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Abstract

A fundamental challenge in Internet computing (IC) is to ef-
ficiently schedule computations having complex interjob de-
pendencies, given the unpredictability of remote machines,
in availability and time of access. The recent IC Schedul-
ing theory focuses on these sources of unpredictability by
crafting schedules that maximize the number of executable
jobs at every point in time. In this paper, we experimen-
tally investigate the key question: does IC Scheduling yield
significant positive benefits for real IC? To this end, we
develop a realistic computation model to match jobs to
client machines and conduct extensive simulations to com-
pare IC-optimal schedules against popular, intuitively com-
pelling heuristics. Our results suggest that for a large
range of computation-dags, client availability patterns,and
two quite different performance metrics, IC-optimal sched-
ules significantly outperform schedules produced by popu-
lar heuristics, by as much as 10–20%.

1. Introduction

Advances in technology have made collections of comput-
ers that communicate across the Internet a viable compu-
tational platform [5], even for solving individual computa-
tional problems [1, 2, 8]. Perhaps the major impediment
to scheduling complex computations efficiently in this new
environment istemporal unpredictability:

• Communication is over the Internet, hence may expe-
rience unpredictable delays.

• Remote computing clients may not be dedicated to per-
forming the work they receive remotely, hence may ex-
ecute that work at an unpredictable rate.

This uncertainty makes it difficult to accurately identify crit-
ical paths in complex computations, hence demands a new
scheduling paradigm that acknowledges the strengths and
weaknesses of the Internet as a computational medium.
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Recent papers [3, 11, 12, 13] identify a new goal when
scheduling computations consisting of multiple jobs with
complex interdependencies for Internet-based computing
(IC). These sources develop the conceptual and algorithmic
foundations ofIC Schedulingfor an idealized version of IC.
IC Scheduling attempts to schedule a complex computation
in a manner that always maximizes the number of jobs that
are eligible for allocation to remote clients, seeking to:
• utilize remote clients’ computational resources well,

by always having work available for allocation;
• lessen the likelihood that a computation will stall for

lack of tasks that are eligible for execution.

IC Scheduling focuses on grids of committed clients (cf. the
LHC Computing Grid or the UK e-Science Grid), rather
than completely public ones (as in [8]). Thus, we assume
that clients are trustworthy and that they may tarry but do
not disappear.
IC Scheduling theory optimally schedules a large variety of
common computations, such as those in Fig. 1 (whose op-
timal schedules are derived in [4], using algorithms from
[3, 11]), as well as myriad less uniform ones. The theory
seeks a regimen for scheduling complex IC computations,
that has both a strong theoretical grounding and significant
benefit for real computations. This paper begins to investi-
gate the theory’s benefits, via the following questions:
• What are reasonable computational models within

which to evaluate the theory’s performance under ana
priori unknown sequence of available client machines?

• Does IC Scheduling theory have significant positive
benefit over simpler scheduling heuristics within these
models?

We address these questions by comparing schedules man-
dated by the theory against schedules based on popular
heuristics, on randomly generated dags, using two new
quality metrics. Our study shares its motivation with [9]
but differs from that study in three major respects, that lead
to our main contributions.

1. We test the IC-optimal scheduler,ICO, of [11] on hun-
dreds of random dags and many client availability pat-
terns; we generate only dags that are certain to admit
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Figure 1. Data-dependency dags for (left to right): matrix multiplication, the Fast Fourier Transform (FFT), a generic
wavefront computation, the discrete Laplace transform, a generic divide-and-conquer computation.

IC-optimal schedules. In [9] a heuristic based onICO

is tested on four dags that arise in real computations;
this heuristic produces schedules for all dags. We feel
that understanding the performance of the actualICO

scheduler is a necessary test for assessing its impor-
tance for real IC.

2. We evaluateICO against: enhanced versions of FIFO
and LIFO schedulers; a greedy scheduler that employs
locally the scheduling criteria thatICO employsglob-
ally; the competitor in [9] is a FIFO scheduler inspired
by the one used in Condor [2].

3. Our comparisons employ a new “area-maximizing”
metric that measures theaveragerate of producing eli-
gible jobs, in addition to the “batched makespan” met-
ric of [10, 9].

Our results suggest:for a broad range of situations that
one might expect to encounter in IC, ICO achieves sig-
nificant performance improvements over its competi-
tors for a wide range of client availability patterns.

