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Abstract

Earlier work has developed the underpinnings of IC-
Scheduling theory, an algorithmic framework for schedul-
ing computations having intertask dependencies for
Internet-based computing (IC). The Theory aims to pro-
duce schedules that render tasks eligible for execution at the
maximum possible rate, so as to: (a) utilize remote clients’
computational resources well, by always having work avail-
able for allocation; (b) lessen the likelihood that a compu-
tation will stall for lack of tasks that are eligible for execu-
tion. The current paper reconnects the Theory, which mod-
els computations abstractly, with a variety of significant real
computations and computational paradigms, by illustrating
how to schedule these computations optimally.

1. Introduction

Earlier work [7, 18, 19, 20] develops IC-Scheduling the-
ory, an algorithmic framework for scheduling computations
having intertask dependencies for Internet-based computing
(IC, for short). The Theory’s goal is to produce schedules
that maximize the rate at which tasks are rendered eligi-
ble for allocation to remote clients (hence for execution),
with the dual aim of: (a) enhancing the utilization of re-
mote clients, by always having work to allocate to an avail-
able client; (b) lessening the likelihood of a computation’s
stalling pending execution of already-allocated tasks.
IC-Scheduling theory, as developed in [7, 8, 18], treats com-
putations as abstract directed acyclic graphs (dags). While
such treatment is convenient for algorithmicists, it may ob-
scure the range of applicability of the theory to real compu-
tations for those who do not deal daily with such abstrac-
tions. This paper reconnects the Theory with “real” IC by
describing a variety of significant specific computations and
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generic computational paradigms that IC-Scheduling theory
provides optimal schedules for, providing for each:

1. an analysis of its intertask dependency structure;
2. a sketched formal analysis of how this structure is

scheduled optimally by the theory;
3. a discussion of how this structure can be rendered

multi-granular, to adjust task granularities, at least
over a wide range, while maintaining a desirable inter-
task dependency structure. Multi-granularity is quite
important in IC: it allows one to tailor task granularity
to remote clients’ computing resources and to diminish
the volume of (expensive) inter-client communication.

We illustrate each paradigm with one or more significant
applicative computations. Our overriding concern here is
to illustrate how the structure of each computation’s inter-
task dependencies is accommodated by the Theory. Other
issues—even critical ones such as communication load,
which may influence one’s decision about the computa-
tion’s suitability for IC—are not our primary concern (al-
though we plan to address them in future work).
This paper is part of a multi-pronged assessment of IC-
Scheduling theory’s impact on “real” IC. The other prongs
involve simulation experiments that, within the framework
of a formal model of IC, compares the performace of the
scheduling algorithm, ICO, of [18] against a variety of com-
peting scheduling algorithms. In [16], an extension of ICO

is compared, on four real scientific dags, against the FIFO

scheduler of Condor [6]. In [12], ICO is compared, on
hundreds of synthetic dags, against three natural schedul-
ing heuristics, including FIFO. In all of the simulations ICO

either matches or improves the performance of competing
schedulers, suggesting that IC-Scheduling theory has a sig-
nificant positive impact on the scheduling problem for IC.
We are planning future work that tests ICO’s performance
on real, rather than simulated computations.
RELATED WORK. The fundamental notions of IC-
Scheduling theory are introduced in [19, 20], which also



characterize and specify optimal schedules for several uni-
form dags (some of which appear in here also). These sam-
ple schedules are developed into the seeds of the Theory in
[7, 18], whose conceptual contributions we describe immi-
nently. Major extensions to the Theory are being developed
in [8]. A companion study, [17], motivated by the impossi-
bility of scheduling many dags optimally under the Theory,
pursues a scheduling regimen in which a server allocates
batches of tasks at once, rather than allocating individual
tasks as they become eligible. Optimality is always possible
within the batched framework, but achieving it may entail
a prohibitively complex computation. As described earlier,
our assessment of the Theory’s impact on real IC has be-
gun in [16, 12], the former of which also describes the PRIO

scheduling tool. Finally, our study is motivated by the many
exciting systems- and/or application-oriented studies of IC
in sources such as [5, 10, 11, 13, 14, 21].

