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Abstract

A model for realizing ant-inspired algorithms that
coordinate robots within a fixed, geographically con-
strained environment is proposed and illustrated. The
model, dubbed Cellular ANTomata, inverts the rela-
tionship between ant-robots and the enviroment that
they navigate: intelligence now resides in the environ-
ment rather than in the ants. The Cellular ANToma-
ton model is illustrated via three proof-of-concept prob-
lems: having ants “park” in the nearest corner; having
ants seek “food items” (both with and without impen-
etrable obstacles); having a single ant thread a maze.
In all cases, “unintelligent” Cellular-ANTomata-based
ant-robots accomplish goals provably more efficiently
than traditional “intelligent” ant-robots can; indeed,
“intelligent” ant-robots cannot park at all! All of the
presented algorithms are scalable: they provably work
within any finite-size environment.

1. Introduction

As we encounter novel computing environments that
offer new opportunities while posing new challenges, it
is natural to seek inspiration from natural analogues of
these environments. Thus, empowered with technology
that enables mobile intercommunicating robotic com-
puters, it is compelling to seek inspiration from social
insects—in 2-dimensional settings, mainly ants—when
contemplating how to use the computers effectively and
efficiently in environments that defy centralized control;
many sources (cf. [2, 3, 6]) have done precisely that.
After considering the strengths and the weaknesses of
the robot-as-ant metaphor in the light of current com-
puter technology, we propose a variant of cellular au-
tomata [1, 18]—Cellular ANTomata—as a platform for
developing the algorithmics of robotic mobile comput-
ers within geographically constrained environments. We
formalize the proposed model in detail and illustrate
it via “proof-of-concept” problems that have ant-robots

move and aggregate in various ways.
1.1 Motivating Cellular ANTomata. Our use of cellu-
lar automata as a conceptual/algorithmic platform arises
from the following considerations. While nature is a
valuable source of inspiration in domains where it op-
erates successfully—such as the functioning of social
insects—one must not follow nature too literally. Some
features and behaviors observed in social insects retain
useless remnants of evolutionary cul-de-sacs. Others de-
pend on realities in nature, such as the availability of
multitudes of expendable individual agents, that differ
sharply from the realities in the world of robotic mobile
computers. We therefore strive for a conceptual algorith-
mic platform that adapts features inspired by the former
world to the exigencies of the latter—at least within ge-
ographically constrained environments.
1.2 Ant-Robots in a Laboratory. We focus on situ-
ations wherein robotic mobile computers (henceforth,
“ants”) function within a fixed geographically con-
strained environment. We expect ants to be able to:

• navigate the environment, avoiding all collisions;

• communicate with and sense one another, by “di-
rect contact” (as when real ants meet) and by “time-
stamped message passing” (as when real ants de-
posit volatile pheromones);

• discover goal objects (call them “food”) and con-
vey food from one location to another;

• assemble in desired locations and configurations.

A standard approach. A natural approach to achieving
artificial ants is to enhance electro-mechanical robots
that have both mobility and grasping/conveying capa-
bility with additional “machinery” that enables compu-
tation and both direct and “time-stamped” communica-
tion. Indeed, researchers (cf. [6]) have equipped robots
with small transceivers that serve as generators and re-
ceptors of “virtual” pheromones. Such an avenue to ar-
tificial ants may be inevitable when robots must navi-
gate unbounded (e.g., external) environments. But when



robots are to function as automated assistants in a ge-
ographically constrained environment such as a labo-
ratory floor, two features of this approach call out for
emendation.

1. The likely necessary level of use of each ant’s
computing and communicating “machinery” will tax
any battery technology.

