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AbstratCurrent solution and modelling approahes to Markov Deision Proesses (MDPs)sale poorly with the size of the MDP. Model minimization methods address this issueby exploiting redundany in problem spei�ation to redue the size of the MDP model.Symmetries in a problem spei�ation an give rise to speial forms of redundany thatare not exploited by existing minimization methods. In this work we extend the modelminimization framework proposed by Dean and Givan to inlude symmetries. We baseour framework on onepts derived from �nite state automata and group theory.





Symmetries and Model Minimizationin Markov Deision ProessesBalaraman Ravindran1 Andrew G. Barto2CMPSCI Tehnial Report 01-43Department of Computer SieneUniversity of Massahusetts, AmherstAbstratCurrent solution and modelling approahes to Markov Deision Proesses (MDPs)sale poorly with the size of the MDP. Model minimization methods address this issueby exploiting redundany in problem spei�ation to redue the size of the MDP model.Symmetries in a problem spei�ation an give rise to speial forms of redundany thatare not exploited by existing minimization methods. In this work we extend Deanand Givan's [5℄ model minimization framework to inlude symmetries. We base ourframework on onepts derived from �nite state automata and group theory.1 IntrodutionMarkov Deision Proesses (MDPs) [21℄ are a popular way to model stohasti sequentialdeision problems. But most modelling and solution approahes to MDPs su�er from thefat that they sale poorly with the size of the problem. While modelling real-world se-narios, often there is a lot of redundany in the MDP model. Model minimization methodsintrodued by Dean and Givan [5℄ exploit suh redundany in the problem spei�ation toderive smaller models, i. e., models with fewer states, by aggregating \equivalent" states.Figure 1 illustrates the model minimization proess. The gridworld on the left is thegiven MDP. This has the usual gridworld dynamis with 4 deterministi ations fN;S;E;Wg.Eah ell in the grid orresponds to a state of the MDP. All the states in the top row aregoal states with idential rewards for reahing them. Dean and Givan onsider two statesequivalent if the e�et of eah of the available ation is equivalent in both the states andif no essential information is lost by aggregating them. In this example, the states in eahrow an be onsidered equivalent to one another.3 The resulting redued model is just aolumn of states as depited in the right of Figure 1. It is evident that solving this reduedmodel will give us a solution to the original problem.1e-mail: ravi�s.umass.edu2e-mail: barto�s.umass.edu3We formalize the notion of equivalene later. Informally, in this speial ase, the states in a row areonsidered equivalent sine eah ation hanges the distane to goal by the same amount. Ation N takesyou one step loser to the goal. Ation S takes you one step farther in most ases and keeps you at the samedistane in the bottom row. Ations E and W keep you at the same distane from the goal.
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SFigure 1: Illustration of Model Minimization in a Simple GridworldA speial form of redundany arises in ases where the problem is symmetri and AIresearhers have been exploring ways to take advantage of that (e. g., refs. [1, 20℄). Sym-metries in a problem spei�ation naturally give rise to notions of equivalene. For exampleonsider another simple gridworld with usual dynamis, shown to the left in Figure 2. Thegoal state is labelled G. Intuitively one an see that there is a symmetry about the NE-SWdiagonal. For example taking ation E in state A is equivalent to taking ation N in stateB, in the sense that they go to equivalent states that are one step loser to the goal. Onean say that states A and B are symmetrially equivalent. Dean and Givan's model mini-mization framework annot aommodate suh notions of equivalene and hene onsidersthis gridworld irreduible.4 In this work we extend the model minimization framework toinlude suh notions of symmetrial equivalene. A redued model of the gridworld underour framework is shown to the right in Figure 2.
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Figure 2: Model Minimization with Symmetri EquivaleneIn the next setion we present some basi onepts and notation. Then we disuss somerelated work on minimization of di�erent strutures. In Setion 4 we present an extensionto Dean and Givan's model minimization framework using the notion of homomorphismsderived from lassial �nite state automata (FSA) [11℄ theory. Next we develop a formalde�nition of symmetry in MDPs and show how it relates to our model minimization frame-work. We onlude with a disussion of ertain speializations of our framework, someimpliations and future diretions for researh.4States in the same row in the gridworld of Figure 1 are also symmetri to eah other. While Dean andGivan's framework does aommodate some ases of symmetries, their theory does not expliitly onsidersymmetries of MDPs.
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2 Basis and Notation2.1 Markov Deision ProessesA Markov Deision Proess is a tuple hS;A;	; P;Ri, where S is the set of states, A is theset of ations, 	 � S � A is the set of admissible state-ation pairs, P : 	 � S ! [0; 1℄ isthe transition probability funtion with P (s; a; s0) being the probability of transition fromstate s to state s0 under ation a, and R : 	 ! IR is the expeted reward funtion, withR(s; a) being the expeted reward for performing ation a in state s. We assume that therewards are bounded. Let As = faj(s; a) 2 	g � A denote the set of ations admissible instate s. We assume that for all s 2 S, As is non-empty. In this work we assume that theset of states and set of ations are �nite, but the language of homomorphisms we employextends to in�nite spaes with little work.A stohasti poliy � is a mapping from 	 to the real interval [0; 1℄ withPa2As �(s; a) = 1for all s 2 S. For any (s; a) 2 	, �(s; a) gives the probability of piking ation a in state s.The value of state s under poliy � is the expeted value of the disounted sum of futurerewards starting from state s and following poliy � thereafter. The value funtion V �orresponding to a poliy � is the mapping from states to their values under �. It an beshown (e. g., ref. [2℄) that V � satis�es the Bellman equation:V �(s) = Xa2As �(s; a)24R(s; a) +  Xs02S P (s; a; s0)V �(s0)35 ;where 0 �  < 1 is a disount fator. This formulation is known as the disounted sum ofrewards riterion.Similarly, the value of a state-ation pair (s; a) under poliy � is the expeted value ofthe disounted sum of future rewards starting from state s, taking ation a, and following �thereafter. The ation value funtion Q� orresponding to a poliy � is the mapping fromstate-ation pairs to their values and satis�es [2℄:Q�(s; a) = R(s; a) +  Xs02S P (s; a; s0)V �(s0);where 0 �  < 1 is a disount fator.The solution of an MDP is an optimal poliy �? that uniformly dominates all otherpossible poliies for that MDP. It an be shown [2℄ that the value funtions for all optimalpoliies is the same. We denote this optimal value funtion by V ?. It satis�es the Bellmanoptimality equation: V ?(s) = maxa2As Xs02S P (s; a; s0) �R(s; a) + V ?(s0)� :Similarly the optimal ation value funtion Q? satis�es:Q?(s; a) = Xs02S P (s; a; s0) �R(s; a) +  maxa02As0 Q?(s0; a0)� :3



