ( p o r t f o l i o )

The ExoSphere MPI version required a modest effort of 50 lines of code for the

portfolio and recovery policy.

5.3.3 Delay Tolerant Application: BOINC

Volunteer computing frameworks such as BOINC [49] are an example of “embar-

rassingly parallel” workloads that are delay-tolerant and do not have strict deadlines.

Portfolio policy. Since reducing cost is more important than mitigating failures, a

low-to-moderate risk-averseness parameter (α) can be specified when constructing a

portfolio for BOINC. For highly price-sensitive workloads, a low value may be used,

but it risks losing a large fraction (or all) servers. Use of a moderate value provides

some diversification, which allows progress to be made when part of the portfolio is

revoked.

Fault-tolerance policy. Typically no fault-tolerance mechanisms are needed, since

if a server is lost in a volunteer-computing scenario, the task is restarted. In some cases
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with long-running tasks, a lazy-checkpointing policy can be used, which checkpoints

the task after receiving a soft or hard revocation warning. Soft warnings increase

the chances of completing the checkpoint, since a lazy-checkpoint may not complete

within the hard-warning duration (2 minutes on EC2, 30 seconds on GCP).

Due to its price sensitive nature, BOINC can use soft signals to set a price threshold

and upon receiving a notification of rising prices, can voluntarily relinquish servers

and wait for the price to reduce to maintain a budget.

Recovery policy. The price sensitive nature implies that immediate replenishment

of lost servers is not strictly necessary. The BOINC job-manager can monitor the

price of portfolios offered by ExoSphere to wait until prices drop. Tasks that were

affected due to server revocations are simply queued on other remaining nodes and

are restarted (from the beginning or from the last checkpoint).

The transiency-aware BOINC required about 200 lines of additional code—most

of which pertain to the implementation of lazy checkpointing and recovery.

5.4 ExoSphere Implementation

While ExoSphere’s design and its portfolio mechanism are general, we implement

ExoSphere using Mesos [113]. The choice of an existing cluster manager for implement-

ing ExoSphere is motivated by two factors. First, Mesos employs an Exokernel [93] like

philosophy of letting higher-level applications implement their own specific resource

allocation policies. Thus, ExoSphere’s abstraction and interfaces are a natural fit

into the architecture of such cluster managers. Second, enhancing a popular cluster

manager such as Mesos to support transient cloud servers yields a transiency-aware

cluster-manager that can find broad use and adoption in today’s cloud platforms.

ExoSphere is built using Mesos v0.27 and cloud native APIs. Our prototype

has two key components, the ExoSphere master and the application job-managers.

The ExoSphere master is implemented in 5000 lines of C++ code by extending the
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Figure 5.5: Portfolios for various market scenarios

Mesos master. The master implements two key components: portfolio-based resource

allocation and the application-facing API shown in Figure 5.4. Our prototype currently

supports EC2 spot instances, which offer a rich collection of servers and publicly

available price history. We also have proof-of-concept support for Google’s preemptible

instances (where inferring availability information is more challenging).

ExoSphere requires applications to implement a job-manager using ExoSphere’s

API to design their own portfolio-creation, fault-tolerance, and recovery policies.

Requiring applications to implement their own job-manager is increasingly common

in modern cluster managers—our job-manager is equivalent to Application-Schedulers

in Mesos and Application-Masters in Yarn. The master communicates with the

job-managers using the existing Mesos RPC and HTTP APIs. This allows exist-

ing application-schedulers (written for Mesos) to be used and augmented with the

transiency-specific functions provided by ExoSphere. The only requirement for run-

ning existing Mesos applications on ExoSphere is that they handle the revocation

hard-warning notification, which can be implemented in either C++, Java, or Python.

Applications (via their job-managers) make requests for resources and their portfolio

requirements via the existing Mesos requestResources RPC, which the ExoSphere

master intercepts and handles. The resource allocation involves portfolio construction,

server-packing, and creating and keeping track of the cloud servers.
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Portfolio-based allocation. In order to construct portfolios, we use historical

price traces. Amazon publishes the past three months of spot price traces (available

using the EC2 describe-spot-price-history API). We periodically collect the price

history for all markets, and compute the mean spot price, as well as the covariance

matrices for various risk functions. Once these have been computed, ExoSphere solves

the quadratic convex optimization problem using the Python cvxopt solver, which

takes under 1 second for the 250 us-east-1 markets and under 25 seconds for the 2500

global markets. The portfolios for various risk-averseness factors are precomputed

and cached, and this reduces the computational overhead of portfolio construction

even further. In the absence of any server-type or job-length constraints, portfolio

construction usually only involves a simple look-up/search in the portfolio cache.

ExoSphere does explicit, fixed resource allocation, and does not use Mesos’s

Dominant Resource Fairness allocator. Once the application terminates or voluntarily

relinquishes its resources, its servers are placed on a free-list of servers for a short

duration (2× allocation latency), instead of immediately terminating them. Similar

to anticipatory scheduling, holding on to recently relinquished servers in the free-list

speeds up the allocation of servers for future applications, since launching transient

servers takes a few (~5) minutes.

New cloud servers are requested using the standard EC2 APIs, and are started

with either the application provided disk-image (containing the required application

dependencies), or a default image (AMI) which has a few common applications

installed. We assume that most applications will use S3 or EBS for storing data, since

the content of local disks is lost upon server revocation. The resources on cloud servers

are offered to the applications using the Mesos abstraction of resource offers.

ExoSphere’s portfolio-based policy may over-allocate resources, which can lead

to idle resources on some servers. For example, an application requesting 2 CPUs is

allocated a cloud server with 4 CPUs results in 2 surplus CPUs. To increase cluster
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utilization and reduce costs, ExoSphere also implements a server packing policy as

an optimization, which first tries to meet resource demands of the application (in

each market) from the idle resources on the servers in that market. For this, we use

a simple first-fit approach to allocate resources. Note that applications run inside

containers (e.g., Mesos executors), which provide security and performance isolation.

Nevertheless, applications which do not wish to face the potential interference because

of other co-resident applications can still request private cloud servers not shared with

other applications.

ExoSphere Upcalls. The ExoSphere master also interacts with the servers and the

cloud provider in order to issue transiency-specific notifications. Revocation hard-

warnings are first detected by the servers, which then inform the master, which relays

them to the applications via the Mesos inverseOffers API, which includes a list of

affected servers/containers and the remaining time until termination. Soft revocation

warnings are provided by monitoring the state of each server, and notifying the

application if it reaches the marked-for-termination state. Additionally, the master

can also bid much higher than the on-demand price and monitor for price increases

to increase the soft-warning duration. Price notifications are used by applications to

know if the price of their portfolio has increased above a threshold. The ExoSphere

master uses the describe-spot-price-history EC2 API to continuously monitor

prices of all the active markets and delivers the notification if the price crosses the

threshold.

5.5 ExoSphere Evaluation

Our experimental evaluation focuses on answering two key questions: i) What is

the effectiveness of the portfolio abstraction in reducing cost and revocation risk? and

ii) What is the impact of different policies for handling revocations and with different

risk tolerances? We evaluate ExoSphere on EC2, and also show results for Google
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Cloud Platform (GCP). We use spot price traces over a six month period (Apr-Sept

2015) for evaluating portfolios, and restrict ourselves to a single region (us-east-1),

since many applications have geographic locality constraints that prevent using servers

from multiple regions. We evaluate the performance of transiency-aware variants of

Spark, MPI, and BOINC on ExoSphere.

Spark. We use the Spark version modified to work with ExoSphere, and use Amazon

S3 for storing input/output data and RDD checkpoints. We use a combination of

batch and low-latency workloads for Spark. We use KMeans, an iterative machine-

learning algorithm with ∼16GB of input data as a batch workload. For the low-latency,

interactive scenario, we use TPC-H database queries served by a Spark application.

Spark supports SQL queries by translating them into equivalent RDD operations,

with each query akin to a short running job.

MPI. We use MPICH [34] v2.7, which supports Mesos. We use MPI as an example of

a “rigid”, transiency-agnostic application, which responds to revocations by requesting

new servers and restarting its job. We use the NAS parallel benchmark [53] as an

MPI workload.

BOINC. We use BOINC as a delay-tolerant bag-of-tasks distributed application. We

configure BOINC to run fixed-length CPU-intensive embarrassingly parallel tasks.

5.5.1 Portfolio Construction

We first examine the risk-return tradeoff in portfolio construction, and compare

it to other server selection approaches. A baseline approach to server selection in

multiple markets is the greedy strategy which picks server-types offering the lowest

average spot price. To select multiple (k) markets, the greedy approach picks the

top-k cheapest server-types for use by the application.

Figure 5.5a shows the expected cost savings (compared to using on-demand servers)

and the expected revocation risk for both the greedy approach and our portfolio
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Checkpointing Restart
Eager-Replenish +7% +32%
No Replenishment +11% +54%

Table 5.1: Increase in running time
of Spark (KMeans workload) due to a
revocation event.

abstraction. Since there is no explicit way to specify risk-averseness in the greedy

approach, we use a cruder “number of markets” as the diversification criterion, and

divide servers among all markets equally. Each point in Figure 5.5a for the greedy

scenario refers to a different number of markets picked. The best greedy portfolio

approaches the cost-savings offered by the portfolio approach, but yields a much

greater revocation risk (by 50×). Compared to portfolios, other greedily constructed

selections offer upto 40% less saving at 100× more revocation risk.

We also compare against Amazon Spot Fleet [22], which provides a risk-agnostic

mix of servers. Given a set of spot server types, Spot Fleets are constructed by either

of two policies: the lowest-cost policy picks the server with the lowest spot price;

and the diversified policy equally distributes servers among all chosen markets. The

diversified policy is thus equivalent to our greedy policy when all servers in a region

are considered. The result for the lowest-cost Spot Fleets is also shown in Figure 5.5a.

The Spot Fleet has similar cost to our portfolio approach, but has almost 100× higher

revocation risk for the single-market lowest-cost policy.

In practice, a system involving greedy server selection would have to iterate over

all market sizes and pick the best performing greedy selection [176], and would have

no explicit way to control the revocation risk of the selection.

So far we have seen the expected behavior of portfolios in EC2’s spot market.

We now explore their behavior in other scenarios. Figure 5.6 shows the CDF of the

covariances of the EC2 spot markets, which shows that there is a large number of
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extremely low-correlation markets with a few highly-correlated markets. If usage of

spot instances and the portfolio-approach were to increase, it is possible that the

increased demand for the servers in the “uncorrelated” markets would increase prices

and revocations. To evaluate this scenario, we construct a synthetic highly correlated

covariance matrix which has no uncorrelated markets (shown in Figure 5.6). For our

experiment, we use these synthetic covariances and EC2 prices. Figure 5.5b shows that

in highly correlated markets, the portfolio approach outperforms the greedy approach

by 10% in both savings and risks, and is comparable to Spot Fleets. This is because

the correlated markets reduce the possibility of exploiting market independence for

portfolio diversification. We emphasize that this is a worst-case scenario. Today’s

markets provide ample opportunity to diversify across independent markets.

Google preemptible instances. Unlike spot instances, Google’s preemptible

instances have fixed discounts. The lack of variable pricing means that we cannot use

it to estimate the correlations between different server types. Given the lack of any

availability data, we assume that ExoSphere would require active probing [159] to infer

availability. For our experiments, we use the covariance matrix from the EC2 markets.

The resulting cost savings and revocation risks are shown in Figure 5.5c. Because the

preemptible instances have discounts in a very narrow range (80-80.2%), the portfolios

also have nearly constant cost savings. Importantly, increasing diversification reduces

the revocation risks by 75%.

Result: Portfolio construction outperforms greedy selection in uncorrelated markets,

and its diversified portfolios reduce revocation risk even when markets are correlated.

5.5.2 Application Performance

We now examine application performance when running on portfolios with different

risks and transiency-specific policies. For ease of exposition, we group portfolio risk-

averseness into three types: low, medium, and high. Low risk-averseness typically

147



Low Med High

Risk-Averseness of Portfolio

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
u

n
-t

im
e

Spark-restart

Spark-checkpoint

Figure 5.7: Spark job run-time (normal-
ized to on-demand servers) when one
market fails.

Low Med High

Risk-Averseness of Portfolio

1.00

1.02

1.04

1.06

1.08

1.10

1.12

R
u
n
-t

im
e

BOINC-restart

BOINC-checkpoint

MPI-MTTR

MPI-Cost

Figure 5.8: BOINC and MPI and risk
averseness.

corresponds to single-market mode of operation, while high risk-averseness corresponds

to using as many markets as possible. Note that in practice, the portfolio weights

for many markets are quite small (< 0.001), thus these markets will not be used for

applications requesting < 1000 servers. As a result, the high risk-averseness scenario

corresponds to about 10-15 server-types for most applications.

Spark. To see the impact of using application-specific policies, we run the Spark

KMeans workload with the “medium” risk-averseness portfolio. We vary the fault-

tolerance and replenishment policy, and show the increase in running time compared

to on-demand servers when there is a market failure (corresponding to about 1/5th of

the servers lost) in Table 5.1. The periodic checkpointing with eager replenishment

increases job length by 7% compared to on-demand servers, while the no-checkpointing,

no-replenishment policy increases job length by 54%. Overall, these policies yield

60-80% cost savings compared to on-demand servers, while increasing completion

times by 1.07-1.5×.