2. The potential for accidents such as unintended im-
pacts will greatly increase the cost of each ant, via either
the extra weight needed to insulate electronics or the fre-
quent replacement of incapacitated/damaged ants.
An alternative approach. We revisit the relationship
of ants to their environment (henceforth, the “(labora-
tory) floor”). In the “standard” approach, intelligence
and initiative reside in the ants; the floor is a brainless,
passive environment which is just a physical platform
upon which ants sit and move. While such an orga-
nization of the “world” is unavoidable when ants op-
erate in unconstrained, uncontrollable environments, it
is eminently avoidable on a laboratory floor. We now
invert the active-passive relationship between ants and
the floor: we tesselate the floor with identical tiles, em-
bedding within each tile a copy of a fixed computer of
modest capability. We posit that each computer has:

• a number of I/O ports that is sufficient for necessary
communications;

• c registers that record levels of c types of virtual
pheromones ([6]) whose volatility is modeled by a
scheduled decrementing of the associated register.

In a single “step,” each tile/computer is capable of:
1. detecting whether or not it has upon it: • an obsta-

cle or a portion thereof (e.g., a wall covering many tiles);
• an ant; • a food item that an ant can pick up and/or
move and/or manipulate; • both an ant and a food item.

2. communicating with neighbors—tiles it shares
an edge or corner with—by receiving/transmitting one
message from/to each in each “step;” sample messages
could be: “I DO (NOT) HAVE AN ANT;” “I DO (NOT)
HAVE FOOD;” “I DO (NOT) CONTAIN AN OBSTACLE;”
“I HAVE LEVEL �i OF PHEROMONE i.”

3. communicating with an ant that resides on the tile,
via messages such as: “PICK UP THE FOOD;” “MOVE

TO THE NEIGHBORING TILE IN DIRECTION D” (D is a
compass direction).
Now, ants: • never collide with obstacles or other ants:
they move only by command of the tile they reside on—
which communicates constantly with its neighbors; •
are now much simpler, containing only the electron-
ics needed to receive commands from the tile they re-
side on. Consequently, malfunctions/accidents are much
rarer and less expensive than with “smart” ants.

1.3 Two Basic Assumptions. (a) Laboratory floors
must be scalable in structure and efficiency; e.g., com-
puters may not exploit information about the size of
the floor (number of tiles). (b) Our model is “semi-
synchronous,” in that computers assemble inputs from
all neighbors before committing to any action. This does
not mean that all computers hear the tick of the same
clock, but, rather, that variations in clocking between
neighboring computers are small (since they come from
geographical neighbors). That said, it is easy to imple-
ment our algorithms in a completely distributed man-
ner, with all coordination among computers being via
explicit handshakes, rather than via shared “clock ticks.”
1.4 Contributions. Within this model, we seek algo-
rithms that accomplish three “proof-of-concept” tasks:

1. We have ants “park” in the closest corner of the
floor, with ants heading for the same corner config-
uring themselves as compactly as possible.

2. We have ants seek food items, with one ant per item
and one item per ant, as numbers permit. Our al-
gorithm accommodates impenetrable obstacles that
block both ants and messages.

3. We have a single ant thread a maze.

When the laboratory floor is n × n:
Parking: Time:
Our Algorithm: O(n2).
“Intelligent” Ants: Parking is impossible!

Food-Finding: Time:
Our Algorithm: r ants and s food items:

O(min(nr, n
√

s)).
“Intelligent” Ants: Ω(n2), even if r = s = 1.

Maze-Threading: Time:
Our Algorithm: proportional to length of

longest entrance-exit path.
“Intelligent” Ants: Ω(n2), even in presence of a

length-2n entrance-exit path.

Our algorithms require coordination among computers
to be distributed and noncentralized.

Space limits us to high-level sketches of algorithms,
analyses, hiding, e.g., how to deal with clock skew.

Related work. Our use of CA to realize ant-inspired
algorithms is not original. In [3], CA underlie ant-
inspired algorithm for a genre of flow problem; in [2],
they are used to implement an ant-inspired clustering al-
gorithm. In [6], virtual pheromones (numerical values)
are broadcast by wireless robots (communication is free-
space), to plan a gradient-marked path that a designated
robot follows to a single goal object. In [11], a CA plans
a route for a single robot to a single goal by having the



goal greedily broadcast its position. A commercial sys-
tem is described in [10], that has centrally controlled
robots transfer packages between designated stations.
All of these sources depart from our goals by positing
synchronous models that are not scalable; e.g., the cen-
trally programmable models have global name spaces
for tiles/computers (which we prohibit). Our work thus
moves CA-based applications in a new direction. The
large literature on ant-inspired algorithms is not really
related because of quite different foci and groundrules.