Note 1 We are comparingalgorithmic approaches to
scheduling, not scheduling systems that must cope with,
e.g., faults, changes in the computational environment, etc.

Related work. The most closely related study is [9], as dis-
cussed above. The closest sources involving IC Scheduling
theory are: [12, 13], wherein the new scheduling paradigm
is introduced and optimal schedules are computed for sev-
eral uniform dags; [3, 11], whereinICO is developed; [10],
wherein our “batched makespan” quality metric is stud-
ied theoretically. Our study is motivated by the excit-
ing systems- and/or application-oriented studies of IC in
sources such as [1, 2, 5, 6, 7, 8, 14]. Traditional, critical-
path-based, scheduling is not relevant to our study because
temporal unpredictability renders the notion of critical path
fuzzy at best.

2. Foundations of IC-Scheduling Theory

The arcs of a dag connect aparentnode to achild; sources
have no parents;sinkshave no children.

2.1. A Quality Model for IC . When one executes a dag
G, a nodev ∈ NG is ELIGIBLE (for execution) only after
all of its parents have been executed. We do not allow re-
computation of nodes, so a node loses itsELIGIBLE status
once it is executed. In compensation, a nodev’s execution
may render new nodesELIGIBLE, if v is their last parent
to be executed. Aschedulefor G is a rule for selecting
which ELIGIBLE node to execute at each step of an exe-
cution ofG. We measure the quality of an execution by the
number ofELIGIBLE nodes after each node-execution—the
more, the better. (Note thatwe measure time in an event-
driven manner, as the number of nodes that have been ex-
ecuted up to that point.) Our goal is to executeG’s nodes
in an order that maximizes the production rate ofELIGIBLE

nodesat every step of the computation. A schedule that
achieves this demanding goal isIC-optimal. The signifi-
cance of IC optimality stems from the following facts. (1)
Schedules that produceELIGIBLE nodes more quickly may
reduce the chance of the “gridlock” that could occur when
no new jobs can be allocated pending the return of already
allocated ones. (2) If the IC Server receives a batch of re-
quests for jobs at (roughly) the same time, then having more
ELIGIBLE jobs available allows it to satisfy more requests,
thereby increasing “parallelism.”
2.2. A Framework for IC-Optimal Scheduling.
Oneprioritizes dags as follows. Fori = 1, 2, let the bipar-
tite dagGi havesi sources, and let it admit the IC-optimal
scheduleΣi. Let EΣi

(x) denote the number of eligible
nodes after executingx jobs using the scheduleΣi. If the
following inequalities hold:1

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1

(x) + EΣ2
(y) ≤ EΣ1

(min{s1, x + y})+
EΣ2

(max{0, x + y − s1})
(1)

thenG1 has priority overG2, denotedG1 ⊲ G2. Informally,
one never decreases IC quality by executing a source ofG1

whenever possible.
Onecomposes dags as follows.

1[a, b] denotes the set of integers{a, a + 1, . . . , b}.



• Start with a setB of base “building block” dags (which
are CBBBs2 in [3, 11]).

• Compose dagsG1,G2 ∈ B—which could be the same
dag with nodes renamed to achieve disjointness—to
obtain a composite dagG, as follows.

– Let G begin as thesum(or, disjoint union),G1 +
G2, of the dagsG1,G2. Rename nodes to ensure
thatNG is disjoint fromNG1

andNG2
.

– Select some setS1 of sinks from the copy ofG1

in the sumG1 + G2, and an equal-size setS2 of
sources from the copy ofG2 in the sum.

– Pairwise merge the nodes inS1 andS2 in some
way. The resulting set of nodes isG ’s node-set;
the induced set of arcs isG ’s arc-set.3

• Add the dagG thus obtained to the base setB.

We denote the composition operation by⇑ and say thatG is
composite of type[G1 ⇑ G2].
G is a ⊲-linear compositionof the CBBBsG1, . . . ,Gn if:
(a) G is composite of typeG1 ⇑ · · · ⇑ Gn (composition is
associative); (b) Gi ⊲ Gi+1, for all i ∈ [1, n − 1].

Theorem 1 ([11]) Let G be a ⊲-linear composition of
G1, . . . ,Gn, where eachGi admits an IC-optimal schedule
Σi. The scheduleΣ for G that proceeds as follows is IC
optimal.

1. For i = 1, . . . , n, in turn,Σ executes the nodes ofG
that correspond to sources ofGi, in the order
mandated byΣi.

2. Σ finally executes all sinks ofG in any order.