Next, we observe Spark performance as a function of portfolio diversity and fault-

tolerance policy, and use eager replenishment. Figure 5.7 shows the impact of a

single revocation event on the running time (compared to on-demand servers). Since

checkpointing reduces RDD recomputation in Spark, the increase in job completion

times is only 5% in highly diversified portfolios and 16% in the low risk averseness
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portfolio. Even without checkpointing, using portfolios yields 62%, 38%, and 18%

increases in running time with low, medium, and high diversification, while still

yielding 86% cost savings.

As the portfolio diversity increases, the impact of revocation of servers in one

market decreases, because a smaller fraction of the state is lost. The recovery of the

lost state is the primary contributor to the increase in running time. Thus, Spark

workloads benefit from portfolio diversification, and can reduce the increase in running

times to 5% using checkpointing, and 86% cost savings compared to on-demand

servers.

MPI. For MPI, we examine the expected running time of jobs compared to on-demand

servers in Figure 5.8. We consider two cases. In the first case, we assume that the

job-lengths are known in advance, and only request markets with MTTRs greater than

two times the job-length. When only a single-market portfolio is chosen (“MPI-MTTR”

in the figure), the running time increases by only 3% compared to on-demand servers.

In the second case, we use the Spot Fleet strategy of picking the cheapest single

market. In this case (“MPI-Cost” in the figure), the running time increases by 10%.

Thus, picking stable markets with MTTR >> job-length significantly reduces the

running time for MPI, when compared to the lowest-cost strategy. The cost-savings

are ~80% in all cases.

Note that since a single server revocation stops the entire MPI job, MPI only cares

about minimizing server revocations, and not simultaneous revocations. Portfolio

diversification reduces the number of simultaneous revocations and not the total

number of revocations. The effect of increasing portfolio diversity can also be seen

with the “MPI-MTTR” strategy in Figure 5.8, and we see that for highly diversified

portfolios, the increase in running-time is close to 10%. Thus, MPI does not benefit

from portfolio-diversification, and stable, single-portfolios represent the best portfolio.
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BOINC. Unlike MPI, revocation in BOINC only affect the tasks that are running

on the servers. We show BOINC performance compared to on-demand servers with

the lazy-checkpointing and the restart fault-tolerance policies in Figure 5.8. With

the highly diversified portfolio, the increase in running time compared to on-demand

servers is less than 1% with the lazy-checkpointing and about 2% without checkpointing.

Thus, ExoSphere can run embarrassingly parallel tasks at 1.01-1.05× overhead, but at

more than 80% cost savings.

Result: The impact of portfolio diversification is highly application dependent. Appli-

cation performance is governed by the combination of portfolio composition, application

characteristics, fault-tolerance policy, and recovery policy. Cost depends on applica-

tion performance and a combination of portfolio composition and application policies.

Portfolios with low risk averseness (i.e. high risk portfolios) yield lower costs, albeit at

higher revocation risk.

5.5.3 Multiple Applications

ExoSphere is designed to run multiple applications simultaneously, and we now

evaluate its multiplexing capabilities. We use the Eucalyptus cloud traces [23] for

realistic application arrivals and resource requests. We evaluate the costs of running

such a trace by using a simulator which replays the spot price traces. The purpose of

our simulator is to observe cluster utilization and costs for different application usage

scenarios and cloud prices.

Sharing of servers among multiple applications can reduce total costs. We evaluate

the extent of these savings compared to not sharing servers (e.g., a private mode).

We assign the risk-averseness to the jobs in the Eucalyptus trace using four different

distributions: all jobs requiring low risk-averseness portfolios; all high risk-averseness

portfolios; equally distributed among low-medium-high; and distributed in a 1:2:1

ratio. Figure 5.9 shows the total cost incurred with the private and the cluster sharing
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Figure 5.10: Performance during the worst-case “black swan” failure events.

policy, which uses first-fit bin-packing to find idle resources in servers in each market

to satisfy portfolio requirements. By sharing servers among multiple applications, this

packing policy lowers costs by 50%.

5.5.4 Black Swans: Multiple market failures

Finally, it is important to note that while the portfolio construction technique gives

the best expected portfolios, it assumes that the historical price trends will continue

to hold. In extreme situations, it is possible that even when selecting servers with low

risk of concurrent revocations, all (or a large majority) of markets might be revoked.

These events are akin to stock market crashes and are the black-swan events that have

a high impact and are hard to predict. We show the performance implications of such

extreme events in Figure 5.10, which shows the relative performance of applications

running on their ideal portfolios and using the “best” fault-tolerance policy. We

compare the application performance in the expected case of a single-market failure
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versus the worst case when all markets fail. We see that the impact on different

applications is varied. BOINC and MPI see no difference in their expected and

worst-case, since their preferred portfolios have only a single market. For a batch

workload in Spark, the increase is significant (50%), and for the interactive Spark

workload, the increase is more then 4x. We note that these black-swan events only

cause a one-time performance-hit, and don’t affect expected cost savings.

Discussion: The real-world success of any portfolio-based technique relies on the

ability to model the returns and risks of the underlying markets. However, there are

many events that cannot be modeled using historical price traces alone. Black-swan

and other rare events are hard to model, since they may have never occurred in the

past. We also note that transient instances can be unilaterally revoked by the cloud

provider, and cannot be modeled by price-traces alone. While price-based modeling

has led to great gains in financial markets, spot markets are different from classic

financial markets in a number of ways. Spot prices show higher volatility—prices

can increase 10X in a single jump. The high volatility makes spot markets harder to

model and also means that existing financial models that assume low volatility cannot

be applied directly.

5.6 Related Work

Our work leverages prior work on transient servers, cluster management, and

portfolio theory.

Systems for Transient Servers. Recent work has looked at developing systems and

middleware for transient servers like EC2 spot instances. SpotCheck [182] introduced

the notion of a derivative cloud which combines spot and on-demand instances to

run arbitrary applications on top of spot instances with high availability. SpotCheck

relies on nested virtualization and continuous memory checkpointing to live-migrate

to on-demand instances upon revocation. For batch jobs, SpotOn [197] performs spot
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market selection by considering the market cost and availability, and showed that

the fault tolerance mechanism has an important influence on the server selection.

OptiSpot [91] uses a combination of queueing-based application performance models

and a markov chain based spot price models to select the right server type and bid

price for a given application.

Transient server selection. ExoSphere’s portfolio based server selection differs

from prior work in regards to its flexibility and generality. The risk tolerance knob

introduced in ExoSphere allows easy and explicit characterization of portfolio risk.

Transient server selection policies in earlier systems [182, 197, 176, 221, 142, 76] do

not have explicit support for managing revocation risk. This is because these systems

have mostly targeted a single class of applications, and have server selection policies

suited to that. For example, Flint [176] runs Spark [230] applications on transient

cloud servers, and selects markets with the lowest effective cost for batch Spark jobs,

and uses a greedy multi-market strategy for batch-interactive jobs.

Transiency-aware Applications. Prior work on making applications transiency-

aware has involved application-level application-specific approaches. For example,

Flint [176] and TR-Spark [221] modify Spark to better support transiency, e.g., via

checkpointing, while related work focuses on optimizing MPI jobs for spot servers [142].

Similar work has modified Hadoop and other batch applications for transient servers

as well [226, 212]. Checkpointing and scheduling policies for data processing and

machine learning workloads on transient resources have been developed more recently

in [223, 107].

Portfolios. In contrast to prior work which focused on supporting narrow classes of

applications on transient servers, ExoSphere’s goal is to provide a common platform

for a wide range of applications. ExoSphere distills common abstractions based

on the experience of past work to enable easy modification of current and future

applications to support transiency. Our portfolio abstraction is inspired from financial
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economics, where investment portfolios are created for diversification and to reduce

risk [148, 94, 92, 143] . In transient server markets, diversification reduces the

probability of simultaneous revocations, and thus plays a crucial role in server selection.

The idea of risk-reduction using diversification formalized in Modern Portfolio Theory

in the 1950’s remain the basis for other popular portfolio creation techniques such as

Black-Litterman [170]. Exploring other portfolio construction techniques for server

selection remains part of our future work.

A significant amount of prior work has gone into optimizing multiple objectives in

the context of server selection. Server selection to optimize for performance and cost

of on-demand servers (but without transiency considerations) is discussed in [97, 211],

and in [202] which uses genetic algorithms to find spot/on-demand pareto-efficient

frontier. CherryPick [47] uses bayesian optimization to select cost-optimal on-demand

servers. Utility-based selection of servers is shown in [73], which selects homogeneous

cloud servers for different applications. In contrast, ExoSphere selects a heterogeneous

mix. Our use of portfolios is not to be confused with portfolios of policies/algorithms—

wherein a portfolio of multiple policies and algorithms are run to find the most efficient

algorithm. This approach is commonly used in SAT solvers [116], and has also been

applied to cloud scheduling [193].

Cluster Management. There has been a significant amount of work on designing

cluster resource managers [113, 200, 201, 172, 67] and resource management policies

for running multiple applications in data center [123, 84, 99, 140] and cloud environ-

ments [86, 85]. In particular, ExoSphere builds on Mesos [113] and can be viewed as

a transiency-aware cluster manager. To our knowledge, current cluster managers do

not support transiency and variable pricing as first-class primitives.

Resource Allocation in Data Centers. There has also been a significant amount

of work in allocation of surplus resources and risk-driven resource allocation in data

centers. [71] allows idle resources to be reclaimed and uses resource usage traces to
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predict resource availability for long running services. Services can run uninterrupted

with a high probability by maintaining slack between the resource allocation and

usage. Risk-aware overbooking of resources by using admission-control policies is

discussed in [199]. [173] considers job task placement to mitigate correlated failures

in the data center, where a failure in a power component can affect multiple machines

and hence multiple tasks. Using surplus resources in computational clusters has a

long history—Spawn [206] introduced a market based system for selling idle resources

to applications, similar to what public cloud operators are doing now. ExoSphere’s

portfolio-driven allocation policies can work in data center environments where the

resource allocation involves optimizing two different and possibly competing objectives.

For example, ExoSphere can be used to minimize performance interference adjusted

costs, where instead of revocation risk, there is risk of performance interference due

to co-located applications. We note that the transiency specific API that we have

developed for applications can be used “as-is” in data center environments, where the

resources of low priority jobs are revoked in favour of higher priority applications.

5.7 ExoSphere Summary

The effective use of transient servers is predicated on their careful selection. In this

paper, we introduced portfolio modeling for transient server resource management.

Unlike prior resource management schemes, portfolios allow the easy creation of

virtual clusters with different revocation risk tolerances. Existing convex optimization

techniques can compute portfolios efficiently—computing portfolios for 2,500 spot

markets takes well under one minute.

We have prototyped and implemented a portfolio-driven cluster manager, Exo-

Sphere, that exposes a narrow, uniform interface and allows multiple applications to

develop and use their own transiency-aware policies for handling revocations. We

have shown that existing applications such as MPI, Spark, etc., can use this interface
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to design their own policies and significantly increase their performance and cost

saving on transient servers. Our experience with portfolios has shown that they are a

powerful and promising resource management primitive, and can be especially useful in

situations where multiple resource management objectives (such as cost and revocation

risk) have to be minimized.
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CHAPTER 6

RESOURCE DEFLATION: A NEW TECHNIQUE FOR
TRANSIENT RESOURCE RECLAMATION

Data centers and clouds are increasingly offering low-cost computational resources

in the form of transient virtual machines. Whenever demand for computational

resources exceeds their availability, transient resources can reclaimed by preempting

the transient VMs. Conventionally, these transient VMs are used by low-priority

applications that can tolerate the disruption caused by preemptions, which are akin

to fail-stop failures.

This chapter asks the question: “Can resource providers still offer low-priority

transient resources by using different resource reclamation mechanisms?” We propose

an alternative technique for reclaiming resources, called resource deflation. Resource

deflation allows VMs to dynamically shrink (and re-expand) based on resource pressure,

instead of being preempted outright. Deflatable VMs allow applications to continue

running even under resource pressure, and increase the applicability and performance of

low-priority transient resources. We develop mechanisms, policies, cluster-management

techniques, and specialized applications for deflation, that allow VM resources to be

dynamically reduced while minimizing performance degradation. When deflatable

VMs are deployed on a cluster, our policies allow up to 2.3× overcommitment without

the risk of preemption.

6.1 Motivation

Transient computing resources are becoming commonplace in data centers and in

cloud computing platforms. A transient computing resource, such as a server, is one

157



that can be unilaterally revoked by the provider for use elsewhere. In enterprise data

centers, servers running low-priority batch applications can be reclaimed by terminating

their virtual machines upon resource pressure from high priority applications [201].

In cloud context, all three major cloud providers, Amazon [17], Azure [40], and

Google [24], offer preemptible instances that can be unilaterally revoked during periods

of high server demand.

The primary benefit of transient computing is that it enables data center operators

and cloud providers to significantly increase utilization of servers. Idling servers can

be allocated to lower priority disruption tolerant jobs or sold at a discount to price

sensitive customers. In both cases, the resource provider has the ability to reclaim

these resources when there is increased demand from higher priority or higher paying

applications. Preemptible cloud servers have become popular in recent years due

to their discounted prices, which can be 7-10x cheaper than standard, conventional

non-revocable servers. A common use case is to run data-intensive processing tasks

on hundreds of inexpensive preemptible servers to achieve significant cost savings.

