
CEIL: A Scalable, Resolution Limit Free Approach for Detecting Communities in
Large Networks

Vishnu Sankar M
IIT Madras

Chennai, India
vishnusankar1512gmail.com

Balaraman Ravindran
IIT Madras

Chennai, India
ravicse.iitm.ac.in

Shivashankar S
Ericsson Reasearch

Chennai, India
s.shivashankarericsson.com

Abstract

Real world networks typically exhibit non uniform
edge densities with there being a higher concen-
tration of edges within modules or communities.
Various scoring functions have been proposed to
quantify the quality of such communities. In this
paper, we argue that the popular scoring functions
suffer from certain limitations. We identify the nec-
essary features that a scoring function should in-
corporate in order to characterize good community
structure and propose a new scoring function, CEIL
(Community detection using External and Internal
scores in Large networks), which conforms closely
with our characterization. We also demonstrate ex-
perimentally the superiority of our scoring function
over the existing scoring functions.
Modularity, a very popular scoring function, ex-
hibits resolution limit, i.e., one cannot find commu-
nities that are much smaller in size compared to the
size of the network. In many real world networks,
community size does not grow in proportion to the
network size. This implies that resolution limit is
a serious problem in large networks. Modularity is
still very popular since it offers many advantages
such as fast algorithms for maximizing the score,
and non-trivial community structures correspond-
ing to the maxima. We show analytically that the
CEIL score does not suffer from resolution limit.
We also modify the Louvain method, one of the
fastest greedy algorithms for maximizing modular-
ity, to maximize the CEIL score. We show that our
algorithm gives the expected communities in syn-
thetic networks as opposed to maximizing modular-
ity. We also show that the community labels given
by our algorithm matches closely with the ground
truth community labels in real world networks. Our
algorithm is on par with Louvain method in compu-
tation time and hence scales well to large networks.

1 Introduction
Networks are the natural form of representation of the inter-
actions between real world objects. Most of these real world

networks exhibit the property of community structure [New-
man and Girvan, 2002], i.e., nodes in the network can be par-
titioned into communities such that more edges are present
between nodes belonging to the same community than be-
tween nodes belonging to different communities.

The quality of communities given by community detection
algorithms is measured using scoring functions. Though sev-
eral scoring functions have been proposed in the literature,
Newman’s modularity is the most widely used scoring func-
tion. The exact maximization of modularity is hard [Brandes
et al., 2006]. So, several heuristics were proposed to maxi-
mize modularity. Newman proposed a greedy maximization
of modularity [Newman, 2004] to find communities. A ran-
domized version of the greedy maximization of modularity
and an ensemble method of modularity maximization was
proposed by Ovelgonne and Geyer-Schulz [Ovelgnne and
Geyer-Schulz, 2010]. Later, they improved the performance
of this algorithm by introducing iterative ensemble method to
maximize modularity [Ovelgonne and Geyer-Schultz, 2013].
A very fast approach to maximize modularity, widely known
as Louvain method, was introduced by Blondel et al. [Blon-
del et al., 2008]. Since this significantly outperformed other
methods on time it remains very popular. Other than the mod-
ularity maximization algorithms, Raghavan et al. [Raghavan
et al., 2007] proposed a near linear label propagation algo-
rithm to find communities in large networks. Pons and Latapy
proposed a random walk based approach to find the similar-
ity between nodes and hence find communities in the network
[Pons and Latapy, 2006]. Palla et al. proposed the clique per-
colation technique [Palla et al., 2005] which is mainly used
to find overlapping communities.

Though several algorithms find better communities than
Louvain method, it is arguably the fastest deterministic ap-
proach to find communities in a network. Its only limitation is
the resolution limit of modularity. Conductance [Shi and Ma-
lik, 2000] is another popular scoring function used to measure
the quality of communities. But, optimization of conductance
will always give one community which is the graph itself. A
comparison of several scoring functions against ground-truth
communities revealed that none of them can be accepted as
a single best scoring function since every scoring function
captures only certain features of the community [Yang and
Leskovec, 2012]. So, there is a need for a scoring func-
tion which captures the intuition behind communities, which



can be used as an objective function to find communities and
which can be optimized efficiently.

We propose a new scoring function, known as CEIL (Com-
munity detection using External and Internal score in Large
networks) score, which is free from resolution limit and can
be maximized using the same Louvain heuristics to find com-
munities in a network.

