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Abstract 
Co-clustering exploits co-occurrence information, from 
contingency tables to cluster both rows and columns 
simultaneously.  It has been established that co-clustering 
produces a better clustering structure as compared to 
conventional methods of clustering.  So far, co-clustering 
has only been used as a technique for producing hard 
clusters, which might be inadequate for applications such as 
document clustering.  In this paper, we present an algorithm 
using the information theoretic approach [1] to generate 
overlapping (soft) clusters. The algorithm maintains 
probability membership for every instance to each of the 
possible clusters and iteratively tunes these membership 
values.  The theoretical formulation of the criterion function 
is presented first, followed by the actual algorithm.  We 
evaluate the algorithm over document/word co-occurrence 
information and present experimental results.  

Introduction   
Co-clustering is a relatively new clustering technique that 
looks at data contingency information (such as co-
occurrence of documents/words, students/courses) to 
cluster both sides in an iterative fashion.  For example, co-
clustering can be used to cluster movies/viewers 
simultaneously in a movie database to produce clusters of 
similar movies and users with similar interests.   
 
It has been established that clustering simultaneously on 
both sides gives an improved performance when compared 
to clustering either of the sides independent of the other 
[1].  So far, this technique has only been applied for 
producing hard clusters. Hard clustering algorithms place 
each data instance into exactly one cluster.  This level of 
detail however, may not be sufficient in many cases such 
as in document clustering.  We usually come across 
documents that discuss multiple, seemingly unrelated 
topics.  In such cases, it becomes important from a 
classification perspective, to steer the document into 
multiple clusters, belonging to potentially different topics.  
We characterize multi-cluster membership of an instance 
by maintaining a probability distribution that describes its 
presence in each of the possible clusters.  The guideline for 
clustering proposed in [1] is to minimize the loss in Mutual 
Information between the original row/column contingency 
                                                 
 

distribution and the compressed distribution where 
multiple row (column) instances are clustered together. In 
this paper, we make use of the same guideline and present 
a different criterion function that can be used for a soft 
clustering task.   

Theory 
We shall denote the normalized co-occurrence matrix as 
the probability distribution P(x,y).  Let there be k row 
clusters ( 1 2 3

ˆ ˆ ˆ ˆ ˆ{ , , , ..., }kX x x x x= ) and l column clusters 
( 1 2

ˆ ˆ ˆ ˆ{ , , ..., }lY y y y= ), without any loss of generality. 
 
With every row x , we associate a vector kC of size k, 
where Ck

x̂ ( x ) refers to the probability of x  belonging to 
cluster x̂ .    
 
 ˆ ˆ( ) ( | )x

k
C x P x x=  ˆx̂ X∈   

 
Similarly, we define an equivalent vector for each of the 
columns. 
 
 ˆ ˆ( ) ( | )y

l
C y P y y=  ˆŷ Y∈  

 
These vectors are initialized to random values at the start 
of the algorithm.  Our goal is to approximate the original 
distribution P(x,y) over the individual rows/columns to a 
compressed distribution over row/column clusters.  We 
define the p.d.f in clustered space as follows. 
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There is no significant information loss associated with 
dropping the conditional probabilities.  Consider the term 
P( x̂ | x ).  P( x̂ | x ) is calculated in the final algorithm as a 
function of y (and ŷ  in fact).  This value of P( x̂ | x ) will 
be quite close to Mean(P( x̂ | x ,y)) over all y.  Thus 
summing P( x̂ | x ,y) over all y is very much equivalent to 
summing P( x̂ | x ) (the mean) Y times.   Therefore, we can 
get rid of the conditioning on y.  In the second term, the 
conditioning on x̂  is less informative in the presence of 



(conditioning on) x .  Hence, we can exclude x̂ .  We can 
then use the same analogy as above to get rid of the 
conditioning on x .  This can further be written in terms of 
our membership probabilities as follows. 
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The Mutual Information between x and y can be defined as 
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The Loss in MI due to compression (viz. Clustering) is 
given by, 
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        --(2) 
    

We define the following distribution 
 

ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , ) ( | ) ( | )q x y x y P x y P x x P y y=  
 

Now, (2) is the KL divergence 
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We shall state the following equalities, omitting proofs for 
brevity. 
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We now establish an important equality that helps us to 
represent the q distribution in an elegant form in order to 
further simplify (2).  
   

ˆ ˆ ˆ ˆ ˆ( , | ) ( | ) ( | )q y y x q y y q y x=  
                      --(3) 

Thus, the q distribution can be written as  

  ˆ
ˆ,

ˆ ˆ( , , , ) ( ) ( ) ( )
ˆ

x

k

y y
q x y x y P x C x q

x
=   

                 --(4) 

 (2)  
ˆ ˆ( ; ) ( ; )I X Y I X Y−

 

( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆˆ

ˆ

( , ) ( ) ( )
( , ) ( ) ( ) log

ˆ ˆ( , , , )

( ) ( )
ˆ,

( | ) ( ) || ( )
ˆ

x y

x y k l

k l

x y x y

x Y

k l

x x

P x y C x C y
P x y C x C y

q x y x y

P x C x D
Y Y

P Y x C Y q
x

=

=

∑∑∑∑

∑∑      --(5) 
 
(5) leads to the final algorithm.  Since our goal is to 
minimize the overall loss in Mutual Information, we 
should direct each row x, into the cluster x̂  for which the 
KL Divergence D[P(Y| x ) ˆ ( )Y

lC Y  || q(Y, Ŷ | x̂ )] is 
minimum.  We start the algorithm by randomly initializing 
the membership co-efficients (ensuring the probability 
constraints).  It is important to note that the initial values 
should not be made perfectly uniform, as this would be a 
fixed point from which no update would be possible.  We 
evaluate the required P( x̂ , ŷ ) and q distributions and then 
for each row x, we decrement its membership to cluster x̂  
by a times the KL Divergence  corresponding to cluster x̂ , 
where a is the learning rate parameter.  We repeat this step 
for every possible row cluster.  It is easy to see that the 
cluster that best fits x will get the least decrement value (of 
the corresponding membership co-efficient).  We repeat 
the above procedure for columns and iterate till 
convergence. 

Experimental Results 
We chose various subsets of the 20-newsgroup dataset 
from both unclean and cleaned-up (duplicates and 
unwanted headers removed) versions. The experimental 
procedure is to first run a hard clustering algorithm (say k-
means) on the dataset, and mark those documents that fall 
close to two or more cluster centroids, i.e. choose those 
documents for which the difference in distance to two of 
the nearest centroids is below a certain threshold.  We term 
these documents to be potentially soft-clusterable.  We 
then run co-SOFT-clustering on the dataset, pick those 
documents that are soft clustered and look at 
correspondence with k-means soft-clusterables.  The 
documents that are soft clustered by either algorithm are 
manually labeled (two experts, 2χ  33.278, sig 0.001).  We 
ran experiments with different settings for word/document 
cluster count, and achieved optimum results for values 
k=30, l=12 on subsets of 20-newsgroups with about 300-
500 documents.  While clustering datasets with mostly soft 
documents, we achieved up to 95% agreement with k-
means and 80% with manual labeling.  In case of datasets 
with diverse documents, we had very low agreement (0%-
19%) with k-means (this reflects the true nature of the 
dataset, as most of the documents are not soft), and high 
agreement (76%-91%) with manual labeling. 