2. The Rudiments of IC-Scheduling Theory

We assume familiarity with dags and related notions;
cf. [18].

2.1. A Quality Model for Executing Dags. When one ex-
ecutes a dag G, an unexecuted node v is ELIGIBLE (for ex-
ecution) only after all of v’s parents are EXECUTED; hence,
every unexecuted source is always ELIGIBLE. We do not
allow recomputation of nodes, so a node loses its ELIGIBLE

status once it is EXECUTED. In compensation, executing
a node v may render new nodes ELIGIBLE—specifically,
when v is their last parent to be executed. A schedule for
G is a rule for selecting which ELIGIBLE node to execute at
each step of an execution of G. We measure the quality of
an execution of G by the number of ELIGIBLE nodes after
each node-execution—the more, the better. (Note that we
measure time in an event-driven manner, as the number of
nodes that are EXECUTED at that point.) Our goal is to ex-
ecute G’s nodes in an order that maximizes the production
rate of ELIGIBLE nodes at every step of the computation.
A schedule for G that achieves this demanding goal is said
to be IC-optimal. The significance of IC optimality stems
from the facts that producing ELIGIBLE nodes more quickly
may: (1) reduce the chance of a computation’s stalling when
clients are slow, so that no tasks can be allocated pending
the return of already allocated ones, (2) allow the Server
to satisfy more requests for tasks from a batch of (roughly)
simultaneous requests, thereby increasing “parallelism.”

2.2. Tools for Crafting IC-Optimal Schedules.
A. COMPOSITION-BASED TOOLS. For i = 1, 2, let the
dag Gi have ni nonsinks, and let it admit the IC-optimal

schedule Σi. If the following inequalities hold:1 2

(∀x ∈ [0, n1]) (∀y ∈ [0, n2]) :
EΣ1(x) + EΣ2 (y) ≤ EΣ1 (min{n1, x + y})+

EΣ2(max{0, x + y − n1}),
(1)

then G1 has priority over G2: G1 �G2; one never decreases
IC quality by executing a nonsink of G1 when possible.
The operation of composition is defined inductively:
• Start with a set S of base dags.
• To compose dags G1,G2 ∈ S—which could

be the same dag with nodes renamed to achieve
disjointness—thereby obtaining a composite dag G:

Take disjoint copies of G1 and G2, with nodes renamed
if necessary to ensure that NG ∩ (NG1 ∪NG2) = ∅.
(1) Select some set S1 of sinks from G1, and an equal-
size set S2 of sources from G2.
(2) Pairwise identify (i.e., merge) the nodes in the sets
S1 and S2 (in an arbitrary way). The resulting node-set
is NG ; the induced set of arcs is AG .3

• Add the dag G thus obtained to the base set S .

We say that G is composite of type [G1 ⇑ G2]. G is a �-
linear composition of dags G1, . . . ,Gn if: (a) G is compos-
ite of type G1 ⇑ · · · ⇑ Gn; (b) Gi�Gi+1, for all i ∈ [1, n−1].

Theorem 1 ([18]) Let G be a �-linear composition of
G1, . . . ,Gn, where each Gi admits an IC-optimal schedule
Σi. The following schedule Σ for G is IC optimal.
1. For i = 1, . . . , n, in turn, Σ executes the nodes of G that
correspond to nonsinks of Gi, in the order mandated by Σi.
2. Σ finally executes all sinks of G in any order.

B. DUALITY-BASED SCHEDULING TOOLS. The dual of
dag G is the dag G̃ obtained by reversing all of G’s arcs
(thereby interchanging sources and sinks). One can infer
IC-optimal schedules and �-priorities for a dag G from cor-
responding entities for G̃.
Let G have n nonsinks, U = {u1, . . . , un}, and N non-
sources, V = {v1, . . . , vN}. Let schedule Σ execute
U ’s nodes in the order uk1 , . . . , ukn . Each execution of a
ukj renders ELIGIBLE a (possibly empty) “packet” of non-
sources, Pj = {vj,1, . . . , vj,ij}. Thus, Σ renders G’s non-
sources ELIGIBLE in a sequence of “packets:”

P1 = {v1,1, . . . , v1,i1}, . . . , Pn = {vn,1, . . . , vn,in}.

