
Ants in Parking Lots

Arnold L. Rosenberg

Electrical & Computer Engineering

Colorado State University

Fort Collins, CO 80523, USA

rsnbrg@colostate.edu

Abstract

Ants provide an attractive metaphor for robots that “cooperate” in performing complex
tasks. What, however, are the algorithmic consequences of following this metaphor? This
paper is a step toward understanding the algorithmic strengths and weaknesses of ant-based
computation models. We study the ability of ant-robots that are essentially mobile finite-state
machines to perform a simple path-planning task called parking, within fixed, geographically
constrained environments (“laboratory floors”). This task: (1) has each ant head for the near-
est corner of the floor and (2) has all ants within a corner organize into a maximally compact
formation. Even without using (digital analogues of) pheromones, many initial configurations
of ants can park. These configurations include: (a) a single ant that starts anywhere along an
edge of the floor and (b) any assemblage of ants that begins with at least two ants adjacent
to one another. In contrast, a single ant on a one-dimensional “floor” cannot park, even with
the help of (volatile digital) pheromones.

1 Introduction

As we encounter novel computing environments that offer unprecedented computing power, while
posing unprecedented challenges, it is compelling to seek inspiration from natural analogues of
these environments. Thus, empowered with technology that enables mobile intercommunicating
robotic computers, it is compelling to seek inspiration from social insects, mainly ants (because
robots typically operate within a two-dimensional world), when contemplating how to employ
the computers effectively and efficiently in a variety of geographical environments; indeed, many
sources—see, e.g., [1, 3, 4, 5, 7, 8]—have done precisely that. This paper is a step toward un-
derstanding the algorithmic consequences of the robot-as-ant metaphor within the context of a
simple, yet significant path-planning problem.

Ant-inspired robots in a “laboratory.” We focus on mobile robotic computers (henceforth, ants, or
ant-robots, to stress the natural inspiration) that function within a fixed geographically constrained
environment (henceforth, a laboratory floor, suggesting a possible application domain) that is
tesselated with identical (say, square) tiles. We expect ants to be able to:

• navigate the floor, while avoiding collisions (with obstacles and one another);

1

• communicate with and sense one another, by “direct contact” (as when natural ants meet)
and by “timestamped message passing” (as when natural ants deposit volatile pheromones);

• assemble in desired locations, in desired configurations.

Although it is not relevant to the current study, one would also expect ants to discover goal
objects (“food”) and convey “food” from one location to another; cf. [3, 4, 7, 8].

In the “standard realization” of ant-robots—which is what we study here—robots are endowed
with “intelligence,” in the form of embedded computers. The resulting “intelligent” ant-robots,
are responsible for planning and orchestrating assigned activities. In the hope of enhancing the
economic feasibility of our model by having ants require few computational resources, we focus
on ants that function essentially as mobile finite-state machines.

Having ants park on the floor. This paper focuses on a simple path-planning task that we studied
in [7] under a rather different ant-based computational model (“Cellular ANTomata”). This
task, called parking: (1) has each ant head for the corner of the floor that it is nearest to when
told to park, and (2) has all ants within a corner organize into a maximally compact formation
(Section 2.2 supplies formal details). While we have not yet determined definitively which initial
configurations of ants on the floor can park successfully and which cannot, we report here on
progress toward this goal:

• Even without using (digital analogues of) pheromones, many initial configurations of ants
can park. These configurations include:

– a single ant that starts anywhere along an edge of the floor (Theorem 3.2);
– any assemblage of ants that begins with at least two ants adjacent to one another—i.e.,

on tiles that share an edge or a corner (Theorem 4.1).

• In contrast: A single ant on a one-dimensional “floor” cannot park, even with the help of
(volatile digital) pheromones (Theorem 3.1).

The algorithmic setting. We require algorithms to be simple, scalable and decentralized.
(1) Algorithms must work on laboratory floors of arbitrary size. In particular, no algorithm can
exploit any information about the size of the floor. Thus, algorithms must treat the side-length
n of the floor as an unknown, never exploiting its specific value.
(2) Algorithms must work with arbitrarily large collections of ants. This means, in particular, that
all ants are identical; no ant has a “name” that renders it unique.
(3) Algorithms must employ noncentralized coordination. All coordination among ants is achieved
in a distributed, noncentralized manner, via messages that pass between ants on neighboring tiles.
(4) Algorithms must be “finite-state.” All ants must execute the same program (in SPMD mode),
and this program must have the very restricted form described in Section 2.1.2.

