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Abstract. Cellular automata can form the basis of a practical model for
a broad range of tasks that require the coordination of many simple com-
puting devices. We propose using “semi-synchronous” cellular automata
as a platform for efficiently realizing ant-inspired algorithms that coor-
dinate robots within a fixed, geographically constrained environment.
We present an appropriate formalization of the resulting Cellular AN-
Tomaton model, illustrated via “proof-of-concept” problems that have
ant-robots move and aggregate in various ways.
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1 Introduction

As we encounter novel computing environments that offer new opportunities
while posing new challenges, it is natural to seek inspiration from natural ana-
logues of these environments. Thus, empowered with technology that enables
mobile intercommunicating robotic computers, it is compelling to seek inspira-
tion from social insects—in 2-dimensional settings, mainly ants—when contem-
plating how to use the computers effectively and efficiently in environments that
defy centralized control; many sources (cf. [3,4,6]) have done precisely that. Af-
ter considering the strengths and the weaknesses of the robot-as-ant metaphor
in the light of current computer technology, we propose a variant of cellular au-
tomata [2,13]—that we name Cellular ANTomata—as a platform for developing
the algorithmics of robotic mobile computers within constrained geographic en-
vironments. We specify the proposed model in detail and illustrate it via “proof-
of-concept” problems that have ant-robots move and aggregate in various ways.

1.1 Motivating Cellular ANTomata

Our use of cellular automata as a conceptual/algorithmic platform arises from
the following considerations. While nature is a valuable source of inspiration
in domains where it operates successfully—such as the functioning of social
insects—one must not follow nature too literally. Some features and behaviors
observed in social insects retain useless remnants of evolutionary cul-de-sacs.
Others depend on realities in nature, such as the availability of multitudes of
expendable individual agents, that differ sharply from the realities in the world
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of robotic mobile computers. We therefore strive for a conceptual algorithmic
platform that adapts features inspired by the former world to the exigencies of
the latter—at least within constrained environments.

1.2 Ant-Robots in a Factory

We focus on situations wherein robotic mobile computers (henceforth, “ants”)
function within a fixed geographically constrained environment. We expect ants
to be able to:

– navigate the environment, avoiding collisions with obstacles and one another;
– communicate with and sense one another, by “direct contact” (as when real

ants meet) and by “timestamped message passing” (as when real ants deposit
volatile pheromones);

– discover goal objects (“food”) and convey food from one location to another;
– assemble in desired locations, in desired physical configurations.

A standard approach. A natural approach to achieving artificial ants is to enhance
electro-mechanical robots that have both mobility and grasping/conveying ca-
pability with additional “machinery” that enables computation and both direct
and “timestamped” communication. Indeed, researchers (cf. [6]) have equipped
robots with small transceivers that function as generators and receptors of “vir-
tual” pheromones. Such an avenue to artificial ants may be inevitable when
robots must navigate unbounded (e.g., external) environments. But when robots
are to function as, say, manufacturing aids in a geographically constrained en-
vironment such as a factory floor, two features of this approach call out for
emendation.

1. The likely level of use of each ant’s computing and communicating “ma-
chinery” will tax any battery technology that powers the “machinery.”

2. The potential for accidents such as unintended impacts will greatly increase
the cost of each ant, via either the extra weight needed to insulate electronics or
the frequent replacement of incapacitated/damaged ants.

An alternative approach. Our model revisits the relationship of ants to their en-
vironment (henceforth, the “(factory) floor”). In the “standard” approach, all
intelligence and initiative resides in the ants; the factory floor is a brainless,
passive environment which is just a physical platform upon which ants sit and
move. While such an organization of the “world” is unavoidable when ants op-
erate outdoors in unconstrained, uncontrollable environments, it is eminently
avoidable on a factory floor. We propose to invert the active-passive relationship
between ants and the floor, by tesselating the floor with tiles that are identical
in size and shape, embedding within each tile a copy of some standard computer
of modest capability. We posit that each computer has:

– a number of I/O ports that is sufficient for necessary communications;
– c registers that record levels of c types of virtual pheromones (cf. [6]) whose

volatility is modeled by a scheduled decrementing of the associated register.
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In a single “step,” each tile/computer is capable of:

1. detecting whether or not it has upon it: • an obstacle or a portion thereof
(e.g., a wall covering many tiles); • an ant; • a food item that an ant can pick
up and/or move and/or manipulate; • both an ant and a food item.