These two optimal value funtions are related by V ?(s) = maxaQ?(s; a).Typially MDPs are solved by approximating the solution to the Bellman optimalityequations (e. g., refs. [2, 23℄). Given the optimal ation value funtion, an optimal poliyis given by �?(s; a) � 0 if Q?(s; a) = maxa02As Q?(s; a0)= 0 otherwise:2.2 Partitions, maps and equivalene relationsA partition B of a set X is a olletion of disjoint subsets, or bloks, bi � X suh thatSi bi = X. For any x 2 X, [x℄B denotes the blok of B to whih x belongs. Let B1 andB2 be partitions of X. We say that B1 is oarser than B2 (or B2 is a re�nement of B1),denoted B1 � B2, if for all x; x0 2 X, [x℄B2 = [x0℄B2 implies [x℄B1 = [x0℄B1 . The relation �is a partial order on the set of partitions of X.To any partition B of X there orresponds an equivalene relation, �B , on X withx �B x0 if and only if [x℄B = [x0℄B for all x; x0 2 X. Any funtion f from a set X into a setY de�nes an equivalene relation on X with x �f x0 if and only if f(x) = f(x0). We say thatx and x0 are f -equivalent when x �f x0, and we denote the partition of X orresponding tothis equivalene relation by Bf .Let B be a partition of Z � X � Y , where X and Y are arbitrary sets. For any x 2 X,let B(x) denote the set of distint bloks of B ontaining pairs of whih x is a omponent,that is, B(x) = f[(w; y)℄B j (w; y) 2 Z;w = xg. The projetion of B onto X is the partitionBjX of X suh that for any x; x0 2 X, [x℄BjX = [x0℄BjX if and only if B(x) = B(x0). Inother words, x �BjX x0 if and only if every blok of B ontaining a pair in whih x (x0) isa omponent also ontains a pair in whih x0 (x) is a omponent.5 Note that if B1 and B2are partitions of Z, then B1 � B2 implies that B1jX � B2jX.A partition of an MDP M = hS;A;	; P;Ri is a partition of 	. Given a partition B ofM, the blok transition probability of M is the funtion T : 	 � BjS ! [0; 1℄ de�ned byT (s; a; [s0℄BjS) = Ps002[s0℄BjS P (s; a; s00). In other words, when applying ation a in state s,T (s; a; [s0℄BjS) is the probability that the resulting state is in the blok [s0℄BjS . It is learthat sine BjS is a partition of S, eah of these blok transition probabilities is in theinterval [0; 1℄.Example 1Let M = hS;A;	; P;Ri be an MDP with S = fs1; s2; s3g, A = fa1; a2g and 	 =f(s1; a1); (s1; a2); (s2; a1); (s2; a2); (s3; a1)g. We give the projetions under both our de�-nition and the traditional one (see footnote).5The more traditional de�nition of a projetion is: x �BjX x0 if and only if (x; y) �B (x0; y) for all y 2 Y .This projetion is always a re�nement of our projetion. We need the modi�ed de�nition to failitate thedevelopment of some onepts below. 4



i) If B1 = nf(s1; a1); (s2; a2)g; f(s1; a2); (s2; a1); (s3; a1)go,then B1jS = nfs1; s2g, fs3go (ours); nfs1g, fs2g; fs3go (traditional).ii) If B2 = nf(s2; a1)g; f(s1; a1); (s1; a2); (s2; a2); (s3; a1)go,then B2jS = nfs1; s3g, fs2go; nfs1g, fs2g; fs3go.iii) If B3 = nf(s1; a1); (s2; a2)g; f(s1; a2); (s3; a1)g; f(s2; a1)go,then B3jS = nfs1g, fs2g; fs3go; nfs1g, fs2g; fs3go.3 Related WorkThere has been extensive work on minimization of FSAs [11℄. Minimization tehniquesderive the \smallest" model that is equivalent to the given model. This simpli�es thesearh for an eÆient implementation. See Hartmanis and Stearns [11℄ for more details.Similar tehniques exist for Probabilisti Automata [19℄, Probabilisti Transition Systems[17℄, Conurrent Proesses [18, 7℄, Finite Markov Chains [15℄ and Markov Proesses [22℄.Dean, Givan and olleagues have explored minimization of MDPs in detail. Dean andGivan [5℄ introdue a framework for model minimization and explore its relation to someexisting algorithms. They also give algorithms for �nding redued models of MDPs withspeial representations. They base their de�nition of equivalene on the notion of homoge-neous partitions of the state set. This onept of equivalene is related to the substitutionproperty of �nite state mahines [11℄ and the notion of lumpability of markov hains [15℄.Givan et al. [9℄ explore minimization based on ertain relaxed equivalene riteria, andDean et al. [6℄ extend the framework to failitate elimination of redundant ations. Givanet al. [8℄ formulate the model minimization problem in terms of stohasti bisimulationsderived from the notion of bisimulations of onurrent proesses [12, 17, 18℄ and establishall their previous results in this framework.Minimization tehniques frequently exploit symmetries of the underlying struture (e. g.,see ref. [14℄ for FSAs, ref. [10℄ for Markov Chains and refs. [13, 7℄ from model heking foronurrent proesses). But there has not been muh work on exploiting symmetries ofMDPs for minimization. Reently Zinkevih and Balh [24℄ de�ned symmetries of MDPsand derived algorithms that take advantage of suh symmetries. But their work did notrelate to the existing researh on model minimization.In this artile we extend the model minimization framework of Dean and Givan toinlude symmetrial equivalene. This gives us additional power and sometimes enablesgreater redution as outlined in the introdution. We base our framework on the notion ofMDP homomorphisms derived from the onept of homomorphisms of FSAs. Traditionallysymmetries are de�ned via groups of morphisms (e. g. ref. [16℄) and hene employinghomomorphisms makes it easier to inlude symmetries in our framework.In the next setion we present extensions of some of the key results in Givan et al. [8℄using our framework. In Setion 5 we de�ne symmetries of MDPs using group theoreti5