The contributions of this paper are :
• Identification of the necessary features that a good scor-

ing function should incorporate in order to find the rela-
tive ordering of communities in a network (Section 2.1).

• Introduction of a new scoring function (CEIL score)
which captures all the features of communities (Section
2.3).

• A theoretical proof that CEIL score does not suffer from
resolution limit (Section 3). A comparative study of sev-
eral scoring functions indicate the versatility of our scor-
ing function (Section 4).

• Adaptation of the Louvain algorithm to greedily opti-
mize the CEIL score (Section 5) and empirical verifi-
cation that the community labels given by this modified
algorithm closely match the ground-truth labels (Section
6).

2 Introduction of CEIL score
The intuition behind a community is that it is well connected
internally and well separated from the rest of the network, i.e.,
it should have more intra-community edges and fewer inter-
community edges. A scoring function is the mathematical
formulation of the quality of a community.

2.1 Characterization of a good scoring function
A community is characterized by the following three features.

• Number of nodes forming the community.
• Number of intra-community edges present in the com-

munity.
• Number of inter-community edges incident on the com-

munity.
A scoring function should incorporate all these three features
of the communities because numerous examples can be con-
structed such that there are two communities which differ
in only one of the above three features. In the such cases,
the “third” feature becomes necessary to distinguish between
the two communities. For example, consider a scoring func-
tion which does not include the feature ‘number of nodes
forming the community’. It will give same score to a com-
munity A in a network having 10 intra-community edges, 2
inter-community edges and 5 nodes and to a community B in
the same network having 10 intra-community edges, 2 inter-
community edges and 10 nodes. But community A has higher
internal density than community B and should be given higher
score than community B. Similarly, the other two features are
also essential in assigning scores to communities in order to
find the relative order of communities in a network.

We find that none of the existing scoring functions take into
account all the three necessary features to characterize the

communities. For e.g., Modularity [Newman, 2004] and con-
ductance [Shi and Malik, 2000] do not consider the parameter
‘number of nodes forming the community’ while Triad Par-
ticipation Ratio does not consider the parameter ‘number of
inter-community edges incident on the community’. So, we
propose a new scoring function (CEIL score) characterizing
the communities by taking into account all the necessary fea-
tures.

2.2 Notations
Let G be a simple unweighted network with N nodes and E
edges. Let S be the set of all communities in G and C be
the size of S. We denote one of the communities in G by s
and as is the number of intra-community edges in s, bs is the
number of inter-community edges incident on s and ns is the
number of nodes in s.

2.3 Existing scoring functions
Few of the widely used scoring functions are,
Definition 2.1. Conductance is given by the ratio of number
of inter-community edges to the total degree of all nodes in
the community [Shi and Malik, 2000].
Definition 2.2. Triad Participation Ratio is given by the frac-
tion of nodes in the community that are participating in at
least one triad.
Definition 2.3. Modularity is given by the difference be-
tween the actual number of intra-community edges present in
the community and the expected number of intra-community
edges that would be present in the community if the edges in
the network were distributed randomly with identical degree
distribution [Newman, 2004].

2.4 CEIL score
A community is said to be well connected internally if a large
fraction of the pairs of nodes belonging to the community are
connected, i.e., the internal well connectedness of a commu-
nity increases as the number of intra-community edges in-
creases.
Definition 2.4. The internal score of a community s is the
internal edge density of that community.

Internal Score(s) =

{
as

(ns
2 )

if ns ≥ 2

0 if ns = 1

Internal score ranges from 0 to 1. It takes the value of 0
when there are no intra-community edges in the community
and takes the value of 1 when every node in the community
is connected to every other node in the community.

A community is said to be well separated from rest of the
network, if the number of inter-community edges is less, i.e.,
the external well separability increases as the number of inter-
community edges decreases.
Definition 2.5. The external score of a community s is the
fraction of total number of edges incident on that community
that are intra-community edges.

External Score(s) =
as

as + bs



External score ranges from 0 to 1. It takes the value of
0 when every edge incident on the community is an inter-
community edge and takes the value of 1 when every edge
which is incident on the community is an intra-community
edge.

A community structure is said to be good, if it is well con-
nected within itself and is well separated from rest of the net-
work, i.e., if it has high internal and external scores.