A schedule Σ̃ for G̃ is dual to Σ if it executes G̃’s nonsinks—
i.e., V ’s nodes—in an order of the form4

[[vn,1, . . . , vn,in ]], . . . , [[v1,1, . . . , v1,i1 ]].

(G̃ generally admits many schedules that are dual to Σ.)

1[a, b] =def {a, a + 1, . . . , b}.
2EΣ(t) is the number of ELIGIBLE nonsources on G after step t of Σ.
3An arc (u → v) is induced if {u, v} ⊆ NG .
4[[a, . . . , c]] is a fixed, but unspecified, permutation of {a, . . . , c}.



Theorem 2 ([7]) (a) Let G admit the IC-optimal schedule
ΣG . Any schedule for G̃ that is dual to ΣG is IC optimal. (b)
For all G1 and G2: [G1 � G2] if, and only if, [G̃2 � G̃1].

3. Expansion-Reduction (E-R) Computations

3.1. The Abstract Dags. The computations exemplified
in this section are built via iterated composition from the
two basic building blocks in Fig. 1: the Vee dag V and the
Lambda dag Λ (so named for the shapes of their drawings).
Note that Λ and V are dual to one another. Via iterated
composition: V generates bifurcating expansive computa-
tions (= binary out-trees)—as, e.g., in the “divide” phase of
a divide-and-conquer computation; Λ generates bi-joining
reductive computations (= binary in-trees)—as, e.g., in the
recombination phase of a divide-and-conquer computation.
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Figure 1. The Vee V (left) and the Lambda Λ (right).

Our interest here is in multiphase computations, which
compose alternating expansive and reductive computa-
tions.5 Fig. 2 depicts explicitly one such computation,
which performs a single composition. The out-tree at the

Figure 2. An expansion-reduction computation.

left-bottom of the figure generates values, which are accu-
mulated by the in-tree at the left-top. The two trees are com-
posed into the diamond dag at the right by merging (in this
case, all) sinks of the out-tree with sources of the in-tree.
RENDERING COMPUTATIONS MULTI-GRANULAR. One
can easily coarsen the tasks in an E-R computation by se-
lectively truncating branches of the out-tree, together with
mated portions of the in-tree, in a manner that leaves more
of the overall computation to remote clients. We illustrate
this process in Fig. 3, where we coarsen two tasks of the
diamond dag of Fig. 2. We simplify the coarsening by re-
placing the in-tree of Fig. 2 by the dual, T̃ , of the out-tree T .

5Our focus on binary trees in illustrations is only for convenience.

Figure 3. Coarsening tasks in the dag of Fig. 2.

The reader should be able to extrapolate from this example
to render other diamond dags multi-granular.
IC-OPTIMAL SCHEDULES. We derive IC-optimal sched-
ules for arbitrary alternating E-R dags in steps, beginning
with out- and in-trees and progressing to compositions.
Out- and in-trees. Note first that every out-tree is composite
of type V ⇑ · · · ⇑ V. Using (1), one shows that V � V, so
that every out-tree is a �-linear composition, hence admits
an IC-optimal schedule (Theorem 1).6 Since every in-tree
is dual to an out-tree, Theorem 2 shows that every in-tree
admits an IC-optimal schedule.7 Indeed: A schedule for an
in-tree T is IC optimal iff it executes the two sources of each
copy of Λ in T consecutively. [20]
Diamond dags. A diamond dag D is a composition, of type
T ⇑ T ′, of an out-tree T and an in-tree T ′. By associativity
of composition [18], D is composite of type V ⇑ · · · ⇑ V ⇑
Λ ⇑ · · · ⇑ Λ, for some number of V’s (which matches the
number of Λ’s). Using (1), one shows that V � Λ, so that
D is a �-linear composition, hence admits an IC-optimal
schedule (Theorem 1). Indeed, any schedule that executes
T using an IC-optimal schedule, then executes T ′ using an
IC-optimal schedule, is IC optimal for D.
Complicated alternations. Our analysis of diamond dags
applies almost verbatim to a far broader family of alternat-
ing in- and out-trees, such as those in Fig. 4. (Note that,
in the rightmost dag, the numbers of leaves of a composed
out-tree and in-tree do not match.) To analyze these ex-