Despite the many benefits, the preemptible nature of transient computing resources

remains a key hurdle. From an application standpoint, server revocations are essentially

fail-stop failures, leading to disruption. Systems for using transient resources have

received significant attention. Prior work has explored mitigating the impact of

preemptions by developing transiency-specific fault-tolerance mechanisms and policies

that work either at a system-level [182, 197] or are tailored to different applications [176,

180, 108, 224, 142, 209, 145]. In enterprise data centers, using transient resources to

increase utilization and minimize the performance impact of preemptions remains

an important problem [221, 238, 153, 201]. Even with these proposed solutions, the

preemptible nature of transient resources presents a significant burden for many

applications as they require changes to the application (legacy) code in many cases.
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Figure 6.1: The three-way tradeoff between cost, availability, and performance. Defla-
tion provides low-cost computation, but without the hassles of sudden preemptions
present in current cloud transient servers.

In this chapter, we present resource deflation as a new abstraction for implementing

and managing transient computing resources in data centers and cloud platforms.

We argue that resource preemption is only one approach, and an extreme one, for

reclaiming erstwhile surplus resources from low-priority applications. In resource

deflation, transient computing resources allocated to a VM can be dynamically reduced

to reclaim them. In this case, resource preemption becomes a special case of deflation

where resources are deflated to zero. In general, the amount of deflation is determined

by the magnitude of resource pressure from higher priority applications.

The primary benefit of resource deflation comes from a key observation—for many

applications, the relationship between amount of resources allocated and application

performance is sublinear or at most linear. This is shown in Figure 6.2 where the

performance of different applications is shown for different resource deflation levels.

We see that there is a significant operating region in which many applications can be

deflated without paying the proportional performance penalty—when resources are

reduced by 50%, the performance drops by < 30% for memcached, kernel-compile,

and SPECjbb.

Resource deflation is more attractive than preemption for low-priority applications

since they can continue to run, albeit more slowly, under resource pressure, rather than
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Figure 6.2: Application performance when all resources (CPU, memory, I/O) are
reduced in the same proportion. In many cases, applications exhibit linear and
sub-linear performance degradation due to deflation.

being terminated. In such a system, preemptions become rare events, and may even

be eliminated under certain scenarios—reducing or eliminating the need for additional

fault-tolerance mechanisms in applications. Deflation thus trades off performance

for availability of transient resources. By reducing application resource allocation,

deflation exposes them to potential performance degradation (Figure 6.1). However

we show that this compares favorably to the performance degradation caused by

fault-tolerance techniques required to deal with preemptions.

We design and develop a system that uses deflation for low-priority applications;

and show that resource deflation is a suitable technique for increasing the utility of

low-priority resources for a wide range of applications. In doing so, we make the

following contributions:

1. We develop mechanisms for resource deflation by combining existing hypervisor

overcommitment mechanisms. We show how our novel overcommitment approach

outperforms existing mechanisms, reclaiming more resources while minimizing

performance degradation.
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2. We develop a black-box application-agnostic technique based on CPU per-

formance counters to infer the minimum resource allocation required by an

application to function with acceptable performance and not crash due to

deflation.

3. We design and implement cluster management policies that can completely

remove the risk of preemption, at cluster overcommitment levels as high as 2.3×.

4. While deflation is designed to be application agnostic, we also develop deflation-

aware variants of four popular applications and show that the performance

impact of deflation can be minimized by up to 6×.

6.2 Deflation Background

In this section we provide background on transient servers and motivate the need

for VM deflation as an alternative.

6.2.1 Transient Computing

Our work assumes a virtualized data center where applications run in either VMs

or containers multiplexed on physical machines. Such a virtualized architecture is now

commonplace in both enterprise and cloud data centers. Since data center capacity

is provisioned for peak demand, the average utilization tends to be low [201], in the

range of 20-30%. Data center operators can increase the overall system utilization or

maximize revenues in case of the cloud, by offering unused server capacity transiently

to low-priority applications or at a discounted cost.

Thus the data center is assumed to host two classes of applications—high and low

priority workloads. Low priority applications are scheduled whenever there is enough

surplus server capacity in the data center; however, resources allocated to VMs of

low priority applications are assumed to be transient. Some or all of these resources
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may be reclaimed at short notice when server demand from high priority applications

starts increasing.

Current systems implement resource reclamation in the form of server revocations,

a form of preemption from low-priority applications. Cloud offerings such as Amazon

Spot instances [17], Google Preemptible VMs [24], and Azure batch VMs [40] are

examples of such low-cost but preemptible VMs. Enterprise data centers similarly

preempt low-priority jobs when high priority jobs arrive [221, 238, 201].

In this work we assume that low priority applications run inside a special type of

VM called deflatable VMs. Deflatable VMs support fractional resource reclamation

by allowing the cluster manager to dynamically reduce (“deflate”) the CPU, memory,

and I/O resources allocated to the application. Deflation can be done progressively

in stages—whenever more resources are to be reclaimed, the VM’s resources can be

shrunk to meet the increased demand.

6.2.2 Elastic Scaling versus Resource Deflation

Modern cloud platforms and virtualized data centers support vertical elastic scaling

to handle dynamic application workloads [138]. Vertical scaling allows the server

capacity allocated to a VM to be dynamically changed to match the application

workload dynamics. In other words, elastic scaling changes resource allocation based

on the workload while resource deflation forces an application to scale down its

resource usage—in response to resource pressure from elsewhere. While elastic scaling

mechanisms are well studied in literature [121, 100, 187], such mechanisms cannot

simply be applied “in reverse” to implement deflation.

There are several important differences between elastic scaling and deflation. First,

elastic scaling approaches, in general, endeavor to always give an application adequate

resources based on its current needs. Thus if an application’s demands rise, it is given

more resources, and if the demands fall, the surplus resources are reclaimed while
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still ensuring it has adequate resources for the reduced demand. In contrast, resource

deflation can (and often will) allocate resources that are inadequate for its needs. Of

course, if an application is underutilizing resources, then they can be easily reclaimed

during resource pressure. However, if resource pressure persists or increases, allocated

resources can be reduced further causing the allocation to be substantially below

application needs. In normal circumstances, elastic scaling does not reduce allocation

below the demand.1

Second, elastic scaling techniques assume that the user or application specifies

explicit performance goals in the form of service level objective (SLO) and scales

resources up or down based on the application’s specified performance objectives. In

contrast, transient computing emphasizes use of idle resources by allocating them

to low-priority applications. Performance or SLOs of low priority jobs is not the

primary consideration when reclaiming resources for high-priority jobs. Despite the

absence of user-specified SLOs in transient computing, deflation algorithms need to

carefully consider, and minimize, the impact of resource reclamation on the resulting

performance degradation.

6.2.3 VM Overcommitment versus Resource Deflation

Our VM deflation approach makes use of virtual machine resource overcommitment

mechanisms to dynamically adjust the resource allocation. These mechanisms are also

used in virtualized cluster managers (such as VMWare DRS [103] and OpenStack)

to increase server consolidation by packing more VMs on to a smaller set of physical

servers. At surface-level, this is similar to the use of our proposed VM deflation

system, which also seeks to increase cluster-wide utilization through overcommitment.

1In extreme overloads, even elastic scaling may unable to meet the application demands, due to
lack of cluster resources, and may degrade performance. We treat extreme overloads as different from
deflation.
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However, compared to conventional VM overcommitment and cluster managers, we

argue that there are key differences in both our approach and higher-level objectives:

Magnitude of Overcommitment. Conventional virtualized cluster managers use

VM overcommitment to a much smaller degree. Since the physical clusters

are sized for relatively static and predictable enterprise workloads, the level of

overcommitment, if any, is under 20%. In contrast, we propose overcommitting

resources by around 50–80%.

Hybrid overcommitment. To achieve high overcommitment, we develop the use of

hotplug based mechanisms, and show how they can be combined with hypervisor-

based mechanisms to reclaim a large amount of resources quickly. The effective-

ness of hotplug based mechanisms has only received scant attention.

Performance-counter guided resource allocation. Conventional virtualized clus-

ter managers such as DRS rely on proportional overcommitment and disregard

application tolerance to overcommitment. In contrast, we use CPU performance

counters to infer the maximum deflation magnitudes for an application, and use

that to guide both deflation and placement of new VMs.

Finally, the existence and prevalence of VM overcommitment mechanisms only

increases the feasibility and viability of our proposed deflation approach.

6.2.4 Transient Server Applications

Traditional transient computing has assumed reclamation via server revocation.

Consequently, interactive applications such as web services or transaction processing

are assumed to be unsuitable for transient servers—since they cannot tolerate down

times caused by server revocation.

Batch-oriented applications, on the other hand, are well suited for transient

computing. Such applications tend to be both delay and disruption tolerant and
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can handle longer completion times. In the event of a preemption, they can simply

be restarted from the beginning or restarted from a checkpoint if the application is

amenable to periodic checkpointing.

Under deflation, all classes of applications become more amenable for transient com-

puting. Performance degradation, rather than outright termination (and downtime),

maybe acceptable even to many interactive applications except the most mission-

critical ones. Temporarily deflating a batch application may be a better alternative

that avoids wasteful restarts. Certain deflation policies that guarantee no preemption

are useful for applications that have no checkpointing support or incur substantial

checkpointing overheads.

6.3 Deflatable Virtual Machines

In this section we describe how resource deflation can be instantiated for virtual

machines through deflatable VMs.

6.3.1 VM Deflation Overview

Resource deflation for a VM requires the ability to dynamically shrink (and grow)

the resources allocated to the VM. The virtual machine monitor (also called the

hypervisor) typically exposes an interface to determine the resource allocation of a

VM and to allow dynamic modification to the allocation. A cluster manager or cloud

management framework uses such APIs for initial placement of VMs and subsequent

changes to the VM’s allocation (Figure 6.3).

In our case, we can adapt these mechanisms for VM deflation. We design two types

of VM deflation mechanisms—transparent deflation mechanisms, which transparently

shrink the VM’s resource allocation, and explicit deflation mechanisms, where the

deflation is performed in a manner that is visible to the guest OS, (and by extension,

to the applications and the application cluster manager). In the former case, the guest
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Figure 6.3: Overview of our deflation system

OS and applications are unaware of the deflation and the VM simply runs “slower”

than prior to deflation. In the latter case, since deflation is visible to the guest OS

and/or applications, they can take explicit measures, if wanted, to deal with deflation.

We describe each mechanism and a hybrid approach that exploits the key benefits of

both approaches.

6.3.2 Transparent VM Deflation

Since hypervisors virtualize resources and offer them to virtual machines, they can

also overcommit these resources by multiplexing virtual resources onto physical ones.

Transparent deflation exploits such multiplexing mechanisms to deflate resources by

overcommitting them. For example, virtual CPUs (vCPUs) of the VM may be mapped

to a dedicated physical CPU cores. Such an allocation can be deflated by remapping

the vCPUs onto a smaller number of physical cores, and sharing the capacity of these

cores using the hypervisor’s built-in scheduling mechanism. Thus the guest OS and
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applications inside the VM still see the same number of vCPUs, but these vCPUs run

slower.

In case of memory, hypervisors allocate an amount of physical memory to a VM

and multiplexes the VM’s virtualized memory address-space onto physical memory,

via two-dimensional paging. Memory deflation thus involves dynamically reducing the

physical memory allocated to a VM.

In the case of network, one or more logical network interfaces of a VM are mapped

onto one or more physical NICs and a certain bandwidth of the physical NICs is

allocated to each vNIC by the hypervisor. Network deflation involves reducing the

physical NIC bandwidth allocated to the VM. Finally in the case of local disks, the

I/O bandwidth allocated to each VM can be throttled.

In all of the above scenarios, the VM itself has no knowledge of the deflation,

which is done at the hypervisor level “outside” the VM. The VM may get scheduled

at a lower frequency or have less physical memory, etc. Our deflation framework has

been implemented in KVM and Linux using Linux’s cgroups facility. By running

KVM VMs inside of cgroups, we can control the physical resources available for the

VM to use. For deflating CPUs, we use CPU bandwidth control by setting the CPU

shares of the deflatable VM. The memory footprint of a deflatable VM is controlled

by restricting the VM’s physical memory allocation by setting the memory limit in

the memory cgroup. Similarly for disk and network I/O, we use the respective I/O

cgroups to set bandwidth limits.

6.3.3 Explicit Deflation via Hotplug

Explicit deflation mechanisms use the notion of resource hotplug to change the

VM’s allocation in a manner that is visible to the guest OS and the applications.

Modern operating systems and hypervisors now support the ability to hot plug (and

unplug) resources. By unplugging virtual resources, the VM’s resource allocation
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can be controlled. In the case of CPU, if a VM has n vCPUs allocated to it, its

CPU resources are reclaimed by unplugging k out of n vCPUs. Hot plugging and

unplugging requires guest OS support, since it must reschedule/rebalance processes

and threads to a smaller or larger number of cores. Thus the deflation is visible to

the guest OS and applications. In case of memory, we use memory unplugging to

explicitly reduce the memory seen by the guest OS. We don’t use hot unplug for NICs

and disks since this is generally unsafe.

Hot unplugging has a safety threshold—unplugging too many resources (e.g., too

much memory) beyond this safety threshold can cause OS or application failures.