3. The Four Competing Schedulers

3.1. The IC-Optimal SchedulerICO. One finds in [11] a
suite of algorithms that determine whether or not a dagG
can be decomposed into a set of CBBBs satisfying Theo-
rem 1 and, if so, uses the theorem to derive an IC-optimal
schedule forG. These algorithms, collectively called sched-
uler ICO, processG via the following steps.

1. Prune G to remove all shortcut arcs.

• An arca = (u → v) is ashortcutif there is a path
from u to v that does not usea.
• The resulting “pruned” dagG′ shares its IC-optimal
schedules withG.

2. Decompose G′ into CBBBs, G1, . . . ,Gn, such that
G′ is composite of type G1 ⇑ · · · ⇑ Gn.

• When such a “parsing” exists, it is unique and can
be found by iteratively greedily removing a maximal
CBBB of G′ all of whose sources are sources ofG′.

2CBBBis short forConnectedBipartiteBuilding Block.
3An arc(u → v) is inducedif {u, v} ⊆ NG .

3. Replace G′ by the super-dag G′′ whose nodes
are the CBBBs G1, . . . ,Gn and whose arcs form
a blueprint of the sequence of compositions that
created G′.

• Specifically, ifG′ was formed by identifying sources
of CBBB Gi with sinks of CBBBGj , then there is an
arc inG′′ from supernodeGj to supernodeGi.

4. Determine whether or not there is an ⊲-
linearization of G1, . . . ,Gn that is consistent with
the topological dependencies within G′′.

• This determines if⊲ is consistent with a topological
sort ofG′′.

5. If all steps have succeeded, then output the
schedule for G mandated by Theorem 1.

3.2. The Competing Heuristic Schedulers.
A. The FIFO heuristic initially enqueuesG ’s sources into
a FIFO queueQ, in nonincreasing order of outdegree
(maximum-outdegree nodes emerge first); nodes of equal
outdegree are enqueued randomly.FIFO dequeuesQ to ob-
tain a node for a requesting client. When a nodev completes
execution,FIFO enqueues, in nonincreasing order of outde-
gree, those ofv’s children that are newlyELIGIBLE; nodes
of equal outdegree are enqueued randomly.
B. The LIFO heuristic initially pushesG ’s sources into a
(LIFO) stackS, in nondecreasing order of outdegree; nodes
of equal outdegree are pushed randomly.LIFO popsS to
obtain a node for a requesting client. When a nodev com-
pletes execution,LIFO pushes, in nondecreasing order of
outdegree, those ofv’s children that are newlyELIGIBLE

execution; nodes of equal outdegree are pushed randomly.
C. The GREEDY heuristic initially insertsG ’s sources, in
random order, into a MAX-Priority QueueP . (The ultimate
order of nodes having distinct outdegrees is determined by
P ’s queuing discipline.)GREEDY uses EXTRACT-MAX
onP to obtain a node for a requesting client. When a node
v completes execution,GREEDY inserts, randomly, those of
v’s children that are newlyELIGIBLE.

4. The Experimental Setup

We use the following experimental setup to compareICO

againstFIFO, LIFO, andGREEDY.
1. We generate a dagG that is random within a class of

dags that admit IC-optimal schedules; cf. Section 4.1.
2. We executeG using all four schedulers of Section 3.

Since FIFO, LIFO, and GREEDY all involve a degree
of randomization, we invoke each fifty times on each
dag and use the means and variances of their “perfor-
mances” for our comparisons withICO.

3. We compile the statistics that compare the “qualities”
of the executions of step 2. We employ two quality



metrics for our comparisons, which arise from quite
distinct intuitions. The first metric can be viewed as
measuring the “average” IC quality of a schedule; the
second introduces a computational model and uses an
analogue of “time to completion” as its metric. Sec-
tions 4.2 and 4.3 provide details.

4.1. On Generating “Random” Dags. Of course, the real
test for any scheduler is to deal with given dags of possibly
complex structures. However, since our goal is to assess the
value of IC optimality when it exists, we “cheat” by evalu-
ating our competing schedulers on dags that are chosen via
random compositions from among dags that are guaranteed
(by results in [12, 13, 11]) to admit such schedules. Our
selection process proceeds as follows.

1. We select a random target size for the dag we want to
generate (from a few hundred nodes to several thou-
sand).

2. We choose a collection of CBBBs randomly from a
repertoire that is defined and analyzed in [11].

3. We compose the selected CBBBs in ways that are cho-
sen randomly among compositions that are guaranteed
(by Theorem 1) to preserve IC-optimal schedulability.