Definition 2.6. The CEIL score of a community s is the prod-
uct of internal and external score of that community.

CEIL Score(s) = Internal Score(s) × External Score(s)

Since we are interested in the relative order of communi-
ties and not on the absolute score a community gets, we chose
product over geometric mean. CEIL score of a community
ranges from 0 to 1. It takes the value of 0 when the commu-
nity has no intra-community edge, and takes the value of 1
when the community is a clique that is isolated from the rest
of the network. A high score represents a good community
as it can be obtained only when both the internal and external
scores are high.

A network typically has many communities.

Definition 2.7. The CEIL score of a network G is the
weighted sum of scores of all the communities in that net-
work.

CEIL Score(G) =
∑
s∈S

ns

N
× Community Score(s)

CEIL score of a network ranges from 0 to 1 in a simple,
unweighted network. Computationally, CEIL score has the
same complexity as that of modularity or conductance.

3 Resolution Limit
Resolution limit is the inability of an algorithm to detect com-
munities which are much smaller in size when compared to
the size of the network.

Theorem 3.1. CEIL score does not suffer from resolution
limit.

Proof. Without loss of generality, let us consider the same
network which was used to prove the resolution limit of mod-
ularity maximization. The network has two communities, 1
and 2, connected to each other as well as to the rest of the
network as in figure 1. Let n1 and a1 be the number of
nodes and the number of intra-community edges of commu-
nity 1, respectively. Similarly, let n2 and a2 be the number
of nodes and the number of intra-community edges of com-
munity 2. In order to express the number of inter-community
edges of both the communities in terms of their respective
intra-community edges, we consider four positive constants
x1, y1, x2 and y2. Let x1a1 represent the number of inter-
community edges going from community 1 to community 2
and y1a1 represent the number of inter-community edges go-
ing from community 1 to rest of the network. Similarly, let
x2a2 represent the number of inter-community edges going
from community 2 to community 1 and y2a2 represent the
number of inter-community edges going from community 2

Community 1

Community 2

Rest
of
the 
Network

Figure 1: Outline of a network with at least 3 communities

to rest of the network. Let N represent total number of nodes
in the network.

We will consider two different partitions of this network.
Partition A, in which 1 and 2 are considered as two different
communities and Partition B, in which 1 and 2 are considered
as a single community. The partition of the rest of the network
can be done in anyway but identical in partitions A and B.
Let NA and NB be the network scores of partitions A and
B respectively. Let N0 be the network score of rest of the
network.

NA = N0 +
n1

N

(
a1

a1 + x1a1 + y1a1

)(
a1(
n1

2

))

+
n2

N

(
a2

a2 + x2a2 + y2a2

)(
a2(
n2

2

))

NB = N0 +
n1 + n2

N

(
a1 + x1a1 + a2

a1 + x1a1 + a2 + y1a1 + y2a2

)
(
a1 + x1a1 + a2(

(n1+n2)
2

) )
For 1 and 2 to be separate communities, NA should be

greater than NB , i.e.,(
n1a

2
1

(a1 + x1a1 + y1a1)
(
n1

2

))+

(
n2a

2
2

(a2 + x2a2 + y2a2)
(
n2

2

))

>

(
(n1 + n2) (a1 + x1a1 + a2)

2

(a1 + x1a1 + a2 + y1a1 + y2b2)
(
(n1+n2)

2

))
Note that the above inequality does not depend on any pa-

rameter which is related to size of the network. This means
that CEIL score does not suffer from resolution limit.

A similar analysis for modularity leads to the parameters
of communities on one side of the inequality with number
of edges in the network on the other side [Fortunato and
Barthélemy, 2007] which means that the decision to split or
merge two communities will depend on the size of the net-
work.

4 Comparison of scoring functions
Yang and Leskovec [Yang and Leskovec, 2012] compared the
performance of several scoring functions using perturbation
experiments and reported that Conductance and Triad Par-
ticipation Ratio are the best performers. Modularity is the



widely used definition. So, we compare CEIL score against
these three scoring functions.

The networks with ground-truth communities which we
have used are listed in table 1. We obtained them from
http://snap.stanford.edu/data

Table 1: Networks with ground-truth communities
Networks Nodes Edges

LiveJournal 3,997,962 34,681,189
Youtube 1,134,890 2,987,624
DBLP 317,080 1,049,866

Amazon 334,863 925,872

4.1 Community Goodness Metrics
Following the same notation as 2.2 of this paper, the goodness
metrics that we choose are as below.