Furthermore, hot unplug can only be done in coarse-grained units. For example, it is

not possible to unplug 1.5 vCPUs.

6.3.4 Hybrid Deflation Mechanisms

Both transparent and explicit deflation have advantages and disadvantages. Explicit

deflation—by virtue of being visible, allows the OS and applications to gracefully

handle resource deflation. However, deflation can only be done in coarse-grained units

and has a safety threshold. Transparent deflation can be done in more fine-grained

steps and has a much broader deflation range than explicit deflation. It does not

require any guest OS support but can impose higher performance penalty since the

OS and applications do not know that they are deflated.

Our hybrid deflation technique combines both mechanisms to exploit the advantages

of each. Initially, a VM is deflated using explicit deflation until its safety threshold is

reached for each resource. From this point, transparent deflation is used for further

resource reclamation to extract the maximum possible resources from the VM under

high resource pressure. Figure 6.4 presents the high-level pseudo-code of our hybrid

deflation approach. The key challenge is to determine the hot unplug safety threshold

so as to switch over from explicit to transparent deflation.
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1 def de f la te_hybr id ( t a r g e t ) :
2 hotplug_val = max( get_hp_threshold ( ) , round_up ( t a r g e t ) )
3 de f la te_hotp lug ( hotplug_val )
4 de f l a t e_mu l t ip l ex ing ( t a r g e t )

Figure 6.4: Pseudo-code for hybrid resource deflation.

For deflating CPUs, our hybrid approach first sets the hotplug target by rounding

up the target number of vCPUs (line 2 in Figure 6.4). Then the cgroups based CPU

multiplexing deflation can deflate the VM the rest of the way. Note that the hotplug

operation may not always succeed in removing all the CPUs requested—the guest OS

may unplug the CPU only if it is safe to do so. If the number of reclaimed CPUs via

hotplug is less than the number requested, then the multiplexing-based CPU deflation

takes up the slack.

When deflating memory, we set the hotplug threshold by using the guest OS’s

resident set size (RSS)—since unplugging memory beyond the RSS results in guest

swapping, and we presume that it is safe to unplug as long as the VM has memory

greater than the current RSS value.

6.4 KneeFinder: Finding The Limits of Deflation

Deflating a VM to reclaim resources allocated to it causes a performance degra-

dation for the resident application. The performance degradation faced by the VM

depends on the magnitude of the deflation, the workload characteristics, and the

application’s resource usage model.

The performance of VMs under deflation is governed by the application’s utility

curves, as shown in Figure 6.5, which shows a representative curve of application

performance vs. the magnitude of deflation. Since a VM may have a certain amount

of surplus for each resource (due to overprovisioning), removing the unused surplus

resources from the VM results in little performance loss. This is indicated by the
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Figure 6.5: A representative deflation utility curve.

“slack” region in Figure 6.5. Deflation beyond this point causes a graceful performance

degradation that manifests itself in a sub-linear or linear drop in performance. Sublinear

decrease in performance can also result from the inherent resource-adaptivity of the

underlying operating system or of the application itself. For example, most parallel

applications only achieve sub-linear speedup due to Amadahl’s law, and thus reducing

the number of threads (vCPUs) that an application uses results only in sublinear

performance degradation. This behavior continues until we reach a “knee” after which

further deflation causes a precipitous drop in performance. Note that the hotplug

safety threshold lies in the (sub) linear region of the curve. In general, deflating

beyond the knee provides so little utility to the application that it is better to preempt

the application rather than deflate it to this level. Utility curves of four different

applications shown in Figure 6.2 also show these sub-linear and knee regions.

6.4.1 Black-box Knee Determination

Utility curves as shown in Figures 6.2 and 6.5 are useful for determining the

performance after deflation. However, in general, the deflation utility curves are

unknown to us and neither SLOs nor such curves are specified by the user. Finding

application utilities requires access to application-level metrics such as throughput or
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response times. In environments such as public clouds, the cloud provider is distinct

from the application provider and can’t access these application metrics.

To overcome this limitation, we present a black-box approach for dynamically

finding the knee of the (unknown) utility curve of applications at run-time. Knowledge

of the knee can be used to design policies to intelligently deflate each application and

increase the usefulness of transient computing.

Our approach is motivated by two observations. First, knowledge of the entire

curve, while useful, is not strictly necessary and it is adequate to simply determine

the knee, which is just one point on the curve. Thus determining the knee is less

expensive than determining the full curve [241], making it feasible to do so in live

production environments.

Our second observation is that it is possible to infer the performance knee by using

the correlation between hardware performance counters and application performance.

CPU performance counters are present in all modern CPU families and are accessible

to the hypervisor.

In particular, we use instructions-retired as a proxy for application performance.

Prior work has shown that the rate of instructions (instructions/second) is fairly

closely correlated with application throughput [236]. We verify and build on this

finding—Figure 6.6 shows the correlation between Memcached performance and the

CPU performance counters, across various deflation levels. At 50% deflation, we

observe a sharp drop in the instructions/second, corresponding to the application’s

performance knee. Table 6.1 shows the correlation between the performance counters

and the application performance, and we can see that in general, the performance

counters have a high correlation with application performance.

We assume that rate of instructions is a reliable indicator of throughput, and when

resources are deflated (even memory and I/O), the decrease in performance eventually

manifests itself in the form of degradation of throughput of CPU instructions. Using
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Figure 6.6: Memcached performance shows high correlation with CPU counters
(pearson correlation=0.72). Drop in counters predicts the knee at 50% deflation.

Application Correlation
Memcached 0.72
Kcompile 0.99
SpecJBB 0.99

Table 6.1: Correlation between application performance at different deflation levels
and CPU performance counters.

multiple performance counters (such as cache-access/misses, cycles stalled due to

memory loads, etc.) is a promising approach [157] and is a subject of future work.

Our black-box knee finder uses short deflation “probes” to search for the perfor-

mance knee, and stops the search based on the values of the performance counters.

We find the performance knee for each resource type (CPU, memory, etc.) by first

establishing a baseline of performance indicators. This baseline is established by

looking at the entire undeflated history of a VM. We then deflate the VM briefly

(30 seconds) using the hybrid deflation mechanisms, and measure the effect on the

performance counters (PMCs).

If we observe a precipitous drop in the instructions, then we have found the knee

and stop the search. We find the knee through a simple exponential search (Figure 6.7).

If M is a VMs maximum resource allocation, then we search for the knee (m) by

progressively increasing the deflation by a factor of 1√
2
. Upon the completion of the
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search, we revert the VM to its original resource allocation. We repeat this process

for each resource type (CPU, memory, disk, and network), and establish the knee

for each resource type. Our approach finds the knee one resource at a time to avoid

combinatorial search over multiple resources.

1 base_mean , base_std = get_baseline_pmc ( )
2
3 def knee_search ( ) :
4 lower_l imit = 0 . 1 ; x = 1 . 0 ; s = 1/ sq r t (2 )
5 while x > lower_l imit :
6 x=x∗ s
7 d e f l a t i on_ta r g e t = x∗Max_alloc
8 d e f l a t e ( d e f l a t i on_ta r g e t )
9 s l e e p (30)

10 probe_perf = get_pmc ( )
11 i f ( probe_perf−base_mean ) > 3∗ std or \
12 probe_perf < base_mean /3 :
13 return de f l a t i on _ta r g e t
14 return l ower_l imit

Figure 6.7: Pseudo-code for knee-finding

A change in the VM’s workload phase can result in a different performance knee.

To detect changes in the workload phase or the execution environment of the VM,

we again use CPU performance counters. In particular, we rely on other metrics like

instructions per unhalted clock cycle (IPC)2.

We continuously record the IPC over the lifetime of a VM, and if we detect a

significant change in the IPC in a moving window (3 standard deviations above the

mean), then we signal a change in the workload phase, and we trigger the knee-finder

to run again.

2For knee-finding, we use instructions/second, which is different from IPC.
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6.5 Cluster-wide Deflation Policies

A data center or a cloud platform employs a cluster manager (or a cloud manage-

ment framework) which is responsible for mapping low and high priority application

VMs onto specific servers and for policies to reclaim resources from low-priority VMs

under resource pressure. In our case, such a cluster manager employs deflation policies

to determine which low-priority VMs to deflate, by how much, and when deflated

VMs can be reinflated when the resource pressure subsides.

6.5.1 Cluster Resource Pools

Our cluster-wide deflation policies uses two key parameters to determine how

aggressively to use unused server resources and how aggressively to deflate low-priority

VMs when reclaiming these resources. The first parameter, reserve-capacity, specifies

the total cluster capacity reserved for transient deflatable VMs. This reserved capacity

is the minimum capacity guaranteed regardless of resource pressure.

The second parameter, overflow-factor, specified as a multiple of the reserve

capacity, specifies what portion of the non-guaranteed cluster capacity to use for

low-priority VMs. This parameter controls how aggressively to use unused server

resources for low-priority VMs. Thus we effectively partition the cluster into multiple

abstract virtual resource pools (Figure 6.8). A server in the cluster may be dedicated

entirely to a single pool, or may have its resources dedicated to multiple pools.

Different combinations of reserve-capacity and overflow factor yield a range of

policies. A reserve-capacity of zero implies that no resources are guaranteed for

low-priority VMs and the entire cluster can be used by high priority VMs (after first
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deflating and preempting low-priority VMs). If overflow factor is set to a sufficiently

high multiple, it implies that the entire cluster can be used by low-priority VMs if

there are adequate resources. Ofcourse, this overflow capacity can be reclaimed up to

reserve-capacity, at any time under resource pressure.

These resource limits and pools allow cluster and cloud operators more flexibility

in controlling resource allocation of different principals. The reserve capacity can be

set to the cumulative “knee” of the deflatable VMs. Since deflatable VMs are only

preempted if deflated past the knee, this sets a bound on the max deflation, and

guarantees no preemptions.

6.5.2 VM Deflation Policies

With VM deflation, servers can accommodate incoming VMs by potentially de-

flating existing deflatable VMs. In this subsection, we look at the policies which

determine How much to deflate each VM by?

Our guiding principle is to deflate multiple VMs in response to resource pressure.

We have seen that applications often have “slack” in their resource utility curves.

Thus by deflating multiple VMs by small amounts, it is possible to minimize the

performance degradation due to deflation.

The extent of VM deflation depends on two factors. First, the resource pressure

on the server. This resource pressure is a consequence of a new incoming VM that is

assigned to this server. The second factor that determines the extent of deflation, are

the other colocated deflatable VMs. Thus the magnitude of VM deflation is entirely

local to the server.

Now assume that r resources of a particular type (CPU, memory, I/O) must be

reclaimed. Let there be n deflatable VMs, and let their current resource allocations

be ci, and their maximum allocations be Mi. Our task is to reclaim xi from each VM
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such that
∑

xi = r. The distribution of these xi’s is controlled by the local deflation

policies, which we describe below.

Proportional deflation. The idea is to deflate VMs such that all VMs lose the same

fraction of resources. That is, Mi−xi
Mi

= Mj−xj

Mj
= α for all i, j. Thus for the proportional

deflation policy, each VM is deflated by :

xi = αMi =
r

∑

Mi
·Mi (6.1)

This is repeated for all resources (CPU, memory, I/O), and the VMs are deflated

to their new targets ci − xi, and the VM is immediately deflated using the hybrid

deflation mechanisms described earlier in Section 6.3.

Knee-aware Proportional. The above proportional policy can result in VMs

deflated beyond their performance knees, and can result in the VMs entering the

preemption zone. To mitigate this, the knee-aware proportional policy attempts to

places a minimum limit on deflation. Using the knee-finder, we can obtain deflation

lower limits mi for each VM. We then try to reclaim resources xi such that:

xi = Mi −mi +α ·
(

Mi

Mi −mi

)

(6.2)

If the resource knee (mi) is not known (as may be the case for newly launched

VMs), the VM is run with full resources (0% deflation) until the knee-finder is run.

Once the mi value is known, this knee-aware proportional policy algorithm is re-run

for all the n+1 deflatable VMs so that even the new deflatable VM is deflated.

Utiliity Maximization. While the proportional deflation policies described above

can reclaim resources to meet a target, they are not explicitly maximizing VM

performance. To maximize performance, we resort to utility-based maximization,

that partitions a server’s resources such that the aggreagate server performance is

maximized. In other words, max
∑

U(Mi −xi).
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The utility-maximization approach assumes the utility curves are available, which

is rarely the case, and hence not a practical policy. We thus use the knee-aware

proportional policy by default, and compare it with the utility-maximization approach

in Section 6.7.

Preemption. While deflation aims at minimizing the number of VM preemptions,

high resource pressure, or insufficient reserve capacity, can lead to VM preemptions.

With the knee-aware proportional policy, we are forced to preempt if the sum of

deflatability of all VMs is greater than the reclamation target: r >
∑

(ci −mi) . Our

preemption policy is to preempt VMs that are closest to their knee. That is, we

sort VMs in descending order of ci−mi
Mi

, and keep preempting VMs until we reach the

reclamation target and the newly assigned VM can begin running.

Reinflation. We also use deflation as a purely reactive mechanism. That is, VMs are

deflated only when a server is under resource pressure, and are not deflated if there

are enough resources to run in non-deflated mode. The resource pressure on a server is

continuously monitored, and the VM deflation levels are rebalanced upon each change.