2. communicating with neighboring tiles—those it shares an edge or corner
with—by receiving one message from each and transmitting one message to each
in each “step;” sample messages could be: “i do (not) have an ant;” “i do
(not) have food;” “i do (not) contain an obstacle;” “i have level �i

of pheromone i.” (Note that we use “King’s-move” adjacencies.)
3. communicating with an ant that resides on the tile, via messages such as:

“pick up the food;” “move to the neighboring tile in direction D”
(D is a compass direction).

Now, ants never collide with obstacles or other ants: they move only by command
of the tile they reside on—which communicates constantly with its neighbors.
Moreover, ants are now much simpler, containing little electronics except as
needed to receive commands from the tile they reside on; consequently, malfunc-
tions/accidents are much rarer and less expensive than with “smart” ants.

1.3 Two Basic Model Features

(a) Factory floors must be scalable in structure and efficiency; e.g., computers
may not exploit information about the size of the floor (number of tiles). (b) Our
model is “synchronous,” in that computers assemble inputs from all neighbors
before committing to any action. This does not mean that all computers hear
the tick of the same clock, but, rather, that variations in clocking between neigh-
boring computers are small (since they come from geographical neighbors). That
said, it is easy to implement our algorithms in a completely distributed manner,
with all coordination among computers being via explicit messages, rather than
shared “clock ticks.”

Space constraints limit us to high-level sketches of algorithms and analyses.

1.4 Related Work

Our use of Cellular automata (CA, for short) to realize ant-inspired algorithms
and behavior is not original. In [4], CA underlie an ant-inspired algorithm for a
genre of flow problem; in [3], CA implement an ant-inspired clustering algorithm.
Most closely related to our model is the DFMS model of [1], an iterative array
of minicomputers that can be programmed to compute source-target paths for
microscopic droplets that co-reside on the array with obstacles and other special
features. All of these sources depart from our goal by focusing on a single com-
putational problem and by positing centrally programmed models, with, e.g.,
global name spaces for tiles/computers. Also closely related to our model, but
with a specialized focus, are the many papers on the “firing squad” synchro-
nization problem for CA, [10], especially the 2-dimensional variant [8]. Finally,
“numerical pheromones” appear in, e.g., [6].
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2 Cellular ANTomata

CA are a natural candidate for realizing intelligent factory floors, being composed
of finite-state machines (FSMs) arranged in simply structured arrays. Studied
since the 1960s [5,10,12], CA remain of interest to this day [7,8,14], providing a
formal model of computers [13,14] that combines mathematical simplicity with
levels of efficiency that make them feasible for many real computational tasks.
Indeed, CA are remarkably efficient for a broad range of tasks that require the
tight coordination of many simple agents [3,4,5,8,10]. Our variant of CA, Cellular
ANTomata, is tailored to the algorithmics of ants on a factory floor.

2.1 Basics

As with CAs, Cellular ANTomata place a copy of a single FSM at each node
of a square mesh. (One easily restricts our 2-dimensional model to one dimen-
sion or extends it to three. We define our model in great detail, to facilitate
implementation of our model (“hardware”) and algorithms (“software”).
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Fig. 1. A 5× 5 tiled floor; its associated graph (edges represent mated opposing arcs)

Tiled floors and meshes (Fig. 1). We tesselate a square floor with identical tiles1

and abstract the floor as a side-n 2-dimensional mesh, Mn. The nodes of Mn

are the tiles, formally, the set2 [0, n− 1]× [0, n− 1]. Mn’s King’s-move arcs are
tiles’ adjacencies, labeled by the compass directions: E, SE, S, SW , W , NW ,
N , NE; cf. Fig. 2(left) and Table 1. Each node v = 〈i, j〉 of Mn is connected by
a mated in-arc and out-arc to each of its (≤ 8) neighboring nodes (see Table 2).

– If i, j ∈ {0, n− 1} then v is a corner node and has 3 neighbors.
– If i = 0 (resp., i = n − 1) and j ∈ [1, n − 2], then v is a bottom (resp., top)

node. If j = 0 (resp., j = n − 1) and i ∈ [1, n − 2], then v is a left (resp.,
right) node. These four are collectively edge nodes; each has 5 neighbors.