A. Selecting CBBBs. Although we select CBBBs from
[11], our methodology applies easily to any CBBBs that ad-
mit IC-optimal schedules. The CBBBs we use are random-
size instantiations of those depicted in Fig. 2.
B. Schedulability and ⊲-priorities among the CBBBs
are specified in [11].
C. Executing random composite dags. We generate
dags as follows.
Selecting random CBBBs.We guarantee that generated
dags admit IC-optimal schedules by constructing random
⊲-linearizable compositions of CBBBs. We target dags
that are likely to abstract real computations by combining
CBBBs as follows, inspired by the dags in Fig. 1.

1. Random W-dags, abstracting “expansive” dags, that
grow from sources to sinks.

2. Random M-dags, abstracting “reductive” dags, that
shrink from sources to sinks.

3. Random W-dags, “followed by” N-dags, “followed
by” M-dags, abstracting “fork-join” dags, that grow
from sources, then shrink toward sinks.

4. Random compositions ofC2, abstracting convolutional
dags such as the FFT dag.

Randomly composing CBBBs. Having assembled a⊲-
linearizable selection of CBBBs, we composed them in a
manner that is consistent with Theorem 1. All selections—
of CBBBs, of partially constructed dags to compose, and of
sources and sinks to effect compositions—were random in
terms of both numbers and selected individuals.

Executing dags.ICO is deterministic, butFIFO, LIFO, and
GREEDYall employ randomness. Therefore, we had heuris-
tics execute each generated dag fifty times and used means
and deviations from the results in our comparisons.
4.2. The Area-Maximization Experiment.
A. The area-maximization metric. IC optimality re-
wards a scheduleΣ for maximizing the number ofELIGI-
BLE nodesat every stepwhile executing a dagG. Thearea-
maximizationmetric rewardsΣ for maximizing theaverage
number of nodes ofG that areELIGIBLE asG is executed.
We term this average the “area” ofΣ, because of the formal
analogy with Riemann sums as approximate integrals.
Theplot of scheduleΣ is the(n + 1)-entry vectorΠ(Σ) =
〈EΣ(0), EΣ(1), . . . , EΣ(n)〉. (We retain entriesEΣ(0) =
the number of sources ofG, andEΣ(n) ≡ 0 for complete-
ness.) Theareaof scheduleΣ is A(Σ) =

∑n

i=0
EΣ(i). Of

course, the normalized areâE(Σ)
def
= 1

n
A(Σ) is the average

number of nodes ofG that areELIGIBLE under scheduleΣ.
Notes. (a) Some dags do not admit any IC-optimal schedule
[11], but every dag admits an area-maximizing schedule.
(b) If a dagG admits an IC-optimal schedule, then every
area-maximizing schedule forG is IC optimal, and every
IC-optimal schedule forG is area-maximizing.
B. The area-maximization experiment. This experiment
generates random dags in the manner described earlier. We
study each generated dagG as follows.

1. We computêE(ICO) directly, asG is generated.
2. For each heuristicΣ, we executeG fifty times and com-

pute the mean of̂E(Σ), denotedẼ(Σ), and the stan-
dard deviation.

We compare schedulersΣ andΣ′ under this metric via the
quantity∆(Σ, Σ′)

def
= Ẽ(Σ) − Ẽ(Σ′). [Ẽ(ICO) ≡ Ê(ICO)

by convention.] (Note:n · ∆(Σ, Σ′) is theL1 distance be-
tweenΠ(Σ) andΠ(Σ′).) As just observed,∆(ICO, Σ′) ≥ 0.
4.3. The Batched-Makespan Experiment.
A. The batched-makespan metric. This quality metric
compares schedulers using a “server-centric,” rather than
“client-centric,” model of IC. The“client-centric” model—
which is the one studied in [3, 11, 12, 13]—views the Server
as being interrupted by the arrival of an available remote
client. In response, the Server allocates anELIGIBLE job to
the client, if one exists; otherwise, the client “disappears”
(say, looking elsewhere for work). The“server-centric”
model—a variant of the model in [10]—has remote clients
arrive in groups at preassigned times—perhaps, but not nec-
essarily, periodically. At these times, the Server polls for
the presence of both clients andELIGIBLE jobs. When a
poll finds, say,r ≥ 1 remote clients ande ≥ 1 ELIGIBLE

jobs, the Server choosesmin(r, e) ELIGIBLE jobs and allo-
cates them, one per client, until either clients or jobs run out.
At this point, unserved clients “disappear” and unallocated
jobs are returned to theELIGIBLE pool.
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Figure 2. The CBBBs for our semi-uniform dags. Edges represent upwardarcs.