Figure 4. Sample alternating E-R computations.

tended dags, we note that, although T � T ′ for any out-tree
T and in-tree T ′, the converse does not hold. Nonethe-
less, every dag G of type T ′ ⇑ T (e.g., the leftmost dag in
Fig. 4) admits an IC optimal schedule, because G’s topol-
ogy forces every schedule to execute all of T ′ before any
of T ; hence, we need worry only about how to compute
T and T ′ individually. The preceding reasoning actually

6Indeed, easily, every schedule for an out-tree is IC optimal!
7This follows also because in-trees are iterated compositions of Λ’s.



shows that any alternating composition of out-trees and in-
trees of the composition-types depicted in Table 1 admits an
IC-optimal schedule. (The superscript “(out)” identifies an
out-tree; “(in)” identifies an in-tree.)
3.2. A Sample Computation: Numerical Integration.
Alternating E-R dags arise in many divide-and-conquer
computations; we describe just one significant one. Several
numerical integration algorithms proceed as follows. (We
specify the task residing in each node of the out-tree.) Say
that one is to integrate a function F over an interval [a0 ↔
b0].8 One chooses a computationally simple functional form
that provides a numerically adequate approximation to the
area under F , at least over very small intervals. The Trape-
zoid Rule, e.g., uses a linear approximation, via the approx-
imation A(X, Y ) def= 1

2 (F (X) + F (Y ))(Y − X). Each
node computes two quantities:

A0 = A(a0, b0);
A1 = A

(
a0,

1
2 (a0 + b0)

)
+ A

(
1
2 (a0 + b0), b0

)
.

A0 is a linear approximation of F ’s area over the interval
[a0 ↔ b0]; A1 is the approximation obtained by splitting
[a0 ↔ b0] in two, thereby making some accommodation
for F ’s curvature within the interval. If |A0 − A1| is suf-
ficiently small (relative to a predetermined tolerance), then
the approximation A0 is accepted, and the current task-node
becomes a leaf of the out-tree; if |A0−A1| is too large—i.e.,
exceeds the tolerance—then the current task spawns two
new tasks, representing the two summands of A1, which
become its children in the out-tree: the left child-task seeks
to integrate F over [a0 ↔ 1

2 (a0 + b0)], the right child over
[12 (a0 + b0)↔ b0]. In Fig. 1, the variables w, x0, x1 repre-
sent the intervals over which the task must integrate F :

if w = [a0 ↔ b0]
then x0 = [a0 ↔ 1

2 (a0 + b0)]
and x1 = [12 (a0 + b0)↔ b0]

The initial task—the root of the out-tree—represents the en-
tire interval [a0 ↔ b0]. (Note: Our if-then prescriptions
specify intertask dependencies; they do not specify a com-
putation that we are doing.)
The integration procedure composes the final out-tree T ,
whose leaves contain F ’s area over the subintervals wherein
a linear approximation to F suffices, with its dual in-tree
T̃ , which accumulates these areas; hence, T̃ ’s sink ends up
with the sought approximation to F ’s area over the entire
interval. In Fig. 1, the variables y0, y1, z on Λ represent the
areas under F over the various subintervals:

if y0 = A(a0,
1
2 (a0 + b0))

and y1 = A(1
2 (a0 + b0), b0)

then z = y0 + y1

8[X ↔ Y ] denotes the closed real interval {Z | X ≤ Z ≤ Y }.