– If i, j ∈ [1, n − 2], then v is an internal node and has 8 neighbors.

FSMs: Finite-State Machines. An FSM F in a cellular ANTomaton is given by:

1 We discuss only square tiles; simple modifications allow, say, hexagonal tiles.
2

N is the nonnegative integers. For i ∈ N and j ≥ i, [i, j]
def
= {i, i + 1, . . . , j}.
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Fig. 2. (Left) The 2 × 2 corner of a mesh, with all incident arcs. (Right) The 6 × 6
“prefix” of QSW , with 18 optimally parked ants (denoted by dots); cf. Section 3.

Table 1. The NEWS and diagonal arc-labels, and their actions

Arc label Arc action Leads node 〈i, j〉 to node . . .

E move to East (i ∈ [0, n − 1], j ∈ [0, n − 2]) 〈i, j + 1〉
W move to West (i ∈ [0, n − 1], j ∈ [1, n − 1]) 〈i, j − 1〉
N move to North (i ∈ [0, n − 2], j ∈ [0, n − 1]) 〈i + 1, j〉
S move to South (i ∈ [1, n − 1], j ∈ [0, n − 1]) 〈i − 1, j〉

NE move to Northeast (i ∈ [0, n − 2], j ∈ [0, n − 2]) 〈i + 1, j + 1〉
SW move to Southwest (i ∈ [1, n − 1], j ∈ [1, n − 1]) 〈i − 1, j − 1〉
NW move to Northwest (i ∈ [0, n − 2], j ∈ [1, n − 1]) 〈i + 1, j − 1〉
SE move to Southeast (i ∈ [1, n − 1], j ∈ [0, n − 2]) 〈i − 1, j + 1〉.

– a finite set Q of states. Q = K × [0, I1] × [0, I2] × · · · × [0, I�], where K is
a set of “control” variables, and each Ij ∈ N. This endows ants with � types
of pheromones, the kth of which can exist at any intensity i ∈ [0, Ik].

– an input “alphabet” IN , which is the union of:
—the set of all messages that F can receive from neighboring FSMs,
—{0, 1}3: binary indicators of the presence of an ant, an obstacle, food;

– an output “alphabet” OUT , which is the union of:
—the set of all messages that F can send to neighboring FSMs,
—the set O: possible orders to the resident ant (if it exists).

– a state-transition function δ : Q × IN → Q × OUT , associating a state
〈k, i1, . . . , i�〉 and input eIN ∈ IN with an output eOUT ∈ OUT and a new
state 〈k′, i′1, . . . , i

′
�〉. Each i′j − ij ∈ {0,−1, 1}: a pheromone level stays stable

(0 change) or evaporates (−1 change) or is reinforced by an ant (+1 change).

2.2 Cellular ANTomata

Given n ∈ N and FSM F , the FSM-array Fn(F) is constructed by: (a) populating
Mn with copies of F . One assigns each copy of F a unique index from [0, n −
1] × [0, n − 1] and places each F i,j at node 〈i, j〉 of Mn. (We then speak of “an
internal,” “a corner,” or “an edge” FSM.) (b) endowing each FSM with sensors
for ants, obstacles, and food, and with a unidirectional communication channel
that a resident ant will respond to. (c) connecting each FSM with a bidirectional
communication channel to each of its King’s-move neighbors. Thus, the input
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Table 2. The communication links of mesh nodes

via via
Corner node talks to node: out-arc: in-arc:

〈0, 0〉
⎧
⎨

⎩

〈1, 0〉
〈1, 1〉
〈0, 1〉

N
NE
E

S
SW
W

〈n − 1, 0〉
⎧
⎨

⎩

〈n − 2, 0〉
〈n − 2, 1〉
〈n − 1, 1〉

S
SE
E

N
NW
W

〈n − 1, n − 1〉
⎧
⎨

⎩

〈n − 2, n − 1〉
〈n − 2, n − 2〉
〈n − 1, n − 2〉

S
SW
W

N
NE
E

〈0, n − 1〉
⎧
⎨

⎩

〈0, n − 2〉
〈1, n − 2〉
〈1, n − 1〉

W
NW
N

E
SE
S

via via
Node talks to node: out-arc: in-arc:

〈i, j〉

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈i, j − 1〉
〈i + 1, j − 1〉
〈i + 1, j〉

〈i + 1, j + 1〉
〈i, j + 1〉

〈i − 1, j + 1〉
〈i − 1, j〉

〈i − 1, j − 1〉

W
NW
N

NE
E

SE
S

SW

E
SE
S

SW
W

NW
N

NE

Node-type talks to node: via out-arc: via in-arc:

Bottom node 〈0, j〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈0, j − 1〉
〈1, j − 1〉
〈1, j〉

〈1, j + 1〉
〈0, j + 1〉

W
NW
N

NE
E

E
SE
S

SW
W

Top node 〈n − 1, j〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈n − 1, j − 1〉
〈n − 2, j − 1〉
〈n − 2, j〉

〈n − 2, j + 1〉
〈n − 1, j + 1〉

W
SW
S

SE
E

W
NW
N

NE
E

Left node 〈i, 0〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈i − 1, 0〉
〈i − 1, 1〉
〈i, 1〉

〈i + 1, 1〉
〈i + 1, 0〉

S
SE
E

NE
N

N
NW
W

SW
S

Right node 〈i, n − 1〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈i − 1, n − 1〉
〈i − 1, n − 2〉
〈i, n − 2〉

〈i + 1, n − 2〉
〈i + 1, n − 1〉

S
SW
W

NW
N

N
NE
E

SE
E

and output alphabets of each internal FSM include the set of directional messages
S = ΣN ×ΣNE ×ΣE ×ΣSE ×ΣS ×ΣSW ×ΣW ×ΣNW . S is suitably edited for
corner and edge FSMs by replacing inputs from/outputs to nonexistent neighbors
by “nil;” e.g., the message-set for F0,j is: ΣN × ΣNE × ΣE × {nil} × {nil} ×
{nil} × ΣW × ΣNW .

Note 1. (a) Because we “invert” Nature, messages flow “below the surface” that
entities reside on. Hence: Obstacles atop FSMs do not impede the flow of mes-
sages. (b) Choosing between King’s- vs. NEWS-move arrays is a matter of cost
allocation. The former are architecturally more complicated but algorithmically
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simpler and more efficient; the latter are architecturally simpler but require a
longer state-change cycle. (c) To achieve scalability (cf. Section 1.3), we insist
that algorithms treat n as an unknown, never exploiting its specific value.

F0,0 is the general of Fn(F), the only FSM that accepts inputs (usually com-
mands) from the “outside world”—say, for definiteness, via its western input
port (so that ΣW must contain all external commands). We expect the “outside
world” to tell the general when to initiate activities.

3 “Parking” the Ants

We now have an FSM-array “park” its ants “compactly:” each ant moves as close
as possible to the corner cell of the quadrant that it resides in when parking is
initiated. This activity is easily achieved within our model; it is not achievable
at all within the standard setting of “smart” ants navigating a passive earth.

3.1 The Formal Parking Problem

A quadrant of Mn is the induced subgraph3 on the following node-set.

Quadrant Node-set Quadrant Node-set

QSW [0, �n/2� − 1] × [0, �n/2� − 1] QNW [�n/2�, n − 1] × [0, �n/2� − 1]
QSE [0, �n/2� − 1] × [�n/2�, n − 1] QNE [�n/2�, n − 1] × [�n/2�, n − 1]

Mn’s kth diagonal (k ∈ [0, 2n−2]) is: Δk = {〈i, j〉 ∈ [0, n−1]× [0, n−1] | i+j =
k}. For d ∈ [1, 2n − 1], QSW ’s radius-d L1-quarter-sphere is

⋃d−1
k=0 Δk. Other

quadrants’ quarter-spheres are defined analogously.
The parking problem for QSW requires the ants in QSW to cluster within the

most compact L1-quarter-sphere “centered” at 〈0, 0〉; cf. Fig. 2(right).4 Formally,
one must minimize the parking potential function: Π(t) =

∑2n−2
k=0 (k + 1) ×

(the number of ants residing on Δk at step t). Thus, if parking begins with
m(m − 1)/2 + p ants in QSW , where p ≤ m, then for all sufficiently large t,
Π(t) =

∑m−1
i=1 i2 + mp = m(m − 1)(2m − 1)/6 + mp.