onepts and show that our extended minimization framework an exploit symmetrialequivalene.4 Homomorphisms and model minimizationIn this setion we extend the onept of mahine homomorphism from the FSA literatureto MDPs and develop a notion of equivalene of states and state-ation pairs based onthis extended homomorphism. Informally, a homomorphism of a system with transitiondynamis is a transformation that preserves some aspets of the dynamis.For example, onsider two MDPs M = hS;A;	; P;Ri and M0 = hS0; A, 	0; P 0; R0ithat have deterministi ations. By abusing notation, we employ the shorthand P (s; a)to denote s1 in S, suh that P (s; a; s1) = 1. A map f : S ! S0 is a homomorphism ifP 0(f(s); a) = f(P (s; a)) and R(s; a) = R0(f(s); a) for all (s; a) 2 	. The homomorphism fis said to ommute with the dynamis of the MDPs. We an depit this using ommutativediagrams as follows:s1 -P (�; a) s2?f ?fs01 -P 0(�; a) s02
s1 -R(�; a) r?f ������R0(�; a)s01Figure 3: Homomorphisms Represented by Commutative DiagramsMore generally a homomorphism from an MDP M to an MDP M0 is a map from 	 to 	0that ommutes with the transition dynamis and preserves the reward funtion:De�nition: An MDP homomorphism h from an MDP M = hS;A;	; P;Ri to an MDPM0 = hS0; A0;	0; P 0; R0i is a surjetion from 	 to 	0, de�ned by a tuple of surjetionshf; fgsjs 2 Sgi, with h((s; a)) = (f(s); gs(a)), where f : S ! S0 and gs : As ! A0f(s) fors 2 S, suh that:P 0(f(s); gs(a); f(s0)) = T (s; a; �s0�BhjS); 8s; s0 2 S; a 2 As (1)R0(f(s); gs(a)) = R(s; a); 8s 2 S; a 2 As (2)We all M0 the homomorphi image of M under h. We use the shorthand h(s; a) to denoteh((s; a)).Let Psa : S ! [0; 1℄ be the distribution over states resulting from taking ation a instate s, i. e., Psa(s1) = P (s; a; s1) for any s1 in S. The aggregation hPsa, of Psa over h,is the distribution over S0 suh that hPsa(s0) = Ps12f�1(s0) Psa(s1) for eah s0 2 S0. Here6



f�1(s0) = fs 2 Sjf(s) = s0g is the pre-image of s0 in S. A homomorphism ommuteswith the one step dynamis of the MDP in the sense that the aggregation hPsa is the samedistribution as P 0f(s)gs(a) for all (s; a) 2 	. We an depit this using ommutative diagramsas follows: (s; a) -P Psa?h ?agg.(s0; a0) -P 0 P 0s0a0
(s; a) -R r?h ������R0(s0; a0)Figure 4: An MDP Homomorphism as Commutative DiagramsApart from the preservation of blok transition behaviour, the usefulness of homomorphismslie in the fat that they help establish the following equivalenes.De�nition: State ation pairs (s1; a1) and (s2; a2) 2 	 are equivalent if hPs1a1 = hPs2a2 ,i. e., the aggregation of their next state distributions is the same. Note that any h-equivalentstate-ation pairs are also equivalent in this sense.De�nition: States s1 and s2 2 S are equivalent if for every ation a1 2 As1 , there is anation a2 2 As2 suh that (s1; a1) and (s2; a2) are equivalent and for every ation a2 2 As2 ,there is an ation a1 2 As1 , suh that (s1; a1) and (s2; a2) are equivalent.These notions of equivalene lead us to the following theorem on optimal value equivalene.This theorem is an extension of the optimal value equivalene theorem developed in Givanet al [8℄ for stohasti bisimulations.Theorem 1: (Optimal value equivalene) LetM0 = hS0; A0;	0; P 0; R0i be the homomorphiimage of the MDPM = hS;A;	; P;Ri under the MDP homomorphism h = hf; fgsjs 2 Sgi.For any (s; a) 2 	, Q?(s; a) = Q?(f(s); gs(a)).Proof: (Along the lines of [8℄) Let us de�ne the m-step optimal disounted ation valuefuntion reursively for all (s; a) 2 	 and for all non-negative integers m asQm(s; a) = R(s; a) +  Xs12S "P (s; a; s1) maxa12As1 Qm�1(s1; a1)#and set Q�1(s1; a1) = 0. Letting Vm(s1) = maxa12As1 Qm(s1; a1), we an rewrite this as:Qm(s; a) = R(s; a) +  Xs12S [P (s; a; s1)Vm�1(s1)℄ :Now we prove by indution on m that the theorem is true. For the base ase of m = 0,we have that Q0(s; a) = R(s; a) = R0(f(s); gs(a)) = Q0(f(s); gs(a)). Now let us assume7