We use the same proportional policies for reinflation that we use for deflation. That

is, instead of a resource deficit r, we find the resource allocations with a new resource

surplus −r. Negative values of xi in Equations 6.1, 6.2 indicate reinflation rather than

deflation, and we reinflate each VM by −xi.

6.5.3 Deflation-aware VM Placement

Assuming the above policies, the cluster manager handles each incoming VM by

placing the VM onto a server.

6.5.3.1 Placement Without Limits

Without any pre-specified reserved-capacity or overflow-factor, a VM can be placed

on any machine on the cluster—effectively a single large pool. Assigning VMs to
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servers is a mutli-dimensional bin-packing problem, and is well studied in the context

of VM consolidation [152].

Conventionally, for the online VM placement, bin-packing policies such as first-fit,

best-fit have been used [161]. These policies use resource availability (or “free space”)

on each server to guide VM placement—first-fit picks the first server with sufficient free

space, and best-fit picks the server with the most available free space. The resource

availability on a server is easy to compute as

Available = ServerCapacity−Used (6.3)

Where the Used vector is computed by adding the resource allocations of all the VMs

running on the server.

Deflatable VMs introduce an additional complexity to this bin-packing setup: since

VMs can be deflated, the conventional resource availability formulation of Equation 6.3

does not hold. Instead, we also account for the deflatability of the VMs:

Available = ServerCapacity−Used+
Deflatable

Overcommitted
(6.4)

Here, the Deflatable vector is the maximum total amount of resources that can be

reclaimed by deflation (
∑

ci −mi). We scale the deflation vector by pairwise dividing it

with the Overcommitted vector. The Overcommitted vector captures the extent

of the total deflation already done, and is computed as follows:

Overcommitted =
Committed

Used
=

∑

Mi
∑

ci
(6.5)

The idea behind scaling the deflatable vector is to prefer servers that are less

overcommitted, so as to spread the load more evenly on the cluster.
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We use this definition of availability (Equation 6.4) to compute the “fitness” of

placing a new VM onto a server. As in [101], we use the cosine similarity between the

demand vector and the availability vector to determine fitness: fitness(D,Aj) = Aj·D
|Aj||D| .

Here, D is the demand vector of the new VM, and Aj is the resource availability

vector (Eqn 6.4) of server j.

The best-fit packing policy then simply selects the server that maximizes packing

fitness. In addition to the first-fit and best-fit policy, we also implement a a “2-choices”

policy that randomly picks two servers and assigns the VM on the server with the

higher fitness function.

6.5.3.2 Placement With Usage Limits

When the reserve-capacity and overflow factors are specified, then we place VMs

into the appropriate pool by using the deflation-aware VM placement policy (such

as best-fit). Incorporating the reserve capacity and overflow factors into the VM

placement results in hierarchical allocation as shown in Figure 6.9.

6.6 Implementation

We have implemented the hybrid deflation mechanisms, knee finder, deflation

policies, and deflation-aware applications, as part of a deflation-aware cluster manager

for VMs.

Our system is comprised of two main components. A centralized cluster manager

implements and invokes the VM placement policies and generally controls the global-

state of the system. In addition, we run local deflation controllers that run on each

server. These local controllers control the deflation of VMs by responding to resource

pressure, by implementing the proportional deflation policies described in Section 6.5.

Both the centralized cluster manager and the local-controllers are implemented in

about 4,000 lines of Python and communicate with each other via a REST API.
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1 def Place (vm) :
2 i f i sH ighPr io (vm) :
3 ok = PlaceInPool (vm, HighPr io r i tyPoo l )
4 i f not ok :
5 ok = ReclaimFromOverFlow (vm) #De f l a t e or Migrate
6 i f ok :
7 PlaceInPool (vm, OverFlowPool )
8 else :
9 Reject (vm)

10 e l i f i sLowPrio (vm) :
11 ok = PlaceInPool (vm, ReserveCapPool )
12 i f not ok :
13 ok = PlaceInPool (vm, OverFlowPool ) #Can d e f l a t e
14 i f not ok :
15 Reject (vm)
16
17 def PlaceInPool (vm, pool ) :
18 s e r v e r = GetF i t t e s tSe rve r (vm) #bes t −f i t , e t c .
19 i f not s e r v e r . CanFit (vm) :
20 return False
21 return s e r v e r

Figure 6.9: VM placement with multiple pools.

Deflation Mechanisms. Our prototype is based on the KVM hypervisor [127], and

we use the libvirt API for managing VM lifecycles and for lower-level resource deflation

primitives. Our hybrid resource deflation mechanisms presented in Section 6.3 are

implemented by the per-server local controller. For hot-plugging (and unplugging)

of CPU and memory, we rely on QEMU’s agent-based hotplug. A QEMU hotplug

agent runs inside the VMs as a user-space process, and listens for hotplug commands

from the local deflation controller. The hotplug commands are passed to the VM

kernel via this agent. This allows the hotplug to be “virtualization friendly”. Unlike

physical resource hotplug where unplug is a result of a fail-stop failure, the agent-based

approach allows unplug operations to be executed in a best-effort manner by the guest

OS kernel. This increases the safety of the unplugging operations. For example, if the

guest kernel cannot safely unplug the requested amount of memory, the hot unplug
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operation is allowed to return unfinished. In this case, the memory reclaimed through

hot plug will be lower, but the safety of the operation is increased.

Our hybrid deflation approach also uses hypervisor level multiplexing of resources.

For this, we run KVM VMs inside cgroups containers, which allows us to multiplex

resources. For CPU multiplexing, we adjust the cpu shares of the VM. For memory

multiplexing, we limit the VM’s physical memory usage by limiting the memory

usage of the cgroup (mem.limit_in_bytes). Similarly, we throttle the disk and network

bandwidth using the equivalent libvirt API’s.

Knee Finder. We also record CPU performance counters on each server for inferring

the performance utility-curve knee. We use the Linux perf tool to record the architec-

tural counters (instructions_retired_any.p, cycles, and ref-cycles), and use the per-VM

counting mode (:G). The knee-finder reads the counter values both for establishing

a “baseline” performance fingerprint, and also after each deflation probe operation.

We read and store the counter values once per second for each VM. Since each probe

operation lasts about 30 seconds, this gives us 30 performance-counter samples to

detect if they show a large deviation from the baseline.

6.6.1 Deflation-aware Applications

As noted in Section 6.3, hotplug-based deflation is explicit—change in resource

allocation is visible to the guest OS and the applications. Many applications can

adjust to changing resource availability and improve their performance by changing

their scheduling policies, workload-intensity, and resource consumption. We develop

deflation-aware versions of three popular applications that allow them to gracefully

handle deflation, using simple policies and modest effort.

Memcached: Memcached is a popular user-space in-memory key-value store [7]. In

conventional operation, the memcached server is started with a fixed, maximum cache

size. Our deflation-aware memcached dynamically adjusts the maximum cache size
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based on the memory availability inside the VM. When shrinking the cache size, the

memcached object eviction algorithm (LRU) is invoked. Our implementation is based

on memcached v.1.3 and a previous dynamic memory-size version developed in [115],

and comprises of about 500 lines of modifications to the memcached server. Shrinking

the cache size may result in a lower object hit-rate, but avoids paging in memory

pages from the slow swap disk. This modification allows memcached to serve more

traffic even when the memory is deflated to below the cache size.

JVM: Garbage collected run-time environments such as the Java Virtual Machine can

also react to deflation. A similar tradeoff exists between the performance degradation

due to reducing the memory footprint vs. due to memory pressure. Reducing the heap

size results in increased garbage collection overhead, but is nevertheless favorable to

fetching pages from the swap disk. Prior work on JVM heap sizing have also explored

this tradeoff [66, 222]. In particular, the JVM’s object heap size can be adjusted

based on the memory availability. We use IBM’s J9 JVM [42] that has the ability to

change the maximum heap size during run-time. We set the max heap size to the

actual physical memory availability to avoid swapping. We implement this using the

JMX API in an agent process in the guest in Java in about 30 lines of code. Our

deflation-aware JVM allows the large class of JVM based applications to be made

memory-deflation aware.

Mesos/Spark: Distributed data processing frameworks such as Spark [228] can also

be made deflation-aware. These frameworks often run on top of cluster-management

frameworks such as Mesos [113]. Mesos essentially provides resource offers in the

form of executors to Spark, and Spark tasks run inside these executors. We develop a

deflation-aware version of Mesos that affects Spark task placement and scheduling.

Tasks running on deflated VMs can slow down the job, if other tasks on non-deflated

VMs depend on them. These task-stragglers can hurt the overall performance of data-

parallel applications like Spark [131]. Our deflation-aware Mesos, and by implication
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deflation-aware Spark, is designed to mitigate this task-straggler problem. In particular,

we reduce the number of tasks scheduled on deflated VMs. We implement our changes

as a small 20 line bash script which disables mesos executors on deflated VMs using

the mesos master HTTP API.

6.7 Experimental Evaluation

In this section, using testbed experiments and simulation, we show the performance

of our deflation framework focusing on answering the following questions:

1. What is the performance impact of deflation mechanisms and deflation-aware

applications?

2. What is the effectiveness of knee-aware deflation?

3. How do cluster policies impact cluster utilization and preemptions?

6.7.1 Environment and Workloads

We use the deflation-based cluster management system described previously in

Section 6.6 to perform all our experiments. We run applications in KVM VMs running

on Ubuntu 16.04 (Linux 4.10.3). Both the host and guest OS are x86-64. Our

experiments are performed on a cluster of Dell R310 servers with 2-way Intel Xeon v4

E5-2620 CPUs, and a total of 16 cores per machine. We disable hyperthreading to

reduce hardware interference. Each machine has 64 GB DDR4 memory, and a 1TB

magnetic HDD, and we use 1GigE networking. The VMs are configured with 8 vCPUs

and 8 GB memory, and run the same software configuration as the host OS. We run

the following applications and workloads inside the VMs.

Memcached. We use memcached as a memory intensive workload. We drive

memcached using YCSB’s workload “B” configuration with 40 million records and

operations, and a 95% read ratio [79]. The dataset is loaded into memory and uses
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Figure 6.10: Hybrid deflation improves performance for both CPU and memory
deflation.

around 4.5 GB in total. Since our VMs have 8GB allocated memory, the remaining

3.5 GB is used by the guest OS, disk, and network buffers.

Kernel Compile. We use the standard Linux kernel compilation benchmark as a

CPU intensive workload, and as a workload that heavily relies on the OS buffer (page)

cache for performance. We compile Linux 4.13 using four threads.

SPECjbb. We use SPECjbb 2015 with IBM’s J9 JVM as a benchmark for Java

server applications. We drive SPECjbb in the “fixed IR” mode, with a rate of 2000

requests per second. The IBM J9 JVM enables dynamic adjusting of JVM heap sizes.

In this configuration, the jbb workload has a maximum heap size of 4.5 GB.

Spark. We use Spark v 1.6, running on Mesos 1.0. We use the Alternating Least

Squares (ALS) machine learning workload on the MovieLens-large dataset.

6.7.2 Deflation Mechanisms

The choice of deflation mechanisms developed in Section 6.3 can have an impact

on application performance under deflation. We compare the application performance

with the transparent, hotplug, and hybrid deflation mechanisms in Figure 6.10.

The effectiveness of hybrid deflation is highlighted in the case of memory defla-

tion (Figures 6.10a, 6.10b). Memory hotplug allows the guest OS in the case of

kernel-compile workload to shrink its memory usage by evicting items from its buffer

cache—mitigating the effect of resource pressure, and resulting in a 2× improvement
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Figure 6.11: Deflation-aware application performance

in performance. While memory hotplug yields superior performance compared to

host-swapping, unplugging beyond the safety threshold may result in applications

getting terminated. We see this when kernel-compile is deflated by 75% in Figure 6.10b

and memcached is deflated by 50% in Figure 6.10a. Since the hybrid deflation mecha-

nism uses hotplug only below the safety threshold, it does not result in application

termination.

For CPU deflation, Figure 6.10c shows the performance of the kernel compile

workload. The hybrid approach uses CPU hotplug in this case, and outperforms

transparent CPU multiplexing by 20%.

6.7.3 Deflation-aware applications

We now evaluate the effectiveness of making applications deflation-aware. In par-

ticular, we shall compare the performance under deflation of unmodified vs. deflation-

aware variant of applications developed earlier in Section 6.6.1.

Memcached: Our deflation-aware memcached adjusts the size of the memcached

memory usage based on the memory deflation levels. Figure 6.11a shows memcached

performance (in GETS/s) for different values of memory deflation. With the cache-

sizing modification, there is no significant decrease in performance up to 40% deflation,

and at 50% deflation, it provides 6× the throughput of the unmodified version.
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This shows the effectiveness of sizing an application-level cache like memcached

to the memory availability. At high deflation levels, the unmodified version has to

read some objects from swap, which is a slow operation bound by the disk-speed.

Additionally, these slow GET requests (that hit swap), increase system load and

decrease the overall throughput of the application. The deflation-aware memcached

avoids this by sizing the cache to fit in the available memory, and sees a higher number

of cache misses because it has evicted items that wouldn’t fit in the memory available.

But by doing so, it avoids swapping and obtains a much higher throughput, yielding a

higher effective cache hit rate in terms of GETS/s.