These guidelines are usually violated in practical implementations (cf. [2, 3, 4]), for reasons in-
volving, say, cost and simplicity.

2

2 Technical Background

2.1 Ant-Robots Formalized

The “heart” of the model that underlies our study is the floor that ants operate on and the
computers that endow ants with “intelligence.”

2.1.1 Pheromone-bearing laboratory floors

(c)

2,0 2,1 2,2

0,0 0,1 0,2

1,21,11,0

0,0
0,0

0,1
0,1

0,2

1,0 1,01,1 1,11,2

2,0 2,1 2,2

(a) (b)

Figure 1: (a) A 3× 3 floor M3; (b) the associated grid (edges represent mated opposing arcs); (c)
the 2 × 2 corner of a grid with all incident arcs.

Floors and ants’ move-repertoires. The n × n laboratory floor is a square mesh of tiles, n along
each side (Fig. 1(a)); the tiles are indexed by the set [0, n− 1]× [0, n− 1].1 We represent the floor
algorithmically by the n×n grid(-graph) (Fig. 1(b)). Mn ambiguously denotes the mesh and the
grid; context will disambiguate each reference. Ants move along Mn’s King’s-move arcs, which
are labeled by the compass directions, E, SE, S, SW , W , NW , N , NE. Each tile v = 〈i, j〉 of
Mn is connected by mated in- and out-arcs to its neighboring tiles (Fig. 1(c)).

• If i ∈ {0,m − 1} and j ∈ {0, n − 1} then v is a corner tile and has 3 neighbors.
• If i = 0 (resp., i = n−1) and j ∈ [1, n−2], then v is a bottom (resp., top) tile. If j = 0 (resp.,

j = n − 1) and i ∈ [1, n − 2], then v is a left (resp., right) tile. These four are collectively
edge tiles; each has 5 neighbors.

• If i, j ∈ [1, n − 2], then v is an internal tile and has 8 neighbors.

Mn’s regions. Mn’s quadrants are its induced subgraphs2 on the sets of tiles indicated in Table 1.
(The asymmetry in quadrant boundaries gives each tile a unique quadrant.)

For k ∈ [0, 2n − 2], Mn’s kth diagonal is the set of tiles

∆k = {〈i, j〉 ∈ [0,m − 1] × [0, n − 1] | i + j = k}.

For d ∈ [1, 2n − 1], the radius-d quarter-sphere of QSW is the union of diagonals:
⋃d−1

k=0
∆k.

1
N denotes the nonnegative integers. For i ∈ N and j ≥ i, [i, j]

def
= {i, i + 1, . . . , j}.

2Let the directed graph G have tile-set N and arc-set A. The induced subgraph of G on the set N ′ ⊆ N is the
subgraph of G with tile-set N ′ and all arcs from A both of whose endpoints reside in N ′.

3

Table 1: The four quadrants of Mn.

Quadrant Name Tile-set

southwest QSW [0, ⌈n/2⌉ − 1] × [0, ⌈n/2⌉ − 1]
northwest QNW [⌈n/2⌉ , n − 1] × [0, ⌈n/2⌉ − 1]
southeast QSE [0, ⌈n/2⌉ − 1] × [⌈n/2⌉ , n − 1]
northeast QNE [⌈n/2⌉ , m − 1] × [⌈n/2⌉ , n − 1]

In analogy with its quadrants, which are “fenced off” by imaginary vertical and horizontal side-
bisecting lines, Mn has four wedges, WN , WE , WS , WW , which are “fenced off” by imaginary
diagonals that connect its corners; see Table 2. (Again, asymmetric boundaries ensure unique
wedges.)

Table 2: The four wedges of Mn.