3.2 Initiating Parking

We begin to park ants by partitioning the parking problem into independent
quadrant-specific subproblems (that are solved in parallel). A central subproblem
is to let ants know which quadrant they reside in.

3.2.1 Sketch: Algorithm Activate Center Cells
F0,0 activates the center FSM(s) via two messages. A northward message (eventu-
ally5) enlists Fn−1,0 in the activation. A northeasterly message “semi-activates”
3 The induced subgraph of G = (N, A) on N ′ ⊆ N has all arcs from A both of whose

endpoints are in N ′.
4 One easily adapts the problem definition and algorithm to Mn’s other quadrants.
5 Since messages proceed from neighbor to neighbor, this process takes Θ(n) steps.
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Fig. 3. Illustrating the “centers” of even- and odd-sided meshes

all FSMs along the SW-NE diagonal. Once activated,Fn−1,0 sends a southeasterly
message, which “semi-activates” all FSMs along the NW-SE diagonal. For even
n, activation is achieved when both Fn/2−1,n/2−1 and Fn/2,n/2 become “semi-
activated” along the SW-NE diagonal and both Fn/2−1,n/2 and Fn/2,n/2−1 be-
come “semi-activated” along the NW-SE diagonal.A center cell identifies its quad-
rant from the directions of its fellow center cells. For odd n, activation is achieved
when F�n/2�,�n/2� becomes “semi-activated” along both the SW-NE and NW-SE
diagonals. See Fig. 3.

3.2.2 Sketch: Algorithm Initiate Parking SW
Once activated, Mn’s center cell(s) each broadcast a message into its quadrant
that tells ant-holding FSMs to initiate the parking process appropriate to that
quadrant. (When n is odd, the unique center cell broadcasts distinct messages
into each quadrant.)

3.3 Parking Within QSW

Table 3 specifies the permissible local ant-moving rules used in our parking
algorithm. For brevity, we word rules as though every F i,j is internal; trivial
modifications accommodate extremal FSMs. Note that each ant-move may create
“holes” that enable further ant-moves.

3.3.1 Sketch: Algorithm Park in QSW

FSMs that hold ants continually broadcast “i have an ant” toward 〈0, 0〉;
antless FSMs continually broadcast “i have a hole” away from 〈0, 0〉. Ant-
holding FSMs move their ants closer to the desired configuration while honoring
the priorities implicit in the ordering of moves in Table 3. Thus:

At each step, Rule SW has precedence over Rule S, which, in turn has prece-
dence over Rule W . In-diagonal rules (NW and SE) destabilize configurations
in which no diagonal-lowering move applies.

Termination. Simultaneously with parking: FSMs continually check if their di-
agonals are full of ants or of holes. When a diagonal Δk is found to be full of
ants (resp., holes), that fact is broadcast to Δk+1 (resp., Δk−1). Parking termi-
nates when at most one diagonal contains both ants and holes, and no diagonal
with holes is closer to 〈0, 0〉 than any diagonal with ants. Fig. 4 illustrates Al-
gorithm Park in QSW (without the termination phase).
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Table 3. The repertoire of local ant-moves, in decreasing order of priority

Rule SW . A southwesterly ant-move: F i,j sends its ant to F i−1,j−1 (along arc SW ).
Trigger. F i,j has an ant; F i−1,j−1 has no ant.
Effect. Rule SW decreases the parking potential Π by 2.

↑↑↑ Rule SW is not needed for correctness, but it enhances efficiency ↑↑↑
Rule S. A southerly ant-move: F i,j sends its ant to F i−1,j (along arc S).
Trigger. F i,j , F i−1,j−1 have ants; F i−1,j has no ant.
Effect. Rule S decreases Π by 1.
Rule W . A westerly ant-move: F i,j sends its ant to F i,j−1 (along arc W ).
Trigger. F i,j , F i−1,j−1, F i−1,j have ants; F i,j−1 has no ant.
Effect. Rule W decreases Π by 1.
Rule NW . A northwesterly ant-move: F i,j sends its ant to F i+1,j−1 (along arc NW ).
Trigger. F i,j , F i−1,j−1, F i,j−1, F i−1,j have ants; F i+1,j−1 has no ant.
Effect. Rule NW does not change Π ; it helps search for holes in lower diagonals.
Rule SE. A southeasterly ant-move: F i,j sends its ant to F i−1,j+1 (along arc SE).
Trigger. F i,j , F i−1,j−1, F i,j−1, F i−1,j , F i+1,j−1 have ants; F i−1,j+1 has no ant.
Effect. Rule SE does not change Π ; it helps search for holes in lower diagonals.