2. Cellular ANTomata
CA are natural candidates for intelligent floors, be-

ing simple arrays of finite-state machines (FSMs). Stud-
ied since the 1960s [4, 12, 17], CA are still of interest
[7, 8, 19], being a model of computers [18, 19] that
combines mathematical simplicity with (remarkable) ef-
ficiency for a broad range of tasks that require the tight
coordination of simple agents [2, 3, 4, 8, 12]. Our adap-
tation of CA, Cellular ANTomata, is tailored to the algo-
rithmics of ants on a laboratory floor.
2.1 Basics. Cellular ANTomata place a copy of a single
FSM at each node of a square mesh. We present enough
detail to facilitate implementing our model (“hardware”)
and algorithms (“Software”).
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Figure 1. A 3 × 3 floor and its graph.

Tiled floors and meshes (Fig. 1). We tesselate a
square floor with identical tiles1 and abstract the floor
as a side-n 2-dimensional mesh, Mn, whose nodes are
the tiles, formally, the set2 [0, n− 1]× [0, n− 1]. Mn’s
King’s-move arcs (labeled by the compass directions: E,
SE, S, SW , W , NW , N , NE) represent tiles’ adja-
cencies; cf. Fig. 2(left). Node v = 〈i, j〉 is connected by
mated in- and out-arcs to its (≤ 8) neighboring nodes.
(Corner nodes have 3 neighbors; edge nodes have 5.)
FSMs: Finite-State Machines are given by:
• a finite set Q of states. Q = K× [0, I1]× [0, I2]×
· · · × [0, I�]: K contains “control” variables; each
Ij ∈ N is the maximum intensity of pheromone j.

• an input “alphabet” IN , which is the union of:
—the messages that F can receive from neighbors,

1We discuss only square tiles; one easily allows hexagonal tiles.
2
N is the nonnegative integers. For i ∈ N and j ≥ i, [i, j]

def
=

{i, i + 1, . . . , j}.
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Figure 2. (Left) The 2 × 2 corner of a mesh.
(Right) The 6 × 6 “prefix” of QSW , with 18 opti-
mally parked ants (denoted by dots).

—{0, 1}3: indicators of the presence of an ant, an
obstacle, food;

• an output “alphabet” OUT , which is the union of:
—the messages that F can send to neighbors,
—the set C: possible commands to the resident ant
(if it exists).

• a state-transition function δ : Q×IN → Q×OUT ,
associating a state 〈k, i1, . . . , i�〉 and input eIN ∈
IN with an output eOUT ∈ OUT and new state
〈k′, i′1, . . . , i

′
�〉. Each i′j − ij ∈ {0,−1, 1}: a

pheromone level stays stable (0 change) or evap-
orates (−1 change) or is reinforced (+1 change).

2.2 Cellular ANTomata. Given n ∈ N and FSM
F , the FSM-array Fn(F) is constructed by: (a) pop-
ulating Mn with copies of F . One assigns each copy
of F a unique index ∈ [0, n − 1] × [0, n − 1] and
places F i,j at node 〈i, j〉 of Mn. (We then speak of
“an internal,” “a corner,” or “an edge” FSM.) (b) en-
dowing each FSM with sensors for ants, obstacles, and
food, and with a unidirectional communication chan-
nel to a resident ant. (c) endowing each FSM with
a bidirectional communication channel to each of its
King’s-move neighbors. Thus, IN and OUT for an
internal FSM include the set of directional messages
S = ΣN×ΣNE×ΣE×ΣSE×ΣS×ΣSW×ΣW×ΣNW .
S is suitably edited for corner and edge FSMs.
Note. (a) Because we “invert” Nature, messages flow
“below the surface” that entities reside on. Hence: Ob-
stacles atop FSMs do not impede the flow of messages.
(b) Choosing between King’s- vs. NEWS-move arrays
is a matter of cost allocation. The former are archi-
tecturally more complicated but algorithmically simpler
and more efficient; the latter are architecturally simpler
but require a longer state-change cycle. (c) To achieve
scalability, we insist that algorithms treat n as an un-
known, never exploiting its specific value.