that Qj(s; a) = Qj(f(s); gs(a)) for all values of j less than m and all state-ation pairs in	. Now we have,Qm(s; a) = R(s; a) +  Xs02S P (s; a; s0)Vm�1(s0)= R(s; a) +  X[s0℄BhjS2BhjS T (s; a; �s0�BhjS)Vm�1(s0) (sine h is a homomorphism)= R0(f(s); gs(a)) +  Xs02S0 P 0(f(s); gs(a); s0)Vm�1(s0) ( " )= Qm(f(s); gs(a))Sine R is bounded it follows by indution that Q?(s; a) = Q?(f(s); gs(a)) for all (s; a) 2 	.2Corollary:1. For any h-equivalent (s1; a1); (s2; a2) 2 	, Q?(s1; a1) = Q?(s2; a2).2. For all equivalent s1; s2 2 S, V ?(s1) = V ?(s2).3. For all s 2 S, V ?(s) = V ?(f(s)) .Proof: Corollary 1 follows from Theorem 1. Corollaries 2 and 3 follow from Theorem 1 andthe fat that V ?(s) = maxa2As Q?(s; a). 2The above theorem establishes optimal value equivalene. As shown by Givan et al.[8℄, this is not a suÆient notion of equivalene. In many ases even when the optimalvalues are equal, the poliies might not be related and hene we annot easily transformsolutions of the image MDP to the original MDP. The optimal poliies of an MDP and itshomomorphi images are losely related and the following establishes the orrespondene.De�nition: Let M0 be the image of M under homomorphism h. For any s 2 S, g�1s (a0)denotes the set of ations that have the same image a0 2 A0f(s) under gs. Let � be astohasti poliy inM0. Then � lifted to M is the poliy �M suh that for any a 2 g�1s (a0),�M(s; a) = �(f(s); a0). ��g�1s (a0)��.Note: It is suÆient if Pa2g�1s (a0) �M(s; a) = �(f(s); a0), but we use the above de�nition tomake the lifted poliy unique.Example 2Consider MDP M from example 1 and M0 = hS0; A0;	0; P 0; R0i with S0 = fs01; s02g, A0 =fa01; a02g and 	0 = f(s01; a01), (s01; a02), (s02; a01)g. Let h = hf; fgsjs 2 Sgi be a surjetion fromM to M0 de�ned by f(s1) = s01 f(s2) = s02 f(s3) = s02gs1(a1) = a02 gs2(a1) = a01 gs3(a1) = a01gs1(a2) = a01 gs2(a2) = a018



Let � be a poliy in M0 with�(s01; a01) = 0:6 �(s01; a02) = 0:4 �(s02; a01) = 1:0Now � lifted to M, the poliy �M, is derived as follows:�M(s1; a1) = �(s01; a02) = 0:4 �M(s1; a2) = �(s01; a01) = 0:6�M(s2; a1) = �(s02; a01)=2 = 0:5 �M(s2; a2) = �(s02; a01)=2 = 0:5�M(s3; a1) = �(s02; a01) = 1:0Theorem 2: Let M0 = hS0; A0;	0; P 0; R0i be the image of M = hS;A;	; P;Ri under thehomomorphism h = hf; fgsjs 2 Sgi. If �? is an optimal poliy for M0, then �?M is anoptimal poliy for M.Proof: Let �? be an optimal poliy inM0. Consider some (s; a) 2 	 suh that �?(f(s); gs1(a1))is greater than zero. Then Q?(f(s1); gs1(a1)) is the maximum value of the Q? funtion instate f(s1). From Theorem 1, we know that Q?(s; a) = Q?(f(s); gs(a)) for all (s; a) 2 	.Therefore Q?(s1; a1) is the maximum value of the Q? funtion in state s1. Thus a1 is anoptimal ation in state s1 and hene �?M is an optimal poliy for M. 2Theorem 2 establishes that an MDP an be solved by solving one of its homomorphiimages. To ahieve the most impat, we need to derive the smallest possible homomorphiimage of the MDP, i. e., an image with the least number of admissible state-ation pairs.The following de�nitions help formalize this notion.De�nition: An MDP M is a minimal MDP if for every MDP M0 that is a homomorphiimage of M, there exists a homomorphism from M0 to M.De�nition: A minimal image of an MDP M is a homomorphi image of M that is also aminimal MDP.A minimal image of an MDP M is the smallest MDP whose solution an be lifted to yielda solution to M. Finding a minimal image is the goal of model minimization. Sine thisan be omputationally prohibitive, we frequently settle for a reasonably redued model,even if it is not a minimal MDP.4.1 Homomorphisms and PartitionsAs mentioned earlier any map on a set indues a partition of the set. Thus a homomorphismfrom M = hS;A;	; P;Ri to M0 = hS0; A0;	0; P 0; R0i indues a partition on 	. ClassialFSA literature employs suh partitions of the state set in minimization of mahines. Thereare various algorithms for identifying a suitable partition that gives rise to a redued imageof a mahine. Dean and Givan [5℄ propose several suh algorithms for MDP model mini-mization and demonstrate that they are e�etive in �nding minimal images. The basi ideabehind all these algorithms is to start with a very oarse partition satisfying some ondi-tions and suessively re�ne it until one obtains a suitable partition that an be indued9