Wedge Name Tile-set

north WN {〈x, y〉 | [x ≥ y] and [x + y ≥ n − 1]}
south WS {〈x, y〉 | [x < y] and [x + y < n − 1]}
east WE {〈x, y〉 | [x < y] and [x + y ≥ n − 1]}
west WW {〈x, y〉 | [x ≥ y] and [x + y < n − 1]}

“Virtual” pheromones. Each tile of Mn contains some fixed number c of counters, with counter i

capable of holding an integer in the range [0, Ii]. Each counter represents a “virtual” pheromone
(cf. [3])—a digital realization of nature’s ants’ volatile organic compounds—and each value in the
range [0, Ii] is an intensity level of pheromone i. The number c and the ranges [0, I1], . . . , [0, Ic]
are characteristics/parameters of a specific realization of the model. The volatility of nature’s
pheromones is modeled by a schedule of decrements of every pheromone counter; see Fig. 2.
Every computation begins with all tiles having level 0 of every pheromone.

2.1.2 Computers and finite-state programs

Each ant contains a computer that endows it with “intelligence.” Each computer possesses a
number of I/O ports that is sufficient for communicating with the outside world and with the
computers on adjacent tiles of Mn. In a single “step,” a computer is capable of:

1. detecting an ant in an adjacent tile;
2. recognizing Mn’s four edges/sides and its four corners;
3. communicating with each neighboring computer—i.e., one on a tile that shares an edge or

corner—by receiving one message and transmitting one message at each time-step.
4. receiving a command from the outside world.

4

(e)

3 2

1

2

1

3

1

2

2

1

(a) (b) (c)

3

2

1

(d)

Figure 2: Snapshots of a pheromone of intensity I = 3 changing as an FSM-ant F (the dot)
moves. All snapshots have F on the center tile. Unlabeled tiles have level 0. (a) F has deposited
a maximum dose of the pheromone on each tile that it has reached via a 2-step SE-SW path; note
that the pheromone has begun “evaporating” on the tiles that F has left. (b) F stands still for one
time-step. (c) F moves W and deposits a maximum dose of the pheromone. (d) F moves S and
deposits a maximum dose of the pheromone. (e) F moves E and does not deposit any pheromone.

In order to enhance the likelihood that we are studying an economically feasible computational
model, we insist that, for every task, all embedded computers function as identical copies of
a fixed, specialized finite-state machine (FSM) F ; cf. [9]. Rather than employ the standard
way of specifying FSMs, which is more useful for proofs than for algorithms, we specify FSMs
via programs that are finite sets of case statements of the form depicted in Table 3;3 the table

Table 3: A case-statement program that specifies an FSM F .

label1: if input1 then output1,1 and goto label1,1

...
if inputm then output1,m and goto label1,m

...
...

labels: if input1 then outputs,1 and goto labels,1

...
if inputm then outputs,m and goto labels,m

specifies an FSM F as follows:

• F has s states, named label1, . . . , labels.
• F responds to a fixed repertoire of inputs from the set {input1, . . . , inputm}. Each inputi

is a combination of:

– the messages that F receives—from neighboring FSMs and from the outside world;
– the presence/absence of an edge/corner of Mn, a “food” item to be manipulated, an

“obstacle” to be avoided;
– the levels of intensity of the c pheromones that could be present on the current tile.

Fig. 2 depicts a pheromone of intensity I = 3 changing as an FSM F (the dot) moves.
Observe the “evaporation” of the pheromone throughout the figure.

3The CARPET programming environment [11] employs a similar programming style.

5

• F responds to the current input by:

– emitting an output from a fixed repertoire; each specific output is denoted by outputk,
with some appropriate identifying subscript k. Outputs are combinations of:

∗ the messages that F sends to neighboring FSMs;

∗ pheromone-related actions: deposit a pheromone of type h at intensity I ≤ Ih,
enhance a pheromone of type j by increasing its current intensity to level I ≤ Ij;

∗ “food”-related actions: pick up and carry the item on the current square, deposit
the item that F is currently carrying;

∗ stand still or move to a neighboring tile in a direction that is appropriate for F ’s
current tile—i.e., that will not cause F to “fall off” Mn by trying to follow a
nonexistent arc.

– changing state (by specifying the next case statement to execute).

We specify algorithms in English—but hopefully in enough detail to make it clear how to craft
equivalent finite-state programs.