F0,0, the general of Fn(F), is the only FSM that ac-
cepts commands from the “outside world.”

3. Barrier Synchronization/Activation



CA, hence Cellular ANTomata, can perform various
synchronizations that are essential, e.g., when initiating
a computation or transitioning from one computation to
another. We describe three important such actions.
3.1 Activate All FSMs. The most fundamental syn-
chronization, which precedes any Cellular ANTomaton
algorithm, activates all FSMs “simultaneously.” The
Firing Squad Synchronization Problem (FSSP) begins
with all FSMs in a “sleep” state. F0,0 dispatches mes-
sages in such a way that all FSMs enter a designated
ACTIVE state at the same step.

Lemma 1 ([8]). Fn(F) can simultaneously activate all
of its FSMs in 2n−2 synchronous steps, using messages
that cross only NEWS arcs.

3.2 Activate the Corner FSMs. Many activities re-
quire Fn(F)’s corner FSMs to be synchronized.

Lemma 2. Fn(F) can simultaneously activate its cor-
ner FSMs in 2n − 2 synchronous steps.

Sketch. F0,0, sends a WAKE-UP message to its neigh-
bors, F1,0, F0,1, F1,1, repeating the message at ev-
ery step. The neighbors propagate the messages—F1,0

along its row, F0,1 along its column, and F1,1 along its
diagonal—until (after n − 1 steps) the message reaches
the three corner FSMs, Fn−1,0, F0,n−1, Fn−1,n−1.
These FSMs now echo the message along their row, col-
umn, and diagonal. When each corner FSM receives a
WAKE-UP message from all three of its neighbors in the
same step (which, easily, occurs at step 2n−2), it enters
the designated INITIATE-ACTION state.
3.3 Activate the Center FSM(s). When n is odd,
Fn(F), has a single center FSM, F�n/2�,�n/2�; when
n is even, it has four center FSMs: Fn/2−1,n/2−1 and
Fn/2,n/2 along the SW-NE diagonal, and Fn/2−1,n/2

and Fn/2−1,n/2 along the NW-SE diagonal. See Fig. 3.
Many activities are accomplished most efficiently when
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Figure 3. The center cells of meshes.

initiated by the center FSM(s).

Lemma 3. Fn(F) can activate its center FSM(s) in
2n − 2 synchronous steps.

Sketch. F0,0 sends two instances of the message,
ACTIVATE-CENTER: a one-time northward transmission
that enlists the aid of Fn−1,0; a northeasterly transmis-
sion that is repeated at every step, that “semi-activates”
all FSMs along the SW-NE diagonal. Once Fn−1,0

is activated, it transmits the ACTIVATE-CENTER mes-
sage repeatedly in the southeasterly direction, to “semi-
activate” all FSMs along the NW-SE diagonal.

Say that F i,j receives the ACTIVATE-CENTER mes-
sage from both F i−1,j−1 and F i+1,j−1. This means
that n is odd and that F i,j is the center FSM. Al-
ternatively, say that F i,j receives the message from
F i−1,j−1, and it receives the message “I RECEIVED THE

ACTIVATE-CENTER MESSAGE FROM MY NORTHWEST-
ERN NEIGHBOR” from F i,j+1. This means that n is
even and that F i,j is the southwestern-center FSM.

The initial messages, to Fn−1,0 and along the SW-
NE diagonal, occupy n − 1 steps; the messages along
the NW-SE diagonal take an additional n− 1 steps.