by a homomorphism. In this setion, we explore the relationship between partitions of 	and homomorphisms, and we establish onditions under whih a partition orresponds toa homomorphism. We an then extend algorithms that identify suitable partitions of S toidentify suitable partitions of 	.De�nition: A partition B of an MDP M = hS;A;	; P;Ri is said to be reward respetingif BR � B.6 In other words B is reward respeting if (s1; a1) �B (s2; a2) implies R(s1; a1) =R(s2; a2) for all (s1; a1); (s2; a2) 2 	.De�nition: A partition B of an MDP M = hS;A;	; P;Ri has the stohasti substitu-tion property if for all (s1; a1); (s2; a2) 2 	, (s1; a1) �B (s2; a2) implies T (s1; a1; [s℄BjS)= T (s2; a2; [s℄BjS) for all [s℄BjS 2 BjS.In other words, the blok transition probability is the same for all state-ation pairs ina given blok. A partition that satis�es the stohasti substitution property is an SSPpartition. This is an extension of the substitution property for �nite state mahines [11℄.The SSP blok transition probability is the funtion Tb : B � BjS ! [0; 1℄, de�ned byTb([(s1; a1)℄B ; [s℄BjS) = T (s1; a1; [s℄BjS). This quantity is well-de�ned only for SSP parti-tions.Theorem 3: Let h be an MDP homomorphism from an MDP M = hS;A;	; P;Ri to anMDP M0 = hS0; A0;	0; P 0; R0i. Then Bh, the partition of 	 indued by h, is a rewardrespeting SSP partition.Proof: Let h = hf; fgsjs 2 Sgi be the homomorphism from M to M0. We need to showthat the partition Bh is a reward respeting SSP partition.First let us takle the stohasti substitution property. Let (s1; a1); (s2; a2) 2 	, beh-equivalent. From the de�nition of a homomorphism we have that f(s1) = f(s2) = s0 2 S0and gs1(a1) = gs2(a2) = a0 2 A0s0 . Thus, for any s 2 S, T (s1; a1; [s℄BhjS) = P 0(s0; a0; f(s)) =T (s2; a2; [s℄BhjS). Hene Bh is an SSP partition.From ondition 2 in the de�nition of a homomorphism, it is lear that the partitionindued is reward respeting. 2Theorem 3 establishes that the partition indued by a homomorphism is a reward re-speting SSP partition. But the onverse of the theorem, that for every reward respetingSSP partition there exists a homomorphism that indues it, is not true. The following ex-amines how to onstrut a homomorphi image of an MDP given a reward respeting SSPpartition.De�nition: Let B be a reward respeting SSP partition of MDP M = hS;A;	; P;Ri.Let �(s) be the number of distint bloks of B that ontain a state-ation pair with sas the state omponent and let f[(s; ai)℄B ji = 1; 2; � � � ; �(s)g be the bloks. Note that if[s1℄BjS = [s2℄BjS then �(s1) = �(s2), hene the following is well-de�ned. The quotientMDP M=B is the MDP hS0; A0;	0; P 0; R0i where, S0 = BjS; A0 = S[s℄BjS2BjS A0[s℄BjS where6Reall, BR is the partition of 	 indued by the reward funtion.10



A0[s℄BjS = fa01, a02, � � �, a0�(s)g for eah [s℄BjS 2 BjS; P 0 is given by P 0([s℄BjS ; a0i; [s0℄BjS) =Tb([(s; ai)℄B ; [s0℄BjS) and R0 is given by R0([s℄BjS ; a0i) = R(s; ai).Theorem 4: Let B be a reward respeting SSP partition of MDP M = hS;A;	; P;Ri.There exists a homomorphism from M to the quotient MDP M=B.Proof: Given a reward respeting SSP partition B of M, we show by onstrution thatthere exists a homomorphism h from M to the quotient MDP M=B = hS0; A0;	0; P 0; R0i.The homomorphism h = hf; fgsjs 2 Sgi between M and M=B is given by f(s) = [s℄BjSand gs(a) = a0i suh that T (s; a; [s0℄BjS) = P 0([s℄BjS ; a0i; [s0℄BjS) for all [s0℄BjS 2 BjS. Inother words, if [(s; a)℄BjS is the i-th unique blok in the ordering used in the onstrutionof M=B, then gs(a) = a0i. It is easy to verify that h is indeed a homomorphism. 2The partition indued on M by h, is only guaranteed to be a re�nement of B and isnot always the same partition as B. In other words, B � Bh. In fat Bh is the least oarsepartition suh that BhjS = BjS, and M=B is the same MDP as M=Bh up to a relabellingof states and ations.Partitions and minimal imagesAs we said earlier model minimization algorithms work by �nding suitable partitions of anMDP. As is evident now, by suitable partitions we mean reward respeting SSP partitions.Here we explore the relationship between reward respeting SSP partitions and minimalimages of the MDPsDe�nition: A partition B of an MDP M is the oarsest reward respeting SSP partitionof M if and only if for every reward respeting SSP partition B0 of M, B � B0.It is easy to verify (by ontradition) that there exists an unique oarsest reward respetingSSP partition for any MDP M. Intuitively one would expet the quotient MDP orre-sponding to the oarsest reward respeting SSP partition of an MDP M to be a minimalimage of M. The following theorem states that formally.Theorem 5: Let B be the oarsest reward respeting SSP partition of MDP M. Thequotient MDP M=B is a minimal image of M.Proof: We defer the proof of this theorem to the next setion, after we de�ne ompositionof homomorphisms.Given an MDPM = hS;A;	; P;Ri the outline of a basi model minimization algorithmis as follows:1. Start with any reward respeting partition of 	. The most obvious hoie is to pikthe one that is indued by the expeted reward funtion R. This is the oarsestpossible reward respeting partition, but any suitable reward respeting partition willdo. 11