Internal density(s) =
as

ns (ns − 1)

Separability(s) =
as
bs

Clustering Coefficient(s) =
Number of closed triplets

Number of connected triplets
We rank the ground-truth communities based on goodness
metrics as well as scoring functions. We measure the cor-
relation of the ranks given by scoring functions and good-
ness metrics. We use spearman’s rank correlation coefficient
to find the correlation between the ranks [Myers and Well,
2003].

Table 2: Spearman’s rank correlation coefficient for density
Networks LiveJournal Youtube DBLP Amazon
Modularity -0.3751 -0.9017 -0.2313 -0.9070
Conductance 0.1963 0.5762 0.1736 -0.5676
TPR 0.4386 -0.5124 0.4052 0.4714
CEIL score 0.5363 0.8279 0.7034 0.9474

Table 3: Spearman’s rank correlation coefficient for separa-
bility

Networks LiveJournal Youtube DBLP Amazon
Modularity 0.0600 -0.4854 0.0687 0.5791
Conductance 1.0000 1.0000 1.0000 1.0000
TPR -0.0482 -0.4782 -0.0240 -0.3891
CEIL score 0.9002 0.9192 0.7954 -0.3513

From tables 2, 3 and 4, we have the following conclu-
sions. Modularity does not correlate well with goodness met-
rics. Conductance absolutely correlates with separability but
it doesn’t correlate well with other two goodness metrics.
Triad participation ratio overall has the second best corre-
lation with density and clustering coefficient but it do not
correlate well with separability. CEIL score has the high-
est correlation with density, second highest correlation with

Table 4: Spearman’s rank correlation coefficient for cluster-
ing coefficient

Networks LiveJournal Youtube DBLP Amazon
Modularity -0.1991 0.6738 -0.0559 -0.8675
Conductance 0.1754 -0.4093 0.1433 -0.5316
TPR 0.3142 0.8707 0.3399 0.4148
CEIL score 0.4841 -0.4278 0.6332 0.9152

separability except in Amazon network and highest correla-
tion with clustering coefficient except in Youtube network. In
the amazon network, communities with high internal density
have low separability and vice versa. This is the reason for the
negative correlation of CEIL score with separability in Ama-
zon network. This correlation experiment also shows that the
poor correlation of conductance with density is due to the fact
that it do not consider the feature ‘number of nodes forming
the community’. Similarly, the poor correlation of triad par-
ticipation ratio with separability is due to the fact that it does
not consider the feature ‘number of inter community edges
incident on the community’. Since, CEIL score takes into ac-
count all the features, it correlates well with all the goodness
metrics.

4.2 Perturbation Experiment
Perturbation experiments were introduced for comparative
study of different scoring functions [Yang and Leskovec,
2012]. In these experiments, ground-truth communities are
perturbed using few perturbation techniques to degrade their
quality. A good scoring function is expected not only to
give high scores for ground-truth communities and is also ex-
pected to give low scores for perturbed communities.

We consider a ground-truth community s and do the
NODESWAP, RANDOM, EXPAND and SHRINK perturba-
tions on the community as described in [Yang and Leskovec,
2012].

Figure 2: Z-score given by various scoring functions as a
function of perturbation intensity for the LiveJournal net-
work.

Figure 2 shows the plot of Z-score (normalized difference
between the scores of unperturbed and perturbed commu-



nities) as a function of perturbation intensity in the Live-
Journal network. CEIL score performs significantly better
in RANDOM and considerably better in NODESWAP and
EXPAND. We obtained similar performance in Youtube and
DBLP datasets also. In SHRINK, we obtained mixed results
as CEIL score does better in LiveJournal network while mod-
ularity does better in Youtube network and conductance does
better in DBLP network. Since the rank correlation between
density and separability is negative in Amazon network un-
like the other networks and the ground-truth communities
have poor density and better separability, Conductance per-
forms well in all the different perturbations except RANDOM
in which CEIL score performs better.