4. “Parking” the Ants
To put our results in context, we review the main al-

gorithm from [14], which has an FSM-array arrange its
ants “compactly” in the array’s corners. More specif-
ically, each ant moves as close as possible to the cor-
ner cell of Mn that resides in the same quadrant as
does the ant at the moment when it receives the INI-
TIATE PARKING command.3 This form of parking is
rather easy to accomplish within our “inverted-world”
framework of passive ants on an active earth; it is im-
possible to accomplish within the standard framework
of “intelligent” ants navigating a passive earth.

Our algorithmic reasoning about parking applies also
to collecting gathered “food” in designated places—
perhaps a more realistic activity in a laboratory.
4.1 Formalizing the Parking Problem. The quadrants
of Mn are special induced subgraphs:

Quadrant Node-set
southwest [0, �n/2� − 1] × [0, �n/2� − 1]
northwest [�n/2�, n − 1] × [0, �n/2� − 1]
southeast [0, �n/2� − 1] × [�n/2�, n − 1]
northeast [�n/2�, n − 1] × [�n/2�, n − 1]

We simplify exposition by developing our quadrant-
specific parking algorithm only for QSW . One easily
adapts the algorithm to other quadrants.

The kth diagonal of Mn (k ∈ [0, 2n − 2]) is the set

Δk = {〈i, j〉 ∈ [0, n − 1] × [0, n − 1] | i + j = k}.
3We make each ant’s quadrant unambiguous by defining “quad-

rant” asymmetrically when n is odd.



The radius-d quarter-sphere of QSW (d ∈ [1, 2n −
1]) is the union of diagonals:

⋃d−1
k=0 Δk.

Formally, the parking problem requires the ants
in each quadrant to cluster within the most compact
quarter-sphere “centered” at the quadrant’s corner node.
Focus on QSW , and consider Fig. 2.

A configuration of ants solves the parking problem
for QSW iff it minimizes the parking potential function:

Π(t) def=
∑2n−2

k=0 (k + 1) ×
(the number of ants on Δk at step t).

Thus, if parking begins with

(
m

2

)
+ p ants in QSW

(p ≤ m), then at some step t�, for all t > t�, Π(t) =∑m−1
i=1 i2 + mp =

2m − 1
3

(
m

2

)
+ mp.

4.2 The Parking Process. We begin by partitioning
the parking problem into four independent quadrant-
specific subproblems (that are solved in parallel). We
first let ants know which quadrant they reside in. When
F i,j learns, via the activation of center FSM(s) in Sec-
tion 3.3, that it is a center FSM, it sends three messages:
• “INITIATE PARKING NW ” to its northern neighbor,
F i+1,j ; • “INITIATE PARKING NE” to its northeastern
neighbor, F i+1,j+1; • “INITIATE PARKING SE” to its
eastern neighbor, F i,j+1. F i,j then initiates the actual
parking algorithm. An FSM that receives the message
“INITIATE PARKING D” (D ∈ {NW,NE,SE}) be-
gins the following process, which we describe for the
center FSM that controls QSW .

1. F�n/2�−1,�n/2�−1 tells its three neighbors in QSW

to terminate parking-initiation and initiate parking.
2. Each subsequent F i,j relays the message, to broad-

cast it throughout QSW , and begins to participate
in the actual parking algorithm.

We sketch the algorithm; details appear in [14]. Ta-
ble 1 specifies the local ant-moving rules that our algo-
rithm uses. For simplicity, we word the rules as though
every FSM were internal; easy modifications accommo-
date noninternal FSMs. Note that each rule’s ant-move
may create “holes” that enable further ant-moves.

The body of the process. FSMs that hold ants con-
tinually broadcast “I HAVE AN ANT” toward 〈0, 0〉; ant-
less FSMs continually broadcast “I HAVE A HOLE” away
from 〈0, 0〉. Ant-holding FSMs move their ants closer to
the desired configuration while honoring the priorities
implicit in the ordering of moves in Table 1. Thus:

At each step, Rule SW has precedence over Rule S,
which, in turn has precedence over Rule W . In-diagonal
rules (NW and SE) destabilize configurations in which
no diagonal-lowering move applies.