2.2 The Parking Problem for Ants

The parking problem has each ant A move as close as possible to the corner tile of Mn that
resides in the same quadrant as A does at the moment when it receives the initiate parking

command (from the outside world). Additionally, the ants in each quadrant must cluster within
the most compact quarter-sphere “centered” at the quadrant’s corner tile. Focus on QSW (easy
clerical changes work for the other quadrants), and consider Fig. 3. A configuration of ants solves

. . .

.
.
.

Figure 3: The 6 × 6 “prefix” of QSW , with 18 optimally parked ants (denoted by dots).

the parking problem for QSW precisely if it minimizes the parking potential function

Π(t)
def

=
2n−2
∑

k=0

(k + 1) × (the number of ants residing on ∆k at step t). (2.1)

3 Single Ants and Parking

Although we have not yet settled the question of whether single ants can park on Mn, we have
made partial progress.

6

3.1 The Simplified Framework for Single Ants

This section focuses on the parking abilities of a single ant, F , on Mn. This focus allows us to
simplify the input and output sets of the FSMs of this section, because the FSMs are alone on
Mn. Easily, these sets need no longer contain messages from/for, because there are no ants for F
to receive message from or to send messages to. Less obviously, these sets need no longer contain
pheromone levels, because pheromones do not enhance the path-planning power of a single ant.

Proposition 3.1. Given any FSM F that employs pheromones while navigating Mn, there exists
an FSM F ′ that follows the same trajectory as F while not using pheromones.

Proof. For simplicity, assume that F employs just one type of pheromone; if it uses many, then we
can eliminate them one at a time. Say that F ’s single pheromone has possible intensities 0, . . . , I.
We replace F by an FSM F ′ that employs no pheromones and that simulates F by “carrying
around” (inside its finite-state control) a map that encapsulates all necessary information about
the positions and intensities of the pheromone on Mn. To verify that F ′ exists, we must check:
(a) that the map is “small”—i.e., has size independent of n—and (b) that F ′ can update the map
as it simulates any series of steps by F . Of course, the map indicates that initially there are no
tiles that contain the pheromone.

The size of the map. The portion of Mn that could contain nonzero levels of the pheromone is
no larger than the “radius”-I subgrid of Mn that F has been in during the most recent I steps.
No trace of pheromone can persist outside this region because of volatility. Thus, the map needs
only be a mesh of size (2I − 1)× (2I − 1) centered at F ’s current tile. (The map may be smaller
if F is currently near an edge of Mn.) Because F is the only FSM in our scenario, at most one
tile of the map can contain the integer I (indicating a maximum level of the pheromone), at most
one tile the integer I − 1 (indicating that it contained a maximum level one step ago), and so
on, down to at most one tile that contains the integer 1 (indicating that it contained a maximum
level I − 1 steps ago). Fig. 2(a) displays a sample map for the case I = 3, together with four
sample one-step updates: Figs. 2(b)–(e).

Updating the map. Because of the restrictions on a map’s size and contents, there are strictly
fewer than 1+

∏I−1

j=0
((2I − 1)2 − j) distinct possible maps (“strictly fewer” because this reckoning

ignores the necessary adjacency of tiles that contain the integers k and k − 1). F ′ can, there-
fore, carry around the set of all possible maps in its finite-state memory, with the then-current
map in a special “register.” Formally, this amounts to having each state of F ′ have the form
〈q, (the set of all possible maps), (the current map)〉, where q is a state of F . Clearly F ′ has
only finitely many states as long as F does. The state-transition function of F ′ augments that of
F by updating the map-component of the state while emulating F ’s control-state change.

3.2 A Single Ant Cannot Park on a One-Dimensional Mesh

Theorem 3.1. It is not possible to design an FSM-ant that successfully parks, when started in
an arbitrary tile of the one-dimensional mesh Mn.

7

Proof. The one-dimensional parking problem has the following form. We place an FSM F with
state-set Q on a one-dimensional Mn and order it to park. Clearly F must end up at either the
eastern endpoint of Mn (tile n − 1) or the western endpoint (tile 0), whichever is closer to its
initial tile; ties are broken in favor of the western end. By Proposition 3.1, we lose no generality
by positing that F does not employ pheromones.