The described computation thus generates a (possibly ir-
regular) binary out-tree whose leaves contain the areas un-
der the curve in regions that are small enough for a lin-
ear approximation to provide an adequate approximation to
the true area. It then uses an in-tree to accumulate these
subinterval areas into the area of F over the entire inter-
val [a0 ↔ b0]. By appropriately coarsening the diamond
dag that represents this computation, one can decrease the
volume of internode communication, as well as render the
computation’s tasks more coarse-grain.

4. Wavefront-Related Computations

4.1. The Abstract Dags. We now discuss computa-
tions having the structures of 2-dimensional meshes that
are truncated along their diagonals; see Fig. 5. While
out-meshes represent many wavefront-structured computa-

Figure 5. An out-mesh (left) and an in-mesh (right).

tions, in-meshes are also important, when discussing multi-
granularity in mesh-like dags. Moreover, results about in-
meshes follow by duality from results about out-meshes.
IC-OPTIMAL SCHEDULES. Ad hoc arguments in [19, 20]
show that out- and in-meshes admit IC-optimal schedules.
A more interesting proof is extrapolated from Fig. 6: Every

Figure 6. Out- and in-meshes as compositions.

out-mesh is a composition of W-dags9 having increasing
numbers of sources. Since executing a W-dag’s sources
consecutively is IC optimal, and since smaller W-dags have
�-priority over larger ones [18], every out-mesh is a �-
linear composition, hence admits an IC-optimal schedule.
By duality, the same is true for in-meshes.
RENDERING COMPUTATIONS MULTI-GRANULAR. Coars-
ening tasks in mesh-like dags via node-clustering is compli-
cated by meshes’ tight connectivity. The scheme in Fig. 7
coarsens an out-mesh’s tasks by a factor of 4, which can be
adjusted by sliding the dashed lines to form “squares” and
“triangles” whose “areas” determine the factor. When tasks

9W-dags are named for the Latin letters suggested by their topologies.



Tree-dag notation Diamond-dag notation

(T (out)
0 ⇑ T (in)

0 ) ⇑ (T (out)
1 ⇑ T (in)

1 ) ⇑ · · · ⇑ (T (out)
n ⇑ T (in)

n ) D0 ⇑ D1 ⇑ · · · ⇑ Dn

T (in)
0 ⇑ (T (out)

1 ⇑ T (in)
1 ) ⇑ · · · ⇑ (T (out)

n ⇑ T (in)
n ) T (in)

0 ⇑ D1 ⇑ · · · ⇑ Dn

(T (out)
1 ⇑ T (in)

1 ) ⇑ · · · ⇑ (T (out)
n ⇑ T (in)

n ) ⇑ T (out)
0 D1 ⇑ · · · ⇑ Dn ⇑ T (out)

0

Table 1. Diamond dags that admit IC-optimal schedules.

Figure 7. Rendering an out-mesh multi-granular.

are equi-granular, each coarsened mesh is a smaller version
of the original, hence admits an IC-optimal schedule; when
tasks differ in granularity, the coarsened mesh may lose
its regularity and IC-optimal schedulablity. Importantly,
though, under all such coarsenings, the amount of compu-
tation represented by a task grows quadratically with the
task’s “sidelength,” while communication—a much dearer
resource—grows linearly.

5. Butterfly-Structured Computations

5.1. The Abstract Dags. The computations in this sec-
tion are all built via iterated composition from the butter-
fly building block B of Fig. 8 (so named for its shape in
the drawing). A large variety of transformations effected

1

x x

y y

0 1

0

Figure 8. The butterfly building block B.

using B—i.e., specifications of y0 and y1 as functions of
x0 and x1—lead to useful computations. Notable among
the dags constructed from butterfly building blocks is the
d-dimensional butterfly dag Bd, for d = 1, 2, . . .. The 1-
dimensional butterfly dag is just B: B1 = B; the 2- and
3-dimensional dags, B2 and B3, are depicted in Fig. 9. (The
reader can easily extrapolate to higher dimensions.)
IC-OPTIMAL SCHEDULES. The easiest way to derive an
IC-optimal schedule for Bd is to note (as is well known) that

Figure 9. The 2- and 3-dimensional butterfly dags.