Termination. Simultaneously with parking: FSMs
continually check if their diagonals are full of ants or of
holes. When some Δk is found to be full of ants (resp.,
holes), that fact is broadcast to Δk+1 (resp., Δk−1).
Parking terminates when at most one diagonal contains
both ants and holes, and no diagonal with holes is closer
to 〈0, 0〉 than any diagonal with ants.

Theorem 1 ([14]). (a) When the algorithm terminates,
ants reside in a configuration that minimizes Π(t). (b)
Each ant in QSW reaches its final parking position in
O(n2) FSM cycles.

We conjecture that only O(n) steps are required.

Perspective: “Intelligent” ants (that are FSMs)
on an “unintelligent” earth cannot park at all
—unless they can “count.”

5. Having Ants Find Food Quickly
In this section, r ∈ [1, n2] cells of Mn each con-

tain a single ant and s ∈ [1, n2] cells each contain a
single goal-object that we call “food;” a cell can con-
tain both an ant and a food item. Our goal is to ensure
that, if r ≤ s, then each ant gets a food item, while
if r ≥ s, then every food item is taken by some ant.
Our algorithms work—but may take longer—in arrays
whose nonempty cells can contain an ant and/or a food
item, or an obstacle—possibly a failed FSM—that pre-
clude both food and ants. Simple modifications of our
algorithms allow one to handle multiple kinds of food,
even endowed with different priorities. We present two
food-finding algorithms, one of which will be preferred
depending on the relative sizes of r and s.

Theorem 2. Say that there are r ants and s food items
on Mn. There is a Cellular-ANTomata algorithm under
which each ant gets food when r ≥ s, and each food
item gets taken by an ant when r ≤ s, that operates
within n · min{(r + 1), 4

√
s} steps.

Sketch. We trade constant factors for simpler exposition.
F0,0 determines via a synchronization if min(r, s) >

0. If so, it initiates one of the following food-finding pro-
cedures, under orders from the outside world. In both
algorithms, an FSM that has both food and an ant re-
lays messages but does not initiate them; it moves its ant
only when it has its ant switch roles with another ant that
wants to “pass through” its cell.

A food-initiated algorithm that operates within
rn+O(n) steps. We call the following algorithm food-
initiated, because it has ants sit passively awaiting mes-
sages from the food-possessing FSMs.



Rule SW . A southwesterly ant-move: F i,j sends its ant along arc SW to F i−1,j−1.
Trigger. F i,j has an ant; F i−1,j−1 has no ant.
Effect. Rule SW decreases the parking potential Π by 2.

↑↑↑↑↑ Rule SW is only for efficiency; it is not needed for correctness. ↑↑↑↑↑
Rule S. A southerly ant-move: F i,j sends its ant along arc S to F i−1,j .

Trigger. F i,j , F i−1,j−1 have ants; F i−1,j has no ant.
Effect. Rule S decreases Π by 1.

Rule W . A westerly ant-move: F i,j sends its ant along arc W to F i,j−1.
Trigger. F i,j , F i−1,j−1, F i−1,j have ants; F i,j−1 has no ant.
Effect. Rule W decreases Π by 1.

Rule NW . A northwesterly ant-move: F i,j sends its ant along arc NW to F i+1,j−1.
Trigger. F i,j , F i−1,j−1, F i,j−1, F i−1,j have ants; F i+1,j−1 has no ant.
Effect. Rule NW does not change Π; it helps search for holes in lower diagonals.

Rule SE. A southeasterly ant-move: F i,j sends its ant along arc SE to F i−1,j+1.
Trigger. F i,j , F i−1,j−1, F i,j−1, F i−1,j , F i+1,j−1 have ants; F i−1,j+1 has no ant.
Effect. Rule SE does not change Π; it helps search for holes in lower diagonals.

Table 1. The local ant-moves for parking. (Application order and limits on clock skew prevent collisions.)