JVM: Our deflation-aware JVM adjusts the size of the JVM memory heap, and reduces

page swap-in rates when under memory pressure by increasing the frequency of garbage

collection. Figure 6.11b shows the response times of the SPECjbb benchmark both

with and without the deflation-aware JVM modifications. Deflation-aware JVM

provides 20% better response times at 50% and 55% deflation.

6.7.4 Knee-aware Proportional Deflation

The performance of deflatable VMs is dictated by how much they are deflated by,

which is in turn determined by the knee-aware proportional deflation policy. We now

evaluate the effectiveness of this policy in terms of how application performance is

impacted. In particular, we are interested in comparing against the utility-maximizing

resource allocation policy, that determines the resource allocation based on utility

curves, and provides the “optimal” resource partitioning that maximizes the overall

performance of all the VMs. This utility-maximization approach needs full utility

curves and is impractical in most settings. We also compare against a simple pro-

portional deflation policy that is not knee-aware, and can inadvertently deflate VMs

below their knee.
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Figure 6.12: Compared to optimal utility maximization, performance of VMs with
the knee-aware proportional deflation is within 10%-50% of the optimal.

Since the utility maximization approach requires the entire utility curve, for this

experiment, we pre-generate utility curves for the memcached, kernel-compile, and

SPECjbb applications. We evaluate the average performance of the applications

(normalized to no deflation) in Figure 6.12 (top). We increase the resource pressure on

the server by launching more deflatable VMs, which also increases the overcommitment

ratio as VM deflation increases to accommodate more VMs. The memcached, kernel-

compile, and SPECjbb applications are equally distributed among the VMs. The

overcommitment ratio is the ratio of resources committed and resources available

(server capacity), and an overcommitment ratio of 1x means that the server’s resources

are fully committed (i.e., no overcommitment).

187



Increasing overcommitment results in highly deflated VMs, which results in de-

creasing application performance, as we can see from Figure 6.12. Importantly, up to

an overcommitment ratio of 2×, the knee-aware proportional deflation policy is within

18% of the optimal utility-maximizing approach. At higher overcommitment levels of

4.5×, knee-aware deflation is still within 50% of the optimal. The simple proportional

deflation policy, which is not knee-aware, can result in VMs being deflated to below

the knee (and even preempted). Thus the knee-aware policy shows higher utility than

the simple proportional policy.

Since the difference in utility (performance) is due to the differences in resource

allocation, in Figure 6.12 (bottom), we show the difference in resource allocation of

the proportional and knee-aware proportional policy compared to the optimal utility-

maximizing approach. For each VM, we compute the difference between allocation

vectors produced by the proportional deflation policies (r) and the utility-maximizing

allocation (rOPT) as: RMS(rOPT,r). We see that the root mean square error is

generally high—up to 50% for the knee-aware proportional policy. However we note

that even though the differences in resource allocations may be high, the difference

in performance is low (20%). This is because although two resource allocations may

have a large difference, their difference in performance is minimal due to sublinear

nature of utility curves.

Result: Even though knee-aware proportional deflation is utility agnostic, reduction

in performance compared to the optimal is under 25% even at 2.5× overcommitment.

6.7.5 Cluster Policies

To measure the impact of VM overcommitment on cluster-wide performance,

we run a mix of VMs on an 8-node cluster running SpecJBB, kernel-compile, and

memcached. We increase the number of VMs to increase the overcommitment, and

observe the effect on VM performance. We define the goodput of a VM as is its
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performance normalized to no deflation, and so the cluster goodput is the aggregate

across all VMs. Increasing the number of VMs to an increase in the overall cluster

goodput, shown in Figure 6.14a. We see that the cluster overcommitment results in an

increase in cluster goodput up to about 2× overbooking, where the goodput peaks at

about 1.4× the non overcommitted cluster. This implies that we are able to get 40%

more work out of the cluster. However we reach a tipping point, as the goodput drops

at higher overcommitment levels, and the individual performance of VMs decreases

sharply near the knee.

At a cluster-level, incoming VMs are placed onto servers using the VM placement

policies described in Section 6.5.3. To evaluate the impact of different VM placement

policies on large-scale clusters, we also implement a trace-based cluster simulator

that allows us to exercise different policy parameters. We use the Eucalyptus cloud

traces [23] to obtain VM arrivals, lifetimes, and VM sizes. We assign some fraction

of VMs as low-priority VMs that are either deflated or preempted. We also use real

application utility curves in these simulations, and use the knees obtained using the

knee-finder. Thus in addition to simulating cluster-wide policies, this allows us to also

study the performance effects of deflation at a cluster-wide level.

The placement of VMs onto servers affects the server overcommitment, the deflation

levels of VMs, and in extreme cases of deflation, also the number of VM preemptions.

We examine the server overcommitment and preemptions with the different placement

policies. Figure 6.13 shows the results when using the “DS1” Eucalyptus cloud trace

with 9,000 VMs on a simulated 100 node cluster. We assume that 50% of all VMs are

low-priority and can be deflated, while the rest are high-priority non-deflatable VMs.

On the left, we see the overcommitment levels of different servers in the cluster.

With deflation, our goal is to maximize the overcommitment of servers, while at

the same time reducing the preemptions. All policies yield similar levels of server
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Figure 6.13: Server overcommitment and preemption probabilities (right axis) with
different VM placement policies.

overcommitment. The differences in the placement algorithms are masked by the use

of deflatable VMs, since “mistakes” in VM placement can be “fixed” by deflation.

Figure 6.13 also shows the effect of cluster management policies on the preemption

probability. Without reserved capacity and without any limits on the high-priority

pool, the preemption probability with the best-fit, first-fit, and 2-choices placement

policies is under 0.01.

Since the distribution of low:high priority VMs is known (50:50), we can also control

deflation/preemption using the reserved capacity and high-priority pool-capacity knobs.

Specifically, we set the high-priority pool to be 50% of the cluster capacity. With

0% reserved capacity, deflatable VMs are under a risk of preemption, and VMs are

preempted with a probability close to 0.08. Setting the reserved capacity to 50%

removes the risk of preemption, since it relies on admission control of VMs.

Deflation vs. Preemption. We have proposed deflation as an alternative to

preemption, and we now compare the techniques. VM preemptions disrupt application

availability, in addition to fault-tolerance overheads.

In these series of experiments, we again use the Eucalyptus trace and count the

number of preemptions at different cluster sizes. We assume that the low-priority VMs
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Figure 6.14: Probability of VM preemption with deflation vs. preemption-only.

use either preemption, or deflation (with the risk of getting preempted under extreme

cases). As cluster overcommitment increases, the probability of preemptions increases

for both deflation and preemption-only. The probability of deflation also depends on

the fraction of VMs that can be deflated/preempted. If the fraction of VMs that can

be deflated is low, then the average resource pressure faced by these VMs is high, and

the high deflation can result in preemptions. This can be seen in Figure 6.14b, which

shows the preemption probability when only 30% VMs are low-priority.

However, as the fraction of low-priority VMs increases, the resource pressure due

to overcommitment can be absorbed by a larger number of VMs. This reduces the

preemption probability with deflation. Figures 6.14c, 6.14d compare the preemption

probability for 50% and 70% low-priority VMs respectively. We observe that the

cluster overcommitment ratio can be increased as the fraction of the low-priority VMs
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increases, since we are able to reclaim more resources and drive up the overcommitment.

When 70% VMs are low-priority (Figure 6.14d), then the preemption probability with

deflation is zero for up to 2.3× overcommitment.

Thus deflation can reduce preemption probability when there are enough low-

priority VMs to reclaim resources from, and can prevent preemptions completely even

at overbooking levels approaching 2.3×. Alternatively, cluster sizes can be reduced

by up to 2.3×, or accommodate a bursty load 2.3× the average arrival rate, without

preempting applications.

6.7.6 Deflation in the Cloud

Currently, transient cloud servers are preempted upon resource pressure. We now

consider a scenario where cloud operators use deflation instead of preemption. In

particular, we evaluate the performance overhead when running on transient servers,

which is primarily due to the overhead of periodic checkpointing for fault-tolerance.

We model preemptions and resource pressure in the cloud context by using Amazon

EC2 spot prices. EC2 spot prices are dynamic and based on supply and demand via

an auction mechanism, and thus are a good indicator of resource pressure, with higher

prices indicating higher pressure. The magnitude of deflation depends on how high

the price has risen above a bid price. We assume that even with deflation, VMs get

preempted if spot price is > 3× bid-price—indicating that VMs can be deflated by up

to 66%.

Figure 6.15 shows the performance overhead of running on three EC2 spot instances

from June to August 2017. When using preemption only, the periodic checkpointing

overhead can be as high as 60% compared to running on non-preemptible on-demand

instances. With deflation, the overhead is halved in the case of the servers with high

preemption rate. Importantly, the performance overhead due to deflation itself is less

than 1.5%—while the rest of it is due to periodic checkpointing.
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Figure 6.15: Performance overhead of fault-tolerance when using preemption and
deflation

6.7.7 Summary and Discussion of Results

Our hybrid deflation mechanisms that combine hotplugging with transparent

multiplexing can improve performance by up to 20% (Section 6.7.2). Modifications

to make applications deflation-aware can improve performance under deflation by

6x (Section 6.7.3). CPU performance counters can be used to find the knees of

application utility curves in a black-box manner (Section 6.4.1). Combined with

knee-aware deflation, our cluster policies allow up to 2.3× cluster overcommitment

without preempting VMs (Section 6.7.5). Deflation lowers the performance overhead

of cloud transient VMs by more than 50% (Section 6.7.6).

Combined, the deflation mechanisms and policies provide many benefits. Using

deflation allows applications, even unmodified interactive ones like SPECjbb, to run

uninterrupted on low-priority transient resources. With preemption, this is only

possible with costly fault-tolerance techniques such as continuous checkpointing [182].

While deflation does degrade performance, the degradation is relatively small when the

utility curves are sublinear, which is often the case. Furthermore, simple modifications

to applications can greatly enhance their performance under deflation. For example,

SPECjbb’s performance is reduced by less than 10% at 50% deflation as shown in
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Figure 6.11b—a relatively small price to pay for uninterrupted operation, even during

resource pressure.

In addition to providing availability benefits to users and applications, we believe

that deflation is also feasible and beneficial to implement in data centers and clouds.

We have shown that deflation can provide high cluster overcommitment (2.3×), and

can be implemented effectively through hybrid mechanisms and black-box knee-finding

approaches. Thus deflation is a practical technique that allows more application types

(batch and interactive) to use low-priority resources.

6.8 Related Work

Our proposed deflation system draws upon many related techniques and systems.

Systems for Transiency. Current transient servers in the cloud offer significant cost

savings (upto 90%), but are preemptible in nature. Running applications on cloud

transient servers involves using a combination of fault tolerance and resource allocation

policies, to mitigate the performance and cost effects of preemptions. Prior work

has focussed on system [182, 197] and application [176, 180, 142, 224, 108, 209, 212]

support for handling preemptions. Deflation is motivated by the need to avoid the

performance, development, and deployment costs associated with preemption.

VM Overcommitment Mechanisms. Our deflation mechanisms rely on efficient

VM overcommitment, which have been well studied and optimized to allow data center

operators to pack more VMs onto their physical servers. Memory overcommitment

typically relies on a combination of hypervisor and guest OS mechanisms, and has

received significant attention [205, 48, 181]. Our hybrid memory deflation combines

the use of memory hotplug and hypervisor swapping. Memory ballooning is another

memory overcommitment technique with generally inferior performance to hotplug [120,

135]. The use of hotplug has also been proposed for reducing energy consumption [232].
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Our use of CPU hotplugging is partly motivated by mitigating lock-holder preemption

problems in overcommitted vCPUs [88, 158].

Virtual Cluster Consolidation. Using dynamic VM resource allocation and VM

migration is common [216] to increase cluster utilization. VMWare’s distributed

resource scheduler [103] uses per-VM reservations (minimum limits) and shares for

dynamically allocating resources—similar to our resource-pressure based local deflation

policies. Crucially, part of our contribution is inferring the minimum limits (reserva-

tions) using performance-counter based knee-finding, as well as using proportional

deflation without user-specified shares. Many approaches for performance-sensitive

resource allocation among co-located VMs have been tried [134, 109, 242, 156, 104], but

they assume some application performance model, which we do not. VM memory allo-

cations can be set using working-set estimation [235, 74, 239], utility-maximzing [115],

or market-based approaches [45, 59].

Knee Finding. Finding the knee or the inflection point of utility curves has a long

line of related work—JAWS [102] uses the design of experiments to find the point

on the knee, and Kneedle [171] uses curvature based techniques to specify and find

knees. Curvature based techniques can certainly be applied in our context. However,

since our knee finding is “online” and cannot have a profiling stage, the number of

different points that we can infer application performance on, is small (~5). This

makes curvature based and other techniques more challenging to apply. However, a

more principled approach to knee-finding is part of future work.

Black-box knee finding is a far more daunting, due to the heterogeneity of applica-

tions, hardware and software configurations, etc., which make modeling application

performance using externally visible metrics challenging. Our use of hardware per-

formance counters to estimate performance knees is based on research in using per-

formance counters to identify performance interference [157, 236, 87]. We emphasize

that in our context, we only seek to identify a large change change in performance
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counter values, since building a general performance model for arbitrary applications

is extremely challenging.