2. Repeatedly re�ne the partition until all violations of the SSP property are resolved.This proess might take as muh time as solving the original MDP itself. Thereforemost modi�ations of this basi algorithm fous on speial representations of M thatmake this step simpler. Let B be the resulting partition.3. Form the quotient MDPM=B and identify the homomorphism betweenM andM=B.Now one an solve M=B and lift the optimal poliy to get an optimal poliy for M.Spei� methods for re�ning the partitions an provide ertain guarantees on the qualityof the SSP partition derived. For example, see ref. [5℄ for a method that guarantees �ndingthe oarsest reward respeting SSP partition.5 Automorphisms and SymmetriesReall the notion of symmetrial equivalene outlined in Setion 3. That notion is a speialase of the notion of equivalene we developed in the previous setion. In this setion wede�ne symmetries using homomorphisms. We also borrow onepts from group theory tode�ne groups of symmetries and show that onsidering suh groups together an lead to agreater redution in problem size. This is a speial ase of our earlier framework and uni�esthe onepts of model minimization and exploiting symmetries.De�nition: An MDP homomorphism h = hf; fgsjs 2 Sgi from MDP M = hS;A;	; P;Rito MDP M0 = hS0; A0;	0; P 0; R0i is an MDP isomorphism from M to M0 if and only if fand gs, s 2 S, are bijetive. M is said to be isomorphi to M0 and vie versa.Note that property (1) of a homomorphism redues to a simpler form in this ase: P (s; a; s0) =P 0(f(s); gs(a); f(s0)) for all s; s0 2 S and a 2 As. Therefore, when two MDPs are isomor-phi, it means that the MDPs are the same exept for a relabelling of the states and theations. Thus we an transfer poliies learned for one MDP to the other by simple trans-formations. Also note that an MDP M is a minimal MDP if it is isomorphi to all of itshomomorphi images.De�nition: An MDP isomorphism from an MDP M = hS;A;	; P;Ri to itself is anautomorphism of M.Intuitively one an see that automorphisms an be used to desribe symmetries in aproblem spei�ation. In the gridworld example of Figure 2 a reetion of the states alongthe NE-SW diagonal and a swapping of ations N and E and of ations S and W is an auto-morphism. It is easy to see that this remapping aptures the symmetry that we disussedearlier. When we onsider all suh symmetries together we ahieve greater redution in thesize of an MDP.Let the set of all automorphisms of an MDP M be denoted by AutM. This set formsa group under omposition of homomorphisms. This group is the symmetry group of M.Let G be a subgroup of AutM denoted by G � AutM .12



The subgroup G de�nes an equivalene relation �G on 	: (s1; a1) �G (s2; a2) if andonly if there exists h 2 G suh that h(s1; a1) = (s2; a2). Note that sine G is a subgroup,this implies that there exists an h�1 2 G suh that h�1(s2; a2) = (s1; a1). Let BG be thepartition of 	 indued by �G .Lemma: For any h = hf; fgsjs 2 Sgi 2 G, f(s) 2 [s℄BG jS.Proof: The lemma follows from the properties of groups, namely losure and existene ofan inverse. 2Theorem 6: Let G � AutM be a group of automorphisms on M = hS;A;	; P;Ri. Thepartition BG is a reward respeting SSP partition of M.Proof: Consider (s1; a1), (s2; a2) 2 	 suh that (s1; a1) �G (s2; a2). This implies that thereexists an h = hf; fgsjs 2 Sgi in G suh that f(s1) = s2 and gs1(a1) = a2.From the de�nition of an automorphism we have that for any s 2 S, P (s1; a1; s) =P (s2; a2; f(s)). Using the lemma, we havePs02[s℄BG jS P (s1; a1; s0) =Ps02[s℄BG jS P (s2; a2; s0).Sine we hose s arbitrarily, this holds for all s in S. Hene BG is an SSP partition.Again from the de�nition of an automorphism we have that R(s1; a1) = R(s2; a2). HeneBG is reward respeting too. 2Corollary: There exists a homomorphism hG from M to M=BG . We all M=BG theG-redued image of M.This follows from Theorems 4 and 6. 2Corollary: An optimal poliy for M=BG lifted to M is an optimal poliy for M.This follows from the above orollary and Theorem 2. 2Note that the onverse of Theorem 6 is not true. It is possible to de�ne SSP partitionsthat are not generated by groups of automorphisms. We give an example in the nextsetion. Frequently the AutM-redued image of an MDP M is a minimal image of M, asin the example in the next setion. Even when we employ some G < AutM we get usefulredutions. Thus model redution an also be aomplished by �nding the symmetry groupof an MDP.Proof of Theorem 5De�nition: Let h = hf; fgsjs 2 Sgi : M1 !M2 and h0 = hf 0; fg0sjs 2 Sgi :M2 !M3 betwo MDP homomorphisms. The omposition of h and h0 denoted by h Æ h0 is a map fromM1 to M3, with (h Æ h0)(s; a) = h0(h(s; a)) = �f 0(f (s)); g0f(s)(gs (a))� for all (s; a) 2 	. Itan be shown that h Æ h0 is a homomorphism from M1 to M3.Theorem 5: Let B be the oarsest reward respeting SSP partition of MDP M =hS;A;	; P;Ri. The quotient MDP M=B is a minimal image of M.Proof: We will prove this by proving the ontrapositive: if M=B is not a minimal image of13