F i,j sends message ... to FSM ...
I HAVE FOOD S F i+1,j

I HAVE FOOD SW F i+1,j+1

I HAVE FOOD W F i,j+1

I HAVE FOOD NW F i−1,j+1

I HAVE FOOD N F i−1,j

I HAVE FOOD NE F i−1,j−1

I HAVE FOOD E F i,j−1

I HAVE FOOD SE F i,j−1

Table 2. Food-announcing messages.

Once F0,0 initiates the food-finding process: Every
FSM that possesses food but no ant broadcasts the fact
that it has food, with an indication of the direction of
the food. In response, every ant-possessing FSM send
their ants in the direction specified by an arriving food-
announcing message. In more detail, at every step a
food-possessing FSM F i,j sends out the messages in Ta-
ble 2 to its eight neighbors. The directional part of the
message indicates the next step that a food-seeking ant
should take in order to access the food. All FSMs relay
food-announcing messages, with appropriate changes in
direction.

A FSM that has an ant but no food sends analogous “I

NEED FOOD” messages. It does not move their ants until
it receives a food-announcing message. At that point, it
sends its ant in the direction specified in the message.

A food-possessing FSM that is visited by an ant
ceases to transmit its own food-announcing message, but
it continues to relay those that it receives.

F0,0 broadcasts a procedure-terminating message
when it ceases to receive food-announcing messages.

Correctness of the food-initiated algorithm. A
message announcing a particular food item continues to
be broadcast throughout Mn until an ant reaches the
item. Hence, if s ≥ r, then every ant will eventually
follow a message that ends in its getting food, since its
competition diminishes with every match between some
ant and some food item. Conversely, foodless ants keep
moving in response to food-announcing messages that
reach the FSM they reside on. Hence, if r ≥ s, then
some ant will eventually reach every food item.

Termination is guaranteed because: F0,0 initiates the
food-finding process, at which point: every FSM con-
taining food but no ant, or an ant but no food, broadcasts
that fact at every step. Once F0,0 stops hearing one or
both of these messages, it knows that one or both of the
unmatched food or ant supplies has been exhausted.

Timing of the food-initiated algorithm. Both
food-announcing messages and food-pursuing trajecto-
ries follow shortest paths. Hence, some ant will reach
some food item within 2n steps: n for some food-
announcing message to spread throughout Mn, and n
for some ant to follow that message. Even if all ants pur-
sue the same food item initially, once the first ant reaches
that food, we are in the initial situation, except that: (1)
we now have r − 1 ants and s − 1 food items; (2) Mn

is already permeated with food-announcing messages.
It follows that all ant-food matching will have occurred
within (r + 1)n steps. An additional O(n) steps will
suffice for F0,0 to terminate the process.



An active-ant algorithm that operates within
O(n

√
s) steps. We call this an active-ant algorithm

because it has ants spontaneously search for food-
announcing messages, rather than passively await them.

Once F0,0 initiates the food-finding process:
Every FSM that possesses food but no ant broadcasts

along its NEWS arcs the fact that it has food; these mes-
sages are repeated at every step (until an ant arrives) and
are relayed by all FSMs. Simultaneously, every FSM
that possesses an ant but no food dispatches its ants to
the perimeter of QSW . (FSMs on the left and bottom
know that they are on the perimeter by the absence of
certain neighbors; FSMs on the right and top know it
by comparing their quadrant assignment to their neigh-
bors’.) As an ant A reaches the perimeter—which may
require it to wait for other ants to pass by—it begins to
traverse the perimeter in a (for definiteness) clockwise
sense. When A senses a food-announcing message, it
follows that message to the food.
• If A reaches food, then it stays there unless/until

forced to move away (see the next item).
• If A encounters a food item with an ant, then

—if there is no other food item on the other side of
the current one, then A returns to the perimeter and
resumes its traversal;

—if there is another food item on the other side of
the current one, then A switches roles with the ant
currently on this food item. A stay with this item
unless/until it is forced to move away (by another
ant), and the current ant pursues the more distant
food item.

Correctness of the active-ant algorithm follows
by the same reasoning as the food-initiated algorithm.