Elastic Auto-scaling. Vertical elastic scaling allows VM resources to be dynamically

adjusted to react to changing workloads, to meet some target SLA [138]. Elastic scal-

ing often uses control-theoretic [121] and other autonomic-computing techniques [46].

Elastic scaling is typically applied on a per-application or a per-server level, whereas

deflation is a cluster-wide technique. Application performance models and workload

prediction is a key component of elastic scaling [100, 155, 160, 187]. In contrast, defla-

tion is a black-box, application agnostic, and reactive technique for handling resource

pressure. Vertical elastic scaling has mostly been focused on CPU elasticity and

uses existing VM overcommitment mechanisms such as multiplexing. Our deflatable

VMs use a combination of overcommitment mechanisms that are adapt to application

resource usage, and we consider the simultaenous deflation of all resources. Deflation

also exposes an explicit performance tradeoff, whereas elastic scaling approaches

typically only reclaim unused resources.

Elastic Applications. Deflation-tolerance and resource-elasticity are important

attributes found in many applications. We have shown that many applications and

operating system components are deflation-tolerant by default, and simple modifi-

cations can increase this tolerance. Dynamic heap sizing [66, 70, 222] is a popular

technique for improving memory-elasticity of applications. The memory elasticity of

data-parallel applications is enhanced in [117, 96]. Application-level ballooning [169]

can also improve memory footprint of virtualized applications. Applications can also

respond to deflation by serving less optional content [128], by reducing the quality of

their results [195], or by giving them incentives for improved efficiency [174, 59].
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6.9 Deflation Summary

In this chapter we proposed the notion of resource deflation as an alternative to

preemption, for running low-priority applications. Deflatable VMs allow applications

to continue running even under resource pressure, albeit at a lower performance.

Our hybrid deflation mechanisms that use resource hotplugging minimize the per-

formance impact of deflation. The performance-counter based knee-finding, along

with proportional deflation policies, ensures that VMs are deflated to safe levels

while maximizing overcommitment. Our mechanisms, policies, and deflation-aware

applications allow cluster resources to be overcommitted by up to 2.3×, and result in

50% lower performance overhead compared to preemption in cloud spot markets.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Thesis Summary

Transient resource availability represents an exciting and important resource

allocation model. In this dissertation, we have demonstrated the usefulness of the

transiency-specific mechanisms and policies. This thesis explores the challenges posed

by transient servers, and proposed fault-tolerance techniques and resource-management

policies that enable a wide range of applications to make effective use of transient

servers, especially in public cloud environments. We developed several new techniques

that combine fault-tolerance techniques with transiency-specific resource management,

that enable a wide range of applications to make effective use of low-cost cloud

transient servers. We develop four systems that demonstrate the new contributions

in fault-tolerance, transient resource allocation, cloud abstractions, and transient

resource reclamation:

Interactive Services On Transient Servers. The revocable nature of transient

servers leads to frequent downtimes for long-running interactive applications such as

web services. We developed fault-tolerance mechanisms and risk-management policies

as part of a derivative cloud called SpotCheck, which allows unmodified interactive

applications to make use of cloud transient servers with minimal downtime and at low

cost. SpotCheck is a derivative IaaS cloud that offers low-cost, high-availability servers

using cheap but volatile servers from a native IaaS platforms. To do this, SpotCheck

simultaneously ensures high availability, reduces the risk of mass server revocations,

maintains high performance for applications, and keeps the costs down. We designed
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SpotCheck to balance these competing goals. SpotCheck is able to provide more than

four 9’s availability to its customers, which is more than 10× that provided by the

native spot servers. At the same time, SpotCheck’s VMs cost nearly 5× less than the

equivalent on-demand servers

Batch-Interactive Data-Intensive Processing On Transient Servers. Chap-

ter 4 looked at the challenges of another class of applications—batch-interactive

distributed data processing. I proposed the use of periodic application-level dis-

tributed checkpointing developed policies for server selection that minimize both

fault-tolerance overheads and computation costs. The Flint system extends Spark

with the aforementioned checkpointing and server selection tasks, and runs unmodified

batch and batch-interactive applications on low-cost cloud transient servers while

minimizing the performance degradation due to revocations.

Portfolio-driven Transient Resource Management. Server portfolios, proposed

in Chapter 5, represent a generalization and evolution of the resource management

policies proposed in the earlier chapters. Adapting portfolio theory to the transient

server context allows the efficient construction of heterogenous transient sever clusters,

that can be tailored to different applications. We implemented server portfolios as

part of the ExoSphere system, which is a transiency aware cluster manager based

on Mesos. Portfolios, along with ExoSphere’s transiency-API, allow a wide range

of distributed applications to define their own fault-tolerance and risk-management

policies.

Resource Deflation For Transient Resource Reclamation. Finally, this thesis

also asks the question whether it is possible to achieve transient resource allocation

through different mechanisms, and not just through server preemption/revocation.

Chapter 6 proposes and discusses one such approach: resource deflation, which is a

technique for transient resource reclamation. Deflation generalizes revocation, and

trades off availability for reduced application performance. Our deflation-based cluster
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manager extends virtual machine overcommitment techniques to reduce the overhead

of reclaiming resources; uses hardware performance counters to infer the lower limits

of deflation; and uses proportional deflation policies to manage multiple low and high

priority applications. Deflation increases server utilizations, and allows cloud and

data center operators to increase the resource overcommitment of their computing

infrastructure.

7.2 Broader Applicability Concerns

In this section, we discuss some of the concerns about the broader applicability of

the work proposed in this thesis. A large part of this thesis examines challenges and

solutions for running different classes of applications on top of cloud transient servers.

The low-cost transient servers offered by large public cloud platforms provide a good

environment within which to examine and address these challenges. However, some of

the specific characteristics of contemporary transient server offerings can influence the

design of transiency-mitigation solutions and systems. Since transiency arises in other

contexts (such as energy efficient and enterprise data centers), it is important to have

general solutions that do not overly rely on the quirks and vagaries of cloud transient

servers. For example, although exploiting a pricing quirk such as EC2’s “free partial

hour if revoked” can indeed lower costs [108, 106], such techniques may not carry over

across time and cloud platforms, if these peculiarities are discontinued or not adopted

by other cloud platforms. We have been deliberate in our attempts to minimize the

use of such quirks—nevertheless due to the applied nature of our work, some concerns

can remain. Below, we list some of the key assumptions made throughout this thesis,

and comment and speculate on their validity in other contexts:

Revocation Warning: SpotCheck’s bounded-time live migration relies on the pres-

ence of a small revocation warning. We believe that revocation warnings will

continue to exist in cloud and data center environments, since transient server
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unavailability is triggered by resource pressure, and distinct from sudden un-

avoidable fail-stop failures. Green data centers could expose the UPS warning

to applications, for instance.

Price/Availability Information: Flint leverages publicly available price and avail-

ability information (mean and correlations) provided by Amazon EC2, to mini-

mize the cost and performance overhead of running applications on transient

servers. However, this information may not be directly available in all cases—

Google’s and Microsoft’s transient servers do not provide such information for

instance. However, we speculate that to incentivize transient server use, public

clouds ought to provide more details about the availability and mitigate the

abruptness of revocations. For instance, Amazon recently updated their EC2

spot instance pricing to take into account longer term supply/demand character-

istics and have lower volatility [57, 162]. This limitation does not apply in the

case of private data centers that maintain detailed availability and revocation

information, and systems like Flint can be used as intended.

Multiple Heterogeneous Server Types: One of the major assumption in SpotCheck,

Flint, and ExoSphere is the presence of a large number of heterogenous server

types that do not all share the same fate. That is, we assume that revocations

are not completely correlated for all the servers, and that we can exploit this to

reduce risk by diversifying. In large public clouds that have to provide different

services to customers with different needs, it seems likely that this heterogeneity

in usage patterns will continue to exist. In smaller data centers, resource man-

agement policies that operate on a per rack/pod/zone level may provide the

required heterogeneity. Moreover, information gathered by private data center

operators about the utilizations, workloads, etc., may allow us to treat individual

hardware servers as distinct “markets” with different availability characteristics.
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Non-adversarial Resource Provider: Finally, most of our systems basically serve

as “middleware” that implement transiency-mitigation policies, and whose opera-

tion does not require any special co-operation with the underlying cloud platform.

Our work assumes that the cloud platform will not actively hinder deploying

applications using our systems and techniques. Transient resources only increase

utilization and are good for both the resource provider and consumer, and we

see very little reason why providers should violate their neutrality. We have not

looked at the “second order effects” of our proposed systems. While it is true

that increased use of transient servers will drive up their price and/or lower their

availability, it must be noted that transient and on-demand servers come from

the same pool of servers. Thus an increase in use of transient servers should see

a corresponding decline in use of on-demand servers, thereby increasing the the

supply of transient servers. However, it is possible that increasing popularity

of transient servers results in higher volatility, and thus, more frequent revoca-

tions, reducing their appeal. However, we have shown that our fault-tolerance

techniques even work with revocation rates that are 10× higher than current re-

vocation rates, and increased volatility is a concern only for transiency-oblivious

systems.

Finally, resource deflation presented in Chapter 6 looks at transiency from the

perspective of resource reclamation, and none of the above concerns apply. Since

virtualized clusters already support overcommitment mechanisms, we argue that

resource deflation is a general purpose technique that can be adopted by both public

clouds and private data centers. While we showed that deflation is better for application

availability and performance, and even increases cluster utilization, it is certainly more

complex to implement for the resource provider compared to preemption. However,

we argue that increased utilization and application experience justifies this extra

complexity, and the increasing robustness of overcommitment mechanisms makes
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deflation an appealing option. We are already seeing public clouds offer dynamic

resource allocation in the form of burstable instances [209], paving a path for deflation-

like techniques.

7.3 Future Work

Transiency mechanisms such as deflation may also need to be extended and

generalized, especially in green data center environments, where their applicability

has yet to be considered.

7.3.1 Applications

As transient availability becomes more pervasive, it may necessitate incorporating

transiency support in a wider gamut of applications.

Distributed Machine Learning. Transient servers can provide the massive amounts

of computational resources required by deep learning pipelines for tasks such as image

and speech recognition, at low costs. Current deep learning applications require a

large amount of model training on large clusters. However, transient server revocations

lead to a loss of the in-memory state (the model parameters), and causes unnecessary

slow-downs. Incorporating transiency awareness into distributed machine learning

frameworks such TensorFlow [43] involves many challenges:

• Handling the effect of revocations on distributed data flow applications.

• How the asynchronous nature of machine learning algorithms interacts with

varying degrees of parallelism due to revocations.

• Model checkpointing policies that go beyond periodic checkpointing, and take

into account the program graph structure explicitly.

Load Balancing. Another popular class of applications that can run on transient

servers are clustered web services that use load balancers. Such applications also
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require strict quality of service (QoS) guarantees, which is challenging due to the

fluctuating cluster sizes due to revocations. Such a system would require heterogenous

server selection policies to minimize large numbers of concurrent revocations, as well

as application performance models that capture the effect of intermittent (partial)

cluster failures.

7.3.2 Techniques

Another major direction for future work is to enhance some of the policies developed

as part of this thesis.

Lazy Checkpointing For Spark. The Flint system uses periodic checkpointing of

Spark RDD’s. Although we showed that this checkpointing overhead is small, and

reduces the program running time by less than 10%, an alternate approach is to

instead only checkpoint RDDs after the revocation warning. Such a lazy checkpointing

approach is not generally safe, since the time to completely write a checkpoint depends

on the size of the RDD and the disk write speeds. However, it would be interesting to

explore under what scenarios such a lazy checkpointing approach would be safe, and

compare the performance with the current periodic checkpointing policy.

Online Portfolio Construction. The ExoSphere system uses the classic Modern

Portfolio Theory to construct server portfolios. However, many alternate techniques

for portfolio construction exist. One promising direction for improvement is portfolio

rebalancing: adjusting the portfolio periodically based on changing market characteris-

tics. Universal portfolios [80] using no-regret learning are potentially viable approaches

for constantly rebalancing portfolios [196], which may be required in highly volatile

market scenarios where the covariances cannot be assumed to be stable over time.

Deflation-aware Distributed Applications. The resource deflation paradigm

proposed in the previous chapter allows unmodified applications to run on transient

(but not necessarily preemptible) resources. Just as revocation-aware applications
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such as Flint provide significant benefits over their transiency-oblivious counterparts,

investigating deflation-aware applications can also be a fruitful endeavor. In particular,

distributed applications for data processing and scientific computing (such as Spark

and MPI respectively) can be made deflation-aware. Deflation-aware applications

have an option of voluntarily relinquishing resources under resource pressure, allowing

them to be strategic about their overall resource footprint.
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APPENDIX

THE ROLE OF BIDDING IN TRANSIENT CLOUD

SERVER MARKETS

Cloud platforms now sell surplus idle server capacity at discounted prices to users

to gain additional revenue. In some cases, transient server pricing can be dynamic and

be governed through supply and demand. Amazon EC2 uses a market mechanism to

sell this capacity where users place a bid for servers, and EC2 allocates them if the bid

is higher than the spot price, which varies continuously based on supply and demand.

When the spot price rises above a user’s bid price, EC2 revokes the servers. EC2

determines the spot price by running a sealed-bid multi-unit uniform price auction [62].