M, then B annot be the oarsest reward respeting SSP partition of M.Let h be the homomorphism from M to M=B. If M=B is not a minimal MDP, thenthere exists a homomorphism h0 (that is not an isomorphism) from M=B to some MDPM0. Therefore there exists a homomorphism (h Æ h0) from M to M0. From the de�nitionof omposition, it is evident that Bh < B(hÆh0).We need to show that B is not oarser than B(hÆh0). In other words we need to showthat either B < B(hÆh0) or they are not omparable. From the onstrution of a quotientMDP it is lear that BhjS = BjS sine we use BjS as the states of M=B. Sine M0 isa homomorphi image of M=B but is not isomorphi to it, either (i) M0 has fewer statesthan M=B or (ii) some states in M0 have fewer ations than M=B. In ase (i) we havethat BjS < B(hÆh0)jS. We know that this implies that B is not oarser than B(hÆh0). In ase(ii) we have that BjS = B(hÆh0)jS. Let [s℄B (= [s℄B(hÆh0)) be a state with fewer admissibleations in M0. This implies that s appears in fewer unique bloks in B(hÆh0) than in B.Thus B < B(hÆh0). Therefore B is not the oarsest reward respeting SSP partition. HeneM=B is a minimal image if B is the oarsest reward respeting partition of M. 26 An ExampleIn this setion we work out a slightly detailed example.Consider the MDP M = hS;A;	; P;Ri with S = fs1; s2; s3; s4g, A = fa1; a2g, 	 =S �A, P and R de�ned as follows:P (si; a1; sj) is given by the entry in the i-th row and j-th olumn of:s1 s2 s3 s4s1 0 0:8 0:2 0s2 0:2 0 0 0:8s3 0:8 0 0 0:2s4 0 0 0 1:0and P (si; a2; sj) is given by: s1 s2 s3 s4s1 0 0:2 0:8 0s2 0:8 0 0 0:2s3 0:2 0 0 0:8s4 0 0 0 1:0R(s2; a1) = R(s3; a2) = 0:8 and R(s2; a2) = R(s3; a1) = 0:2. For all other values of i and j,R(si; aj) equals zero. Figure 5 gives the transition graph of M.Consider the partition B of M given by B = nf(s1; a1); (s1; a2)g, f(s2; a1), (s3; a2)g,f(s2; a2); (s3; a1)g, f(s4; a1); (s4; a2)go. B is a reward respeting SSP partition. We anderive the quotient MDP M=B = hS0; A0;	0; P 0; R0i as follows:S0 = BjS = nfs1g; fs2; s3g; fs4go are the states of M=B.14



s1

s2
s3

s4

a1

a2

0.2

+1

0.8

+1

0.8

0.8

0.2

0.8

0.8

+1

1.01.0

0.8

0.20.2
0.2 0.2

+1

Figure 5: Transition graph of example MDP MNow, �(s1) = 1, �(s2) = �(s3) = 2 and �(s4) = 1. Hene we set A0fs1g = fa01g, A0fs2;s3g =fa01; a02g and A0fs4g = fa01g.Now P 0(fs1g; a01; fs2; s3g) = P (s1; a1; s2)+P (s1; a1; s3) = P (s1; a2; s2)+P (s1; a2; s3) = 1:0.Proeeding similarly, we haveP 0(fs1g; a01; fs2; s3g) = 1:0 P 0(fs4g; a01; fs4g) = 1:0P 0(fs2; s3g; a01; fs1g) = 0:8 P 0(fs2; s3g; a02; fs1g) = 0:2P 0(fs2; s3g; a01; fs4g) = 0:2 P 0(fs2; s3g; a02; fs4g) = 0:8The probability of the eah of the other transitions is zero. R0(fs2; s3g; a01) = 0:2, R0(fs2; s3g,a02) = 0:8 and all other rewards are zero. Figure 6 shows the transition graph for M=B.One an de�ne a homomorphism hf; fgsjs 2 Sgi from M to M=B as follows: f(s1) =fs1g, f(s2) = fs2; s3g, f(s3) = fs2; s3g and f(s4) = fs4g. gs1(ai) = gs4(ai) = a01, fori = 1; 2, gs2(a1) = gs3(a2) = a02 and gs2(a2) = gs3(a1) = a01.Let I be the identity map on 	 and let h be an automorphism on M de�ned by:h(s1; a1) = (s2; a2), h(s2; a1) = (s3; a2), h(s2; a2) = (s3; a1) and h(s4; a1) = (s4; a2). The setof all automorphisms is given by AutM = fI; hg and with the omposition operator is thesymmetry group of M. It is easy to see that BG = B. Hene the M=B is the G-reduedimage of M. M=B is also the minimal image of M.Consider the partitionB1 = nf(s1; a1)g, f(s1; a2)g, f(s2; a1), (s3; a2)g, f(s2; a2), (s3; a1)g,f(s4; a1)g, f(s4; a2)go. B1 is also a reward respeting SSP partition, but is not generatedby any group of automorphisms on M.
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Figure 6: Transition graph of redued MDP M=B7 Speial forms of HomomorphismsIn some speial ases we an study simpler transformations of an MDP that give rise touseful redued images. In this setion, we disuss some speial forms of homomorphisms.If there exists an isomorphism from MDPM to MDPM0, then they are the same exeptfor a relabelling of states and ations. Frequently the relabelling of ations is independentof the states. In suh ases one an onsider a simpler de�nition of a homomorphism asan ordered pair of surjetions. Thus a homomorphism h from M = hS;A;	; P;Ri toM0 = hS0; A0;	0; P 0; R0i is de�ned by hf; gi where f : S ! S0 and g : A ! A0. h stillneeds to satisfy both onditions (1) and (2) of a homomorphism. We assume that in suhsenarios eah state has the same set of ations admissible in it, i. e., 	 = S �A.For example onsider the symmetri gridworld example from Setion 3. That world isisomorphi to problems with the goal in any of the other orners. If the goal moves fromthe NE orner to the SE orner, then an isomorphism between the two problems maps thestates in the bottom half of the grid to those in the top half and vie versa. Ation N goesto S and vie versa. Ations W and E are mapped onto themselves. This ertainly is asimpler desription than giving ation maps for eah of the 25 states.Another interesting speialization is the ase of state homomorphisms. When the ationsadmissible in a state and its homomorphi image are the same, i. e., As = A0f(s) for all s 2 S,we an onsider homomorphisms with gs(a) = a for all s. Thus a homomorphism h reduesto just a surjetion on states f . This is the ase widely studied in model minimizationliterature. This simpli�es the derivation of a redued image. As Dean and Givan [5℄ show,it is still a hard problem to derive a minimal image and frequently we have to settle for16