Bd is an iterated composition of B. (Fig. 10 illustrates this
for B3.) Using (1), one shows that B�B, so that every iter-
ated composition of B’s—hence, every Bd—is an �-linear
composition, whence Bd admits an IC-optimal schedule. A
generalized argument from [20] shows: A schedule for an

Figure 10. The butterfly dag as a composition ofB’s.

iterated compositionG of the butterfly building blockB is IC
optimal if, and only if, it executes the two sources of each
copy of B within G in consecutive steps.
RENDERING COMPUTATIONS MULTI-GRANULAR. While
most discussions of the diverse computations modeled
by butterfly networks (cf. [15])—including ours in Sec-
tion 5.2—focus on computations having fine-grained tasks,
butterfly dags support important computations having tasks
of arbitrary granularities. This is because Ba+b is always
(isomorphic to) a copy of Ba each of whose nodes is a copy
of Bb (cf. [1] and Fig. 10, wherein a = 2 and b = 1). This
allows one both to adjust the granularities of the tasks that
are allocated to remote clients and to control the volume of
internode communication, while always retaining butterfly-
structured dependencies.
5.2. Sample Computations. We exemplify just two useful
computational transformations modeled by butterfly dags:
the comparator transformation
y0 = min(x0, x1) and y1 = max(x0, x1)
and the convolution transformation



y0 = x0 + ωx1 and y1 = x0 − ωx1

where ω is a constant associated with this specific copy of
B. We now describe the complex computations that these
transformations lead to.
SORTING. It is well known [2] that iterated compositions of
B—using the comparator transformation—will sort any se-
quence of keys from an ordered domain, that are presented
at the sources of the composite dag. (The most efficient
known such networks require a rather complicated iterated
composition [9].)
CONVOLUTIONS. The product of degree-n polynomials,
f(x) = a0+a1x+· · ·+anxn, g(x) = b0+b1x+· · ·+bnxn

is the polynomial
[f ⊗ g](x) = A0 + A1x + · · ·+ A2nx2n;
each Ak is a convolution, i.e., a sum of the form

Ak = a0bk + a1bk−1 + · · ·+ akb0 =
∑k

i=0 aibk−i.
Convolutions arise in myriad computations other than poly-
nomial multiplication, one of the most important being the
Fast Fourier Transform (FFT) [9]. In fact, the data de-
pendencies of the d-dimensional FFT are modeled by Bd,
hence can be computed IC optimally by a simple algo-
rithm. Specifically, each copy of B used to construct the
FFT uses the convolutional transformation with ω derived
from the dth complex roots of unity. In fact, one can
use the FFT to perform a large repertoire of convolutions,
notably including polynomial multiplication, in sequential
time Θ(n log n). We thereby can schedule a broad range of
convolutional computations IC optimally.

6. A Complex E-R Paradigm

6.1. The Parallel-Prefix/Scan Operator. The parallel-
prefix (or, scan) operator provides myriad examples of im-
portant computations that our theory can schedule IC opti-
mally. One sees in, e.g., [3, 15], that the ability to compute
parallel-prefixes efficiently enables one to compute a large
variety of other computations efficiently, ranging from mi-
croscopic ones such as carry-lookahead addition, to large
ones such as we exemplify imminently. The operator is de-
fined for any binary associative operation (such as +, ×,
min, max, “concatenate”). Denoting such an operation by
∗, the ∗-parallel prefix of input vector 〈x1, . . . , xn〉 is output
vector 〈y1, . . . , yn〉:

y1 = x1; yi+1 = yi ∗ xi+1 = x1 ∗ · · · ∗ xi ∗ xi+1.
Among the many algorithms for the ∗-parallel prefix com-
putation, the following is attractive because it operates in
O(log n) parallel steps (under n-fold parallelism).

for j = 0 to log2(n− 1)� do
for i = 2j to n− 1 do in parallel

xi ← xi−2j ∗ xi

do in parallel yi ← xi

Fig. 11 depicts the 8-input parallel-prefix dag P8.