The “server-centric” model suggests thebatched-makespan
metric for a schedulerΣ when executing ann-node dagG.
Given a pattern of arrivals of batched requests,r0, r1, . . .,
meaning that, for eachi, ri clients arrive requesting jobs at
the Server’sith poll, how many pollings does it take to exe-
cuteG? LettingE′

Σ(i) denote the number ofELIGIBLE jobs
at theith polling, we seek the smallest integerm such that
a0+a1+· · ·+am ≥ n, wherea0 = min(r0, E

′
Σ(1)), a1 =

min(r1, E
′
Σ(2)), . . . , am = min(rm, E′

Σ(m)). Under this
model, the Server may have to allocater > 1 ELIGIBLE

jobs at once at some polling times. In contrast,ICO always
waits until it sees allEICO(t−1) jobs that areELIGIBLE af-
ter the execution of the(t−1)th job before selecting thetth
job to allocate to a remote client. This leads to the apparent
anomaly:Under the batched-makespan metric, some sched-
ulers can conceivably outperform schedulerICO on some
dags. Thus, under this metric,ICO is actually a heuristic.
We justify using a heuristic by noting that optimizing even
a single step under this metric is NP-Complete [10].

B. The batched-makespan experiment. This experiment
generates random dags as described earlier and studies the
execution of each dag as follows. We have the Server poll
for clients requesting work according to an externally spec-
ified schedule. At each poll, the numberρ of requests for
work is a random variable with values distributed exponen-
tially in the set[2, 214]. (Thus, each polling is independent
of all others.) In common with [9], we assume that job exe-
cution times are distributed normally, with mean1 and stan-
dard deviation0.1. The variability in the sizes of generated
dags, our range of values forρ, and the assumed variability
in job execution times combine to give us a picture of how
our four schedulers behave under a rather broad range of
situations.

We execute each generated dagG fifty times using each of
our four schedulers. (In contrast to the area-maximization
experiment, for this experiment,ICO encounters random-
ness also, due to the request-arrival rateρ.) We end
up with four batched execution times, with T (Σ) (Σ ∈
{ICO, FIFO, LIFO, GREEDY} denoting the mean observed
number of pollings required by schedulerΣ. For eachG,
we compareICO against its three competitors via thephase-
ratio T (Σ) ÷ T (ICO) (so larger ratios favorICO).

5. Experimental Results and Interpretation

5.1 Area-Maximization Results. We present both means
and 95% confidence intervals for∆(ICO, Σ), for Σ ∈
{FIFO, LIFO, GREEDY}. (The intervals are often so tight
that they are indistinguishable from the means.) To be
conservative and perspicuous, we fitted curves of the form
a · vb ( v is the size of the generated dag) to the con-
vex hull of the lower envelope of the observed data. Thus
fit, ∆(ICO, Σ) always grew superlinearly and often few
super-quadratically with dag size!

A. Familiar dags. We instantiated the dags of Fig. 1 in
several different sizes: 3-to-10-level FFT dags and 10-to-
100-level mesh-like dags (to equalize the sizes of the largest
dags tested). The plots in Fig. 3 expose a number of mean-
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Figure 3. Area-maximization results for FFT
dags (top), reduction-meshes (middle), and evolving
meshes (bottom).
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Figure 4. Area-maximization results for random
compositions of W-dags (top), M-dags (second), com-
bined W-, N-, and M-dags (third), and bipartite cycles
(bottom).

ingful patterns. Most importantly,∆(ICO, Σ) grows non-
trivially with the size of the dag being scheduled. Specifi-
cally,excepting evolving meshes (and evolving trees), which
(almost) any strategy schedules well, we found that:

∆(ICO, Σ) grows superlinearlywith dag size.
so that:
The average per-step gain inELIGIBLE jobs from
usingICO rather than a heuristic grows with dag size.

B. Random composite dags. When perusing our plots in
Fig. 4, and the following observations, keep in mind that we
are discussinglower boundson∆(ICO, Σ).

ComparingICO against its competitors.