Note that the underlying supply of surplus servers in the spot pool also changes, since

EC2 may take resources from the spot pool to allocate new on-demand or reserved

instances. Thus, the spot price changes dynamically both as users submit new bids,

and as the spot pool’s capacity changes.

Amazon conducts a second-price auction for their spot instances. Users place a

single, fixed bid, which represents the maximum hourly price that they are willing to

pay. The market price is based on all the bids and the available supply. Importantly,

all users pay the same market price, which may be lower than the bid. If the market

price increases above the user’s bid, then the spot instance is revoked after a small

(120 second) warning.

Spot price dynamics and the potential of unexpectedly losing resources introduces

additional new complexities, which applications are typically not designed to handle.

Addressing these complexities is an active research area. In particular, there has
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been substantial research on “optimal” bidding strategies for various applications

and scenarios [194, 198, 227, 240]. In general, a bidding strategy determines the

lowest bid price that ensures an application satisfies a performance target with high

probability, e.g., finishing within a deadline. EC2 publishes three months of spot

price history—and there are archives over multiple years—which prior work analyzes

extensively to model price characteristics [119, 149, 210, 219, 234].

Designing bidding strategies can be highly complex, especially if a workload is

distributed and users have to bid on many resources. In this case, requesting multiple

units of the same resource with the same bid is risky, since all resources are governed

by the same spot price, such that if one resource is revoked, they all are revoked.

To reduce the probability of concurrent revocations, users might either spread their

requests across many different resource types with different spot prices or place many

different bids for different units of the same resource type. Bidding’s complexity may

be one reason why, despite its extremely low prices (50-90% less than on-demand

instances), the spot market has low utilization [112].

EC2’s cloud has attempted to reduce complexity by introducing tools, such as

SpotFleets, which enable users to specify bidding policies that apply to large groups

of resources from different markets. SpotFleets also includes default bidding policies

for users that do not want to design their own policy. However, while bidding is a

complex problem in theory, we argue that it is not a significant problem in practice

due to at least three reasons.

Wide Range of Optimal Bids. Our spot price data analysis shows there is a wide

band of bid prices that all yield optimal results, such that any bid within this range has

a similar cost and availability as highly sophisticated bidding strategies. One reason

this is not readily apparent is that prior work often compares the cost and performance

of a bidding strategy to using higher-priced on-demand servers. However, in today’s

market, with low and stable prices, bidding strategies need not be sophisticated to
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reap significant savings compared to on-demand servers. Related work should instead

compare their performance and cost with “dumb” bidding strategies.

Resources Always Available. Due to the large number of spot markets and their

size, there are always many markets available where prices are low and stable, even

when some markets are experiencing price spikes. Hence, upon revocation, a simple

strategy that provisions a new spot server in another spot market and migrates an

application to it is better than waiting for a spot price spike to subside. This migration

approach nearly eliminates the unavailability of spot servers and reduces the practical

impact of using bidding as a tool to control availability.

No Penalty for High Bids. Current spot market rules permit users to bid the

maximum allowed bid price within each market with no penalty. Thus, sophisticated

users can ensure extremely high availabilities on spot instances by placing maximum

bids with little or no probability of paying a high price if the spot price were to rise.

Finally, not only do different bidding strategies yield little difference in their

performance and cost, but some of our insights above are reflected in the default

bidding strategies for EC2’s SpotFleets tool [22]. Thus, Amazon is already nudging

users to employ simple bidding strategies [20]. Based on these insights, we argue that

users should ignore the potential complexity of bidding, and simply procure cheap

EC2 spot servers using simple bidding strategies that we outline (or using Amazon’s

tools to employ such strategies). Rather than focusing on bidding, researchers should

instead focus on modifying applications i) to gracefully handle unexpected resource

revocation and allocation and ii) to efficiently seek out and migrate to the lowest cost

resources. Selecting the best spot server to use at any time, i.e., the one with the lowest

cost and best performance, is the primary problem that applications must address

when using variable-priced resources. That is, if a resource’s price rises significantly,

then applications should be flexible enough to simply migrate to lower cost resources
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elsewhere in the cloud. For applications willing to adopt it, this approach can yield

significant cost savings with little performance impact.

A.1 Related Work

Since EC2 introduced its spot market, there has been significant research both

on analyzing and modeling spot prices and developing bidding strategies based on

real data and models. One of the first papers analyzing spot price data raised

questions about whether EC2’s mechanisms for setting the spot price were market

driven [62]. However, as the authors note later, the characteristics of the spot

price changed, making it consistent with a market driven allocation [62]. A number

of related papers also analyze spot price data to better understand its statistical

characteristics [119, 149, 198, 210, 219, 234]. Analyzing and modeling spot price data

is a prerequisite to developing bidding strategies that select the optimal bid to ensure

a target level of performance at the minimum cost.

Recent work focuses on optimal bidding for MapReduce jobs. In [240], the authors

focus on selecting a bid such that, with high probability, the completion time on

spot instances is less than twice the running time on on-demand instances. The

paper examines multiple scenarios: quitting job execution upon revocation, or making

persistent requests, i.e waiting until price drops to resuming execution. In all variants,

the work only considers bidding in a single spot market: if the price rises too high and

instances are not available the MapReduce job must either quit or continue processing

with fewer resources.

As we discuss, EC2 (and the cloud in general) is large enough that resources are

nearly always available somewhere. Thus, unless an application is highly optimized

for specific types of server architectures (which MapReduce is not) or has geographical

constraints, waiting for the price of resources to drop is unnecessary. Related work

makes similar assumptions about market constraints but focuses on different applica-
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tions. For example, prior work develops bidding strategies for jobs with deadlines [227],

such that it chooses a bid for a particular spot market so the job finishes before its

deadline with high probability.

Restricting the problem to only a single spot market has also resulted in prior

research focusing on the wrong price characteristics. Specifically, if restricted to a

single spot market, the only important characteristic is availability, or the percentage

of time the bid price is below the spot price. However, if we assume applications should

not restrict themselves to only a single spot market, then availability is no longer

important, as other cloud resources are available in other markets. In this scenario,

the frequency of revocations is the primary attribute that affects performance, since

every revocation incurs an overhead to request a new instance and migrate to it.

Unfortunately, modeling revocations is not as straightforward as modeling availabil-

ity. Modeling availability simply requires fitting a probability density function (PDF)

to a histogram over different spot prices, which gives a probability the spot price is

equal to a particular value. The corresponding CDF then directly gives availability,

which is equal to the probability the spot price is above a given value. Prior work

models availability using both Pareto and exponential distributions [240]. In contrast,

revocations are discrete events with inter-arrival times that are not cleanly captured by

a single number. As in any queuing model, the distribution of inter-arrival times is also

important. However, the frequency and distribution of revocation events is a function

of the bid, and may be different at different bid prices. Even though revocations are

the primary attribute that affects performance, we know of no prior work that models

the distribution of these events at different bid prices in EC2.

Finally, in many cases, as in [194, 227], bidding strategies are with respect to

idealized spot price distributions, e.g., mixed Gaussian, exponential, Pareto, etc., and

not real data. These idealized models are often based on examining only a few markets

even though thousands of spot markets exist, which have vastly different characteristics.
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These characteristics are not likely captured by a one-size-fits-all model. Further,

as [62] notes, price characteristics may change frequently due to changes in EC2’s

supply, demand, or its pricing algorithm, which may render models based on prior

data unreliable. In many cases above, proposed solutions actually depend on the type

and attributes of the particular model used in the analysis. As we discuss, though, the

bidding problem in today’s market (and possibly in future markets) is a red herring

that is not particularly important for maximizing performance and minimizing costs

using spot instances.

A.2 Do Optimal Bidding Strategies Matter?

To understand whether (and how much) optimal bidding strategies matter in EC2,

we conduct a data-driven analysis of spot price data over a six month period from

March to August 2015 (and longer periods where stated), as well as show aggregate

statistics from every EC2 spot market. For ease of exposition, we focus on the most

popular instance types in the most popular region, i.e., Linux instances in the us-east-1

region.

Bidding strategies optimize the cost-availability tradeoff for spot instances: as

a user increases their bid, they may pay more per-hour, but their availability also

increases. However, spot price data across many markets shows that there is a wide

range of “optimal” bids that essentially yield the same availability for the same cost.

To illustrate, Figure 2.4(a) shows a CDF of availability for instance types in five

different markets over our six month period, where the x-axis is a user’s bid normalized

to the on-demand price, i.e., 1 is 1× the on-demand price, 2 is 2× the on-demand

price, etc. As expected, availability monotonically increases with the bid. However, in

each case, the CDF has a steep incline followed by an extremely long tail, such that

there is little increase in availability after some bid threshold and only bids that fall

within the steep range of the incline yield different availabilities. As the graph shows,
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this range of bids is quite small, providing only a narrow window where changing a

bid will have a significant effect on availability.

Similarly, Figure 2.4(b) shows the cost a user would pay for the same instance

types and the same bids. In this case, the cost on the y-axis is a fraction of the

on-demand cost, i.e., 0.5 means the expected cost is 0.5× the on-demand price. As

with availability, the cost is monotonically increasing with the bid amount. However,

just as with availability, the cost curve has a long tail, such that higher bids result

in little or no increase in cost. The only exception in these markets is the c3.xlarge

instance type, which experiences two abrupt increases in cost at bid levels of 1.2×

and 4.75× the on-demand price. The other instance types have nearly the same cost

regardless of the bid level. This occurs because most markets always have a low and

stable spot price, with the average spot price <0.2× the on-demand price. Just as

with availability, bidding has little effect on the cost of spot instances.

Finally, as we discuss in the previous section, the frequency of revocations, as

indicated by their mean-time-between-revocations (MTBR), is another important

metric, since revocations incur overhead for applications that migrate to other available

resources. Thus, Figure 2.4(c) shows the MTBR for different bids. The figure shows

that MTBRs range from tens to hundreds of hours. In addition, the MTBRs also have

a long tail in all but one market, such that bidding high does not significantly increase

the MTBR and there is a wide range of bids that effectively yield the same MTBR.

While the analysis above uses only five spot markets as illustrative examples,

we analyzed these properties in over 1500 spot markets over our six month period.

Figure A.1 plots the range of bids such that any bid within the range is within 10% of

the optimal bid for availability, cost, and MTBR. The optimal bid is simply the bid

that yields the highest availability and MTBR for the lowest cost. Thus, we consider

every bid within the range as effectively optimal that yields near the same result. As

above, the y-axis is the length of the bid range as a factor of the on-demand price.
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Figure A.1: Range of bids for which availability, cost, and MTBR is within 10% of
optimal across 1500 markets.

Thus, a bid range length of 2 indicates a range of [b,b +(2∗D)] for some bid b where

D is the on-demand price. A smaller range indicates higher bid sensitivity, where an

application should carefully select a bid from a small range of near-optimal bids. In

contrast, a larger range indicates a low bid sensitivity.

We see from Figure A.1 that the bid ranges for the availability, cost, and MTBR

are generally quite large, with a bid range near 9. Note that EC2 imposes a maximum

bid of 10× the on-demand price. These results suggest that picking nearly any bid

within the range of allowed bids yields the same optimal result. Put another way,

users would need to “try hard” to make a “bad” bid by selecting a bid price that is

exceedingly low compared to the average spot price. Thus, in today’s market, due to

low prices (resulting in high availability) and price stability (resulting in long MTBRs),

spot revocations are rare, but unavoidable, regardless of a user’s bid.

A.3 Future Of Spot Markets

Will markets get more volatile? We have examined price data over the past six

years (in addition to our six month traces) and found that bidding has never been
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Figure A.2: Spot price distribution for m1.large over the years. The number above
each boxplot denotes the skewness of the distribution.

a significant problem throughout the history of EC2’s spot market. For example,

as shown in Figure A.2, while the average spot price of the m1.large instance type

since its inception has decreased (in accordance with decreasing on-demand prices),

the spread of spot prices has not increased significantly either. However, while our

analysis of historical spot price data leads us to conclude that bidding has never been

an important problem, it is possible that it may become an important problem in the

future if price characteristics change.

Will prices rise? A substantial increase in demand will undoubtedly cause an increase

in average spot prices and any substantial price increase will cause price-sensitive spot

users to become “priced out” of the market (which in turn may reduce demand and

cause prices to drop). The second-order effects due to widespread adoption of the

migration strategies we propose remains unclear, and a rigorous analysis, through

game-theoretic or other means, is an open question. However, anecdotal evidence

suggests that such effects may not come to pass—due to the significant capacity

additions being made by all cloud providers on a regular basis, implying that there

may always be some surplus capacity despite increasing demand in both the spot and

on-demand markets.
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Fixed rate. Google and Microsoft sell surplus preemptible servers at a fixed

discounted price. This predictable pricing may benefit some users, since even Amazon

has launched similar “Spot blocks” [21] instances, which have a guaranteed lifetime

of six hours, but come at an extra cost (though still cheaper than the on-demand

instances). Although researchers have argued that auctions are better at maximizing

revenues than using fixed discounted prices, their applicability in the cloud domain is

unclear. Specifically, spot and on-demand servers come from the same resource pool,

and the cloud operator is likely to be more interested in increasing revenues from

higher-priced on-demand servers that trying to maximize incremental revenue from

much lower-priced surplus servers (either through auctions or fixed discounts).
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