Figure 11. The 8-input parallel-prefix dag P8.

IC-OPTIMAL SCHEDULES. The n-input parallel-prefix dag
Pn is an iterated composition of N-dags.10 Fig. 12 illus-
trates thatP8 is composite of typeN 8 ⇑ N 4 ⇑ N 4 ⇑ N 2 ⇑
N 2 ⇑ N 2 ⇑ N 2. One sees in [18] that: everyN s admits an

Figure 12. Exemplifying parallel-prefix dags as
compositions of N-dags.

IC-optimal schedule;N s �N t for all s and t. Thus, Pn is
a �-linear composition, hence admits an IC-optimal sched-
ule. Indeed: Any schedule for Pn that executes the N-dags
N s in nonincreasing order of s is IC optimal.
RENDERING COMPUTATIONS MULTI-GRANULAR. The ∗-
parallel-prefix operator requires only the associativity of op-
eration ∗, so one can employ the operator with a wide range
of operations, to:
• generate the first n powers of an integer;
• generate the first n powers of a complex number;
• compute all paths in a graph G, by generating the

first n “logical” powers of G’s adjacency matrix.
One can often manipulate tasks to change granularities; e.g.,
expand a matrix multiplication to its (fine-grain) constituent
scalar operations, or cluster dag-nodes to coarsen tasks.
6.2. Two Sample Computations.
A. THE n-DIMENSIONAL DISCRETE LAPLACE TRANS-
FORM (DLT)—a/k/a the Z-Transform—transforms an n-
dimensional vector 〈x0, . . . , xn−1〉 to an m-dimensional
vector of complex functions 〈y0(ω), . . . , ym−1(ω)〉. The
value yk(ω) is given (cf. [4]) by yk(ω) =

∑n−1
i=0 xiω

ik.
Our algorithm for the DLT uses an n-source in-tree to accu-
mulate the terms of the sum; each source vi first multiplies
xi times the power of ω that vi has received. In Fig. 1, the

10The N-dag N s has s sources and s sinks; its arcs connect each source
v to sink v and sink v + 1 if the latter exists.



variables y0, y1, z represent subsums:

if y0 = xi · ωik

and y1 = xj · ωjk

then z = y0 + y1

Our algorithm uses Pn to generate the terms of the DLT-
sum. (Of course, other algorithms may be preferable on
some platforms.) For any complex number ω, one can
compute yk(ω) using Pn to transform the input vector
〈ωk, . . . , ωk〉 into the vector 〈1, ωk, . . . , ω(n−1)k〉. The re-
sulting 8-input composite DLT dag, L8, appears on the left-
hand side of Fig. 13.

ωk ωkωkωkωkωk ωk ωk

ω2k ω3k ω4k ω5k ω6k ω7k1 ωk

ωk ωkωkωkωkωk ωk ωk

ωk1 , ω3kω2k, ω5kω4k, ω7kω6k,

Figure 13. (left) The 8-input DLT dag L8; (right) a
coarsened version of L8.

We simplify the argument that every Ln admits an IC-
optimal schedule by assuming that n = 2p is a power of
2. Focus on the building blocks of Ln, and note: (a) Ln

is composite of type Pn ⇑ T n, where T n is the n-source
in-tree; (b) Pn is composite of type11

N 2p ⇑ (N 2p−1 ⇑ N 2p−1)
⇑ (N 2p−2 ⇑ N 2p−2 ⇑ N 2p−2 ⇑ N 2p−2)
⇑ · · · ⇑ (N 2 ⇑ N 2 ⇑ · · · ⇑ N 2)