5 CEIL Algorithm
A greedy approach to find communities by efficiently maxi-
mizing an objective function is already proposed in [Blondel
et al., 2008]. Since it is the fastest known heuristic, we use
the same method to maximize CEIL score. In this section, we
provide a complete description of the algorithm. A pseudo-
code is omitted due to lack of space. The algorithm has two
phases. In the first phase, we assign each node to its own
community. Then, we consider each node in the network in
a sequential manner, remove it from its original community
and add it either to the community of one of its neighbors or
back to the original community, whichever will result in the
greatest increase in CEIL score of the network. The newer
properties of a community when a node n is added to the
community is calculated as,

as = as + intran + incidentn,s
degs = degs + degn
ns = ns + nn

where intran is the number of intra-community edges in the
community represented by node n, incidentn,s is the sum of
weights of the edges incident from node n to community s,
degs is the sum of degree of all nodes in the community s,
degn is the sum of degree of all nodes in the community rep-
resented by node n and nn is the number of nodes in the com-
munity represented by node n.

With the updated as, degs and ns, the newer score and
hence the increase is calculated. In a similar way, the decrease
in the score of a community when a node is removed from it
is calculated. We repeat this process iteratively until there is
no increase in the score given by the scoring function. At this
time, the scoring function has reached its local maxima and
the first phase ends.

In the second phase, we construct an induced graph of the
network by using the community labels of nodes obtained
from the first phase. Each community in the first phase is rep-
resented by a node in the induced graph. Number of nodes in
the community, sum of degree of all nodes in the community
and the number of intra-community edges are all preserved
in the induced graph by associating them with the respective
node. The weight of an edge between two nodes in the in-
duced graph is equal to the sum of weights of all the edges
between those two communities in the original graph. The
second phase ends after the construction of the induced graph.

(a) COC

A B

C

D

(b) POC

Figure 3: COC - Circle Of Cliques and POC - Pair Of cliques

We keep track of the scores of all the communities, i.e., up-
date the scores of the communities as and when a change (ad-
dition or deletion of nodes) is made to the community. This
will help in faster calculations of the increase or decrease of
the community score whenever a change is made to the com-
munity. The size of the graph is reduced drastically after the
second phase that even a million nodes graph gets reduced to
thousands of nodes in few iterations. This contributes signif-
icantly in reducing the running time of the algorithm.

The induced graph obtained as output of the second phase
is given as the input to the first phase. The two phases are
thus iterated until there is no increase in the score.

In weighted networks, we calculate the number of edges
as the sum of weights on all the edges. CEIL score of the
network takes the low value of 0 but the high value is depen-
dent on weights on the edges of the network. Nevertheless,
the relative ordering of communities in a network will not get
affected and so we can use CEIL algorithm in weighted net-
works also. By calculating only the edges going out from the
nodes belonging to a community while calculating the num-
ber of intra- and inter-community edges, we can extend the
CEIL algorithm to directed graphs also. We note that we can-
not apply CEIL algorithm without modifications to find over-
lapping communities. But, CEIL score can still be used to
rank the overlapping communities.

6 Empirical Validation
In this section, we compare CEIL algorithm to representative
algorithms that exhibit good scaling behavior 1.

6.1 Experimental demonstration of resolution
limit

In [Fortunato and Barthélemy, 2007], synthetic networks with
specific structural properties were used to demonstrate the
resolution limit in modularity. We use similar networks to
show that the CEIL algorithm finds the expected communi-
ties.

Circle of cliques : Figure 3(a) shows an example network
consisting of a circle of cliques. In the figure each dot corre-
spond to a clique. The line between any two dots is a single
edge connecting the corresponding cliques. Consider such a
network of 30 cliques with each clique having 5 nodes. CEIL
algorithm detected 30 communities with each clique being
a separate community. Louvain method was shown to give

1Source code of the CEIL algorithm can be found in github.
com/vishnu1512/CEIL.



only 15 communities with two adjacent cliques belonging to
a single community [Fortunato and Barthélemy, 2007].

To show that CEIL algorithm finds communities in net-
works irrespective of the number of communities, we re-
peated this experiment with 300, 3000 and 30000 cliques of
size 5. In all the cases, CEIL algorithm was able to find each
of the cliques as a separate community. To show that CEIL
algorithm finds communities irrespective of the size, we kept
the number of communities in this network to a fixed value of
10 and generated this network with size of cliques as 50, 500
and 1000. In all these networks, CEIL algorithm was able to
find the correct communities.