1 2 3 4 5

6 7 8 9

Fig. 4. Nine steps of our parking algorithm

Note 2. The “systolic” strategy of moving ants in phases by direction facilitates
the orchestration of ants for many computational problems.

3.3.2 Algorithm Verification and Analysis
Theorem 1. (a) When Algorithm Park in QSW terminates, all ants reside in
a configuration that minimizes Π(t). (b) Each ant in QSW when the parking
process is initiated reaches its final parking position in O(n2) FSM cycles.

Proof (Sketch). Because Algorithm Park in QSW executes all rules continually:
(a) Our rules preclude each way that ants can fail to end up properly parked.
Specifically: • Ants end up “left justified” in each row and “bottom justified”
in each column. • If row i (resp., column j) contains c ants, and row i + 1
(resp., column j +1) contains d ants, then c−2 ≤ d ≤ c. • At most one diagonal
contains both an ant and a hole. Thus, the ants end up in a potential-minimizing
configuration, then halt. (b) The (very conservative) bound on timing follows
because each application of Rule SW (resp., S or W ) decreases Π(t) by 2 (resp.,
by 1). Some ant follows one of these rules at least every n steps, since ants
that cannot follow either rule wander along their current diagonals searching for
a hole in the next lower diagonal. Since QSW has ≈ n/2 diagonals, the bound
would follow even if only one ant were to move per cycle (which is very unlikely).
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4 Having Ants Find Food Quickly

We consider now a problem in which r ≥ 1 cells of Mn each contain a single
ant and s ≥ 1 cells each contain a single food item; a cell can contain both an
ant and food. Our goal is to ensure that: if r ≤ s, then each ant gets food; if
r > s, then every food item is taken by some ant. We consider two variants of
this problem. In Section 4.1, each cell of Mn can contain an ant or a food item;
in Section 4.2, a cell can contain an obstacle that precludes the presence of both
food and ants, thereby inhibiting the movement of ants (but not of messages!).
It is simple to allow many kinds of food, even endowed with different priorities.

4.1 Finding Food with No Obstacles

Our algorithm proceeds greedily.

4.1.1 Sketch: Algorithm Find Food
Food finding begins with F0,0 broadcasting an initiate message. Let F i,j be
a generic FSM in Fn(F). (a) If F i,j contains food, then it broadcasts a food-
announcement, with an indication of the direction toward it; e.g., it sends the
message “i have food S” to its northen neighbor, F i+1,j . (b) F i,j relays each
food-announcement that it receives into the quadrant “opposite” to the one the
message came from, as illustrated in Fig. 5. (c) If F i,j possesses both food and

"NW"

from the west

Message
relayed
eastward

"W"

"SW"

"W"

Food message received

Fig. 5. The regimen for relaying food-announcing messages, for direction W

an ant, then it matches the two and does not announce that food item (though it
continues to relay announcements about other food). (d) If F i,j possesses an ant
but no food, then it sends “i have an unmatched ant” in the direction of F0,0.
If it receives any food-announcements, then it selects one (say, for definiteness,
in clockwise priority from the north) and moves its ant in the direction of that
food. It continues to relay that food-announcement in case it combines multiple
collinear messages. (e) Food finding is terminated by F0,0 when it ceases to
receive either “i have food” or “i have an unmatched ant” messages.

4.1.2 Algorithm Verification and Analysis
Theorem 2. Say that there are r ants and s food items on Mn when Algorithm
Find Food is initiated. If r ≥ s, then some ant will reach every food item; if s ≥ r,
then every ant will get food.