(2p−1 copies of N 2); (c) T n is composite of type Λ ⇑
· · · ⇑ Λ (2p − 1 copies of Λ). Every Ln admits an IC-
optimal schedule because (cf. [18]): (1) (∀s, t) [N s �N t];
(2) (∀s) [N s � Λ]; (3) [Λ � Λ]. Indeed: any schedule that
executes Ln by executing its copy of Pn IC optimally, then
executing its copy of T n IC optimally, is IC optimal. The
demonstration that the coarsened version ofL8 on the right-
hand side of Fig. 13 admits an IC-optimal schedule com-
bines the preceding priority-related reasoning with the topo-
logical fact that the righthand portion of the in-tree cannot
be executed until its sources have been executed.
B. COMPUTING PATHS IN A GRAPH. Our next compu-
tation, while not familiar, is quite natural; it exemplifies
a coarse-grained computation that employs Pn. Consider
Fig. 14 as we describe the computation. Say that we have

11We add parentheses to the type expression to enhance legibility.

A

A A A A A A A A

A2 A3 A4 A5 A6 A7 A8

Figure 14. Computing the paths in a 9-node graph.

a 9-node graph G, presented via its 9 × 9 adjacency matrix
A. (The integer 9 makes Fig. 14 attractive.) We compute
a 9 × 9 matrix M of integers whose (i, j) entry is a vector

�vi,j = 〈β(1)
i,j , . . . , β

(8)
i,j 〉, where

β
(k)
i,j =




1 if there is a path of length k in G between
nodes i and j

0 if there is no such path

The resulting intertask dependencies M appear in Fig. 14.
1. We use an 8-input parallel-prefix to compute all logical

powers of A. Within each power Ak, the (i, j) entry
is 1 or 0, indicating whether or not there is a path of
length k in G between nodes i and j.

2. We use an in-tree to accumulate the information from
the eight power matrices Ak into M ’s 64 vectors �vi,j .

A large range of applications yield to the theme of Fig. 14.

7. Matrix Multiplication

Our final sample computation is matrix multiplication. The
recursive algorithm that multiplies n×n matrices via 2× 2
ones (cf. [9]) gives one control of task granularities.
7.1. Multiplying 2× 2 Matrices. Consider the product(

A B
C D

)
·
(

E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + BH

)

Importantly, the righthand expression does not invoke the
commutativity of multiplication, so the equation holds
when the elements of A and B are matrices, thus yielding
a recursive algorithm for multiplying n× n matrices. Each
level of recursion has the structure exposed in Fig. 15.
7.2. IC-Optimal Schedules. The structure of the
dag M can be elucidated in terms of (bipartite) cycle-
dags.12 One notes in Fig. 15 that M contains two copies

12The s-source (bipartite) cycle-dag Cs is obtained from N s by adding
an arc from the rightmost source to the leftmost sink.



xx x x x x x x

A E C HDGBF

+ ++ +

Figure 15. The dagM: Multiplying 2× 2 matrices,
or, via recursion, n× n matrices.

of C4, one for products AE, AF, CE, CF and one for
BG, BH, DG, DH . These copies are composed with
four copies of Λ that compute the required sums of these
products. Thus, M is composite of type C4 ⇑ C4 ⇑
Λ ⇑ Λ ⇑ Λ ⇑ Λ. Using (1) one shows that C4 �
C4 � Λ � Λ (cf. [18]). Thus, M is a �-linear com-
position, hence admits an IC-optimal schedule. Indeed,
the following IC-optimal schedule multiplies 2 × 2 ma-
trices. Compute the eight required products in the order
AE, CE, CF, AF, BG, DG, DH, BH . Then compute the
four required sums involving these products, in any order.
As with previous sample computations, refining or cluster-
ing the dependency dag allows one to adjust the granularity
of the computation’s constituent tasks

8. Where We Are, and Where We’re Going

We have presented a broad range of dag structures that arise
in a broad variety of disparate significant real computations,
that can all be scheduled optimally—i.e., so as to maxi-
mize the rate of rendering nodes eligible for execution—by
IC-Scheduling theory. The illustrated computations range
from the Discrete Laplace and Fourier Transforms, to ma-
trix multiplication, to generic wavefront and divide-and-
conquer algorithms, to computations involving the generic
parallel-prefix operator. Thus, IC-Scheduling theory is seen
to provide computational solutions for a broad range of real
computations of quite distinct structures.
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