Timing of the active-ant algorithm. No mat-
ter how the s food items are distributed throughout
QSW , Ω(

√
s) food-announcing messages will be sent

to some edge of the quadrant. Thus, as long as there
are enough food-seeking ants traversing the perimeter,
Ω(

√
s) food items are taken on the ants’ first circuit of

QSW , Ω(
√

s −√
s) on the second circuit, and so on. If

r ≥ s, then, all food items will have been taken within
O(

√
s) circuits, whence the claimed time bound.

By having messages skirt any obstacles that may exist
in QSW (which could be failed FSMs): both of the al-
gorithms of Theorem 2 work when some nonempty cells
contain food and/or an ant, while others contain (por-
tions of) obstacles; see Fig. 4. Of course, unfortunately
placed obstacles can force ants to traverse longer dis-
tances, so the timing guarantees of the Theorem need
not hold in obstacle-laden arrays.

Figure 4. A mesh populated with ants (black
dots), food (X-ed cells) and obstacles (blackened
cells). Three ants have found food.

Perspective: Even a single “intelligent” ant
(that is a FSM) requires, in the worst case,
Ω(n2) steps to find a single food item.

6. Having an Ant Thread a Maze
Consider Mn with one ant-containing cell along

some edge (the entrance) and one empty cell along some
edge (the exit); all other edge cells are either empty or
contain obstacles that block the ant. Interior cells of Mn

are either empty or contain an obstacle—but there is at
least one path of empty cells connecting the entrance to
the exit. The challenge is to have the ant find the exit
efficiently; this is essentially the problem of having an
ant thread a maze—and that is what we shall call the
problem. The following solution was developed by my
seminar on Cellular ANTomata at Univ. Massachusetts.

Theorem 3. There is a Cellular-ANTomata algorithm
under which an ant can thread a maze in Mn in a num-
ber of steps that is proportional to the length of the
shortest path between the entrance and the exit.

Sketch. Most of the ideas are similar to the food-initiated
algorithm of Section 5. F0,0 activates the FSM, F , at
the exit cell. F then broadcasts its location via mes-
sages of the form, “EXIT DIRECTION = N” (which F
sends to its southern neighbor, if it exists). Each FSM in
an empty cell relays the first such that it receives (with
the appropriate direction); ties can be broken arbitrarily.
When the ant-possessing FSM at the entrance receives
the message for the first time, it dispatches the ant along
the path of relayed messages to the exit. Because of the
relaying regimen, this is a shortest path.

Our algorithm clearly works in multi-exit mazes also.
It is not hard to construct mazes that require any

deterministic intelligent ant to explore Ω(n2) cells of
Mn, even though there is an entrance-exit path of length
O(n). Fig. 5 depicts a family of mazes that stymie any



deterministic “intelligent”-ant algorithm. In the figure:
the circle depicts the entrance to the maze, and black-
ened cells contain impenetrable obstacles. X-ed cells
represent potential exits: in each instance of this maze,
precisely one of these cells is the exit; all others con-
tain obstacles. A deterministic “intelligent” ant (that is a
FSM) must thread the maze in search of the actual exit.

Figure 5. A family of mazes that can require a de-
terministic “intelligent” ant to follow a lot of use-
less paths. (Precisely one X-ed cell is the exit.)

Perspective: A deterministic “intelligent” ant
(that is a FSM) requires, in the worst case,
Ω(n2) steps to thread a single-exit maze.

7. Conclusion
We have significantly extended the initial work of

[14] on a novel paradigm for implementing ant-inspired
robotic algorithms in geographically constrained envi-
ronments, Cellular ANTomata. The hallmark of our
paradigm is an inversion of the site of “intelligence,”
between the ant-robots and the surface that they tra-
verse. We have added two simple, yet relevant, proof-
of-concept problems to the one studied in [14]: food-
gathering (Section 5) and maze threading (Section 6).
As in [14], we found that algorithms based on Cellu-
lar ANTomata significantly outperform traditional ap-
proaches. We have just scratched the surface of this
challenging and inviting research topic.
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