Proof (Sketch). A food-announcement is broadcast until an ant reaches the food.
Hence, if s ≥ r, every ant will eventually get food, since competition diminishes
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with every food-ant match. Conversely, foodless ants keep moving in response to
food-announcements; hence, if r ≥ s, some ant will eventually reach every food
item. Termination is guaranteed by the two “unmatched-item” messages. When
F0,0 stops hearing either message, it knows that either food or ants have run
out. “Eventual” is hard to quantify, but the process is “locally efficient:” each
step by a food-announcing message and a food-pursuing ant follows a shortest
path to/from food.

An enhancement. By endowing each food-announcing message with a pheromone
whose level decreases with each relay, one can have ants pursue the closest food
item—at least to within the resolution of the pheromone-level “counter.”

4.2 Finding Food with Obstacles

We now allow some nonempty cells of Mn contain food and/or an ant (as be-
fore) while others contain (portions of) obstacles; see Fig. 6. Our goal is to
adapt Algorithm Find Food to accommodate obstacles that inhibit the passage
of ants—but, recall, not of messages.

Fig. 6. A mesh some of whose cells contain ants (dots), food (X-es) and obstacles (filled
cells); three ants have food

4.2.1 Sketch: Algorithm Find Food-Avoid Obstacles
Each FSM F functions as in Algorithm Find Food, with the following exceptions.
(a) If F contains an obstacle, then it informs its neighbors of that fact. (b) If F
contains an ant A and receives a food-announcement from an obstacle-containing
neighbor, then F sends A on a clockwise circuit of the obstacle. A proceeds until
it either finds a food trail to follow or receives the termination signal. If A’s circuit
is interrupted by: (i) an edge of Mn for the first time, then A reverses direction;
(ii) an edge of Mn for the second time, then A halts and announces “food
inaccessible;” (iii) an ant B that has food or is proceeding clockwise around
another obstacle, then A switches roles with B; (iv) an ant that is proceeding
counterclockwise around this obstacle, then A reverses direction.

4.2.2 Algorithm Verification and Analysis
Theorem 3. Say that there are r ants and s food items that are mutually ac-
cessible on Mn when Algorithm Find Food-Avoid Obstacles is initiated. If r ≥ s,
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then one of these ants will reach every food item; if s ≥ r, then every one of
these ants will get food.

Proof (Sketch). One of the following happens when ant A attempts a clockwise
circuit of an obstacle. (1) A finds a food trail that is unblocked by an obstacle. A
follows that trail away from the current obstacle. (Of course, competition may
cause it to return later.) (2) A encounters an edge of Mn. Reversing direction
allows A to continue pursuing food, unless all available food is cut off by the
obstacle—which causes A to encounter a second edge. (3) A encounters another
ant, B, that blocks its path. If B is following a food trail, then A would recognize
that trail also—so we know that B is either sitting on food or skirting an obstacle
also. If B’s obstacle is distinct from A’s, then B, too, is proceeding in a clockwise
sense; in this case and when B is sitting on food, having A and B switch roles
avoids an impasse. If B is skirting the same obstacle as A, then B has encountered
an edge of Mn, so A reverses direction immediately, thereby avoiding an impasse.
(4) A keeps circling the obstacle, never encountering an edge of Mn, a food
trail, or another ant. A’s journey then ends eventually because of Algorithm
Find Food’s termination signal. This occurs, e.g., if other ants reach food item(s),
so that all trails are terminated. In all cases, A eventually either is free to pursue
food or is told to terminate its search because no unmatched food is accessible.

5 Conclusion

Progress. Our goal has been to motivate and illustrate a conceptual/algorithmic
framework that inverts the “natural” relationship between mobile robots and
the environment that they navigate. Our adapted “semi-synchronous” cellular
automata create a world in which the “factory floor” contains the intelligence,
while the identical “ants” are simple devices that respond to commands from
the “floor.” We have formalized Cellular ANTomata and presented two “proof-
of-concept” problems that illustrate different aspects of the model’s capabilities.
Plans. Ongoing work focuses on extended algorithmics—e.g., having ants move
obstacles, assemble food to specified locations, thread mazes, deal with faults—
and on high-level ant-orchestration via, e.g., the “systolic” phasing in Algorithm
Park in QSW and other mechanisms inspired by sources such as [11].

Thanks to: O. Brock, R. Grupen, H. Lee for helpful comments and pointers.
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