∆(ICO, Σ) grows superquadraticallywith dag size.
so that:
The average per-step gain inELIGIBLE jobs from
usingICO rather than a heuristic grows superlinearly
with dag size.

The fact that some coefficientsa are very small suggests that
the indicated advantage may be discernible only for rather
large dags.
Comparisons among the competitors.
• GREEDY consistently outperforms both other

heuristics—by a considerable margin on compo-
sitions of W-dags. This suggests thatGREEDY is the
best heuristic scheduler.

• FIFO appears to bethe weakest scheduler on composi-
tions of W-dags. Thismayresult from our composition
regimen, which always places W-dags with smaller
outdegrees “on top of” ones with larger outdegrees,
which leadsFIFO to execute potentially shallow sub-
trees in the expansive regions of a dag, before deeper
ones. Thus, we cannot yet reliably assess the relative
quality of FIFO’s schedules.

• The sparseness of data regarding random compositions
of W-, N-, and M-dags weakens detailed inferences
from the observed values ofa andb. But, recall that
these values describe only lower envelopes.

• The heuristic schedulers perform almost identically on
dags built from cycles.

5.2. Batched-Makespan Results. The difficulty of craft-
ing perspicious2-dimensional illustrations of our batched-
makespan results, led us to present data here for only two
dags from each class that we studied, selecting dags whose
results are typical of those observed throughout the class.
The selected results compare the batched-makespan perfor-
mance of each heuristicΣ, as compared with that ofICO,
by plotting the phase-ratioT (Σ)÷ T (ICO), represented via
means and 95% confidence intervals, as a function of the
client arrival rateρ (plotted in a logarithmic scale along the
x-axes of the plots). Our results suggest an unexpected con-
sistency between thestructural area-maximization metric
and thebehavioralbatched-makespan metric—at least for
an important range of values ofρ. Specifically, it appears
that using schedules of higher IC quality has a benign ef-
fect on batched-makespan. If this observation is verified by
subsequent (planned) study, then this could greatly simplify
the scheduling problem for IC.
A. Familiar dags. The FFT-dag plots of Fig. 5 contain in-
stances in whichT (GREEDY)÷T (ICO) < 1, indicating that
GREEDY sometimes takes fewer phases to complete than
doesICO, a situation described at the end of Section 4.3.1.
B. Random composite dags. The plots in Fig. 6 provide
insight into schedulers’ “random performance” under the
batched-makespan metric. Notably, these results are quite
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Figure 5. Phase-ratios for two different FFT dags (top), reduction meshes (middle), and evolving meshes (bottom).

consistent with those in [9], despite the differences in the
two studies, as described earlier. The overall “shapes” of the
plots in Figs. 5 and 6 are expected. For extreme values of
ρ, scheduling strategy has no impact on batched makespan.
If requests are very sparse, then any scheduler will generate
enoughELIGIBLE jobs. If there is, effectively, an unlimited
supply of requests, then the batched makespan is really lim-
ited only by the sequential depth of the dag, so any approx-
imately breadth-first allocation of jobs should be roughly as
good as any other. It is only between these extremes that one
discerns significant differences among schedulers. The de-
tailed placement and amplitude of the “humps” in the plots
depend on the structure of the dag being executed. Notably,
though, in no experiment did we note ameanphase-ratio
below1; i.e.: in all experiments, ICO at least matched
the batched-makespan performance of the competing
heuristics. And, in many instances—cf. Fig. 6—ICO com-

pleted execution in 10-20% fewer phases than its competi-
tors, over a range of values ofρ.

6. Where We Are, and Where We’re Going

Our study supplements the evidence in [9] that IC-
Scheduling theory has significant postive implications for
Internet computing. Our simulations have pitted theICO

scheduler against three natural heuristics, on hundreds of
randomly generated dags, using both the area-maximization
and batched-makespan quality metrics. The simulations in
[9] pit an extension ofICO against a verison ofFIFO on
four real dags, using the batched-makespan metric. The
consistency between our results and those in [9] strength-
ens our confidence in the new theory. Of course, the ul-
timate validation—or refutation—of the significance of IC



Scheduling theory will require experiments with real work-
loads on real computing platforms. The integration of
G. Malewicz’sPRIO scheduling tool into the Condor DAG-
Man tool [2] (cf. [9]) may give us this opportunity. This pa-
per contributes one more step toward confirming the value
of such an endeavor.
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Figure 6. Phase-ratios for two compositions of (from top): W-dags, M-dags, cycles, combined W-, N-, and M-dags.