Two Pairs of cliques : To show that CEIL algorithm finds
communities that differ in size, we generated a network with
a pair of big sized cliques and a pair of small sized cliques. In
figure 3(b), A and B are cliques of size 20, i.e., 20 nodes and
190 edges while C and D are cliques of size 5. The line be-
tween any two dots is the single edge connecting two cliques.
CEIL algorithm gave 4 communities with each clique being a
community. Louvain method was shown to give only 3 com-
munities [Fortunato and Barthélemy, 2007]. We kept the size
of the two small cliques as constant at a size of 5 and gen-
erated three networks with the size of the big cliques as 200,
2000 and 5000. In each of these cases, CEIL algorithm is able
to find the four cliques as four different communities.

Note that we can construct numerous such examples where
modularity maximization fails due to the resolution limit
while maximization of CEIL score does not fail. The above
experiments also show that CEIL algorithm will be able to
identify communities irrespective of their size and number
provided that a strong community structure is present in the
network.

6.2 Four Community Network
To show that CEIL algorithm performs well on graphs with
different densities, we generated synthetic networks consist-
ing of four communities as described in [Danon et al., 2005].
The density of edges in the resulting networks were 25.19%,
12.59%, and 6.29%. In the network with density 25.19%, we
were able to recover the 4 ground-truth communities when-
ever the average number of intra-community links per node
(Zin) was greater than the number of inter-community links
per node (Zout). In the network with density 12.59%, we
were able to identify the communities fully when Zout was
0 and 1. We obtained a rand index of 0.9922 and 0.93 when
Zout was 2 and 3. In the network with density 6.29%, we
were able to obtain a rand index of 0.9506 when Zout was
0. We note that the ability to recover the communities goes
down as the density of edges in the network decreases.

6.3 Real World Graphs
We ran the CEIL algorithm, the Louvain modularity max-
imization approach and the Label Propagation algorithm
[Raghavan et al., 2007] in real world graphs. In the label
propagation algorithm, each node in the network is initially
assigned an unique label. Then, nodes in the network are
visited in a random order and are assigned the label which
majority of its neighbors have. Ties are broken uniform ran-
domly. This process will be repeated until all the labels of all

the nodes in the network agree with the majority of nodes in
their neighbourhood.

Table 5: Rand index
Networks Louvain

method
Label

Propagation
CEIL

algorithm
Youtube 0.8957 0.6915 0.9959
DBLP 0.9702 0.9818 0.9828
Amazon 0.9910 0.9953 0.9938

Table 6: Running Time

Networks Louvain
method

Label
Propagation

CEIL
algorithm

Youtube 321.25s 30.03s 395.25s
DBLP 134.39s 571.69s 77.77s
Amazon 81.17s 10.76s 80.68s

From table 5, we see that CEIL algorithm captures the
ground-truth communities better than Louvain method as
measured by rand index [Rand, 1971]. Though the label prop-
agation algorithm gives a better match to ground-truth com-
munities in Amazon network, it performs poorly in Youtube
network.

We note from table 6 that the running time of CEIL algo-
rithm is on par with the Louvain method. Only difference
between Louvain method and CEIL algorithm is the scoring
function which is maximized. The computation of both the
scoring functions using the pre-computed parameters requires
O(1) time. So, the empirical running time of both the algo-
rithms is the same. But both the algorithms generate different
number and size of communities depending on the topology
of the networks. This is the reason for small differences in the
running time of the algorithms. Label propagation appears to
have a much better running time in two of the networks. This
is because we have stopped the algorithm as soon as the 95%
of the nodes in the network agree with the labels of at least
half of it’s neighbors and have not run it to completion.

7 Conclusion
In this paper, we have characterized the necessary features
required for a good community scoring function and have
shown that both the internal and external properties of the
communities have to be taken into account in order to de-
sign a good scoring function. To our knowledge, this is the
first work to propose a scoring function having explicit com-
ponents to represent the internal and external score and then
combining them to get the actual community scoring func-
tion.

Earlier algorithms to find communities were resolution
limit free but were non-scalable. Several methods addressed
the problem of scalability but each one of them suffered from
its own limitations. CEIL algorithm addresses both the prob-
lem of scalability and resolution limit. So, we believe that
CEIL algorithm is a better alternative to find communities in
large networks.
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