some redued image.This formulation of a homomorphism is suÆient for a large lass of problems. But(full) homomorphisms as we de�ne them in Setion 4 are more powerful and enable greaterredution in MDP size. For example, in the previous setion, if we had restrited ourselves tostate homomorphisms, the given MDP M is a minimal MDP. Also ertain symmetries suhas rotational and reetional symmetry, whih are not aptured by state homomorphisms,are aptured by (full) homomorphisms.As mentioned earlier, given a partition, it is a very hard task to identify and re�ne viola-tions of the SSP property. To make this task easier one an employ di�erent representationsof the MDPs. One suh method is to use fatored representations as in refs. [5, 6℄. Herethe states of the MDP are represented by using various features. For example, a gridworldMDP might be represented by the x and y o-ordinates rather than a grid number. Withfatored representations, one an study partitions that result from projetions on to one ormore of the features in the ross produt. Though this restrits the lass of partitions thatwe examine, it sometimes makes it easier to hek for violations of the SSP property. Deanand Givan [5℄ show that suh restritions lead to useful algorithms.8 DisussionIn this artile, we extended the model minimization framework of Givan and Dean to enablegreater redution in problem size. Givan et al. [8℄ onsider two states equivalent if everyation admissible in one state is admissible in the other and is equivalent. We extend thenotion of equivalene so that two states are onsidered equivalent if for every ation availablein one state there is some equivalent ation available in the other state.Givan et al. [8℄ examined other notions of equivalene from existing literature beforeadopting stohasti bisimulations. For example, one suh notion from FSA literature isation sequene equivalene. Two mahines are onsidered equivalent if they produe thesame sequene of output symbols given the same sequene of input symbols and the samestarting state. In an MDP framework, this would translate as MDPs having the samedistribution over sequenes of rewards reeived given the same sequene of ations. This isnot a suÆient notion of equivalene for MDPs, sine we are interested in equivalene ofpoliies and not just sequenes of ations. See ref. [8℄ for an example where MDPs that areation-sequene equivalent have di�erent optimal values.MDP homomorphisms an be viewed as a form of stohasti bisimulations employed byGivan et al. [8℄ but they are a more basi onept. Stohasti bisimulation are de�ned viarelations between sets and hene they have a greater expressive power than homomorphismsthat are based on surjetions. Despite this greater power, one an show that there existsa stohasti bisimulation between two MDPs if and only if they have a ommon minimalimage. Thus, from the view point of model minimization, the same redutions are ahievablewith both formulations.Givan et al. [8℄ also outline several methods for arriving at reward respeting SSP par-titions. It should be trivially possible to extend those methods to our extended de�nitions.17



It is also possible to extend their results on strutured state spaes. We are working on thispresently. Dean and Givan [5℄ show that model redution algorithms suh as state-spaeabstration [3℄ and strutured poliy iteration [4℄ are speial ases of model minimization.These results also hold for our extended de�nition. In fat it is possible to show that a largerlass of algorithms �t into our general framework. We outline one suh example next.Zinkevih and Balh [24℄ de�ne speial lasses of symmetries of MDPs and developalgorithms for taking advantage of suh symmetries by opying values among symmetriallyequivalent state-ation pairs. Their notion of symmetries is based on equivalene relationson state-ation pairs and an be shown to be a speial ase of our de�nition. Their algorithman then be viewed as a speial form of model minimization.The insight that symmetries give rise to reward respeting SSP partitions gives us an-other way to look for suh partitions. One an start from obvious symmetries in a problemand �nd their losure to generate suitable partitions. In some ases, espeially that ofspatial problems, it is possible to de�ne the resulting homomorphism hG , and hene theredued image, without expliitly �nding G.Finding representations that exploit symmetries have always been a hallenging prob-lem [1℄. Combining model minimization with symmetries gives us some guidane in thisdiretion. By examining the form of the homomorphism one an suitably modify repre-sentations so as to make it easier to derive the quotient MDP. This in turn simpli�es thesolution proess. Again onsider the symmetrial gridworld in Figure 2. As we disussedearlier, the gridworld is symmetrial around the NE-SW diagonal. If we adopt a shemethat assigns the same representation to states that are symmetrial then we simplify thelearning proess. One suh sheme is to represent eah square by the horizontal and vertialprojetions on the NE-SW diagonal. Ations also should be represented with respet to thediagonal. This representation uts the state spae roughly in half. The resulting MDP anbe shown to be isomorphi to that in Figure 2 and is in fat a minimal MDP.Even when partitions of MDPs do not satisfy the SSP property exatly, sometimes theysatisfy some relaxation of it. Givan et al. [9℄ study model minimization with a weakerriterion. The quotient MDP derived under this weaker ondition is a Bounded ParameterMDP where the transition probabilities are given by an interval. Analogously we would liketo develop a onept of approximate homomorphisms and approximate symmetries thatwould let us apply our ideas to a still larger lass of problems.AknowledgementsWe wish to thank Dan Bernstein for many hours of useful disussion; Amy MGovern andDan Bernstein for ommenting on drafts of this report; and Bob Givan and Matt Greig forlarifying ertain ideas from their work. This material is based upon work supported by theNational Siene Foundation under Grant No. ECS-9980062. Any opinions, �ndings andonlusions or reommendations expressed in this material are those of the authors and donot neessarily reet the views of the National Siene Foundation.18
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