Focus on a “large” instance of this parking problem, where “large” means that n ≫ |Q|. Say
that this instance initially places F at a tile k ∈ {

⌊

1

3
(n − 1)

⌋

, . . . ,
⌈

2

3
(n − 1)

⌉

} of Mn. Focus on
a situation in which k ≤ 1

2
(n − 1), so that F ’s target endpoint is tile 0. (A symmetric argument

works if k > 1

2
(n − 1), so that F ’s target endpoint is tile n − 1.)

Label each tile t of Mn with symbols from the set Q ∪ {#}, as follows.

• If F never visits tile t on its trajectory from tile k to tile 0, then label t with the symbol #.
(There may be no tiles that F does not visit.)

• If F does visit tile t on its trajectory from tile k to tile 0, then label t with (the name of)
the state that F is in the last time that it visits t. (F must visit every tile between 0 and
k, because of Mn’s one-dimensionality.)

Because tile k is at least
⌊

1

3
(n − 1)

⌋

tiles away from F ’s target tile 0, and because n ≫ |Q|, there
must be distinct tiles strictly between tiles 0 and k that have the same label q ∈ Q. Because the
FSM F is deterministic, it cannot “distinguish” between any two like-labeled tiles. In particular,
if we lengthen Mn—i.e., increase n—by “cutting and splicing” portions of Mn that begin and end
with label q—see Fig. 4—then this will not impact F ’s ultimate behavior: F will still end its
journey on tile 0, despite the fact that the “cut and splice” operation has lengthened the distance
between tile k and tile 0. This determinism is F ’s downfall! If we perform the “cut and splice”

qstuff A stuff Astuff Bq q q q stuff B

Figure 4: Illustrating the “cut and splice” operation of Theorem 3.1.

operation enough times, we can make tile k as far from tile 0 as we want. In particular, we can
make this distance greater than the distance between tile k and tile n− 1. Once this happens, F
is no longer parking successfully.

Because we have made no assumptions about F other than its finiteness, the theorem follows.

3.3 Single-Ants Configurations that Can Park

Theorem 3.2. A single FSM-ant can park in time O(n) when started on an arbitrary edge-tile
of Mn.

Proof. Say, with no loss of generality, that the FSM F begins on the bottom edge of Mn, say at
tile 〈0, k〉. Clearly, F ’s parking corner will be either tile 〈0, 0〉 or tile 〈0, n − 1〉. We show how F
can decide which of these alternatives is the correct one.

8

Let F begin a 60◦ northeasterly walk from tile 〈0, k〉, i.e., a walk consisting of “supersteps” of
the form (0,+1), (+1, 0), (+1, 0) (alternating single easterly steps and double northerly steps; see
Fig. 5). Continuing thus until it encounters either an edge or a corner of Mn, F can determine

OR

Figure 5: The two possible edge-terminating trajectories for a single ant.

its target parking tile from the endpoint of its walk. To see this, note that after s “supersteps”,
F has moved from tile 〈0, k〉 to tile 〈2s, k + s〉. Consequently:

• If F ’s walk terminates in the right edge of Mn, then F must park in tile 〈0, n − 1〉. This is
because 2s < n − 1, while k + s ≥ n − 1, so that k > 1

2
(n − 1).

• If F ’s walk terminates in either the top edge or the NE corner of Mn, then F must park in
tile 〈0, 0〉. This is because 2s ≥ n − 1, while k + s ≤ n − 1, so that k ≤ 1

2
(n − 1).

This completes the proof.

4 Multi-Ant Configurations that Can Park

We do not yet know if a collection of ants can park successfully when started in an arbitrary
initial configuration in Mn. But we do not need to specialize the initial configuration very much
in order to ensure successful parking.

We call a pair of ants adjacent if the ants reside on tiles that share an edge or a corner. We call
a collection of more than two ants adjacent if the King’s-move adjacency graph of the tiles they
reside in is connected.

Theorem 4.1. Any collection of ants that contains at least two adjacent ants can determine their
home quadrants in O(n2) synchronous steps.

The proof of Theorem 4.1 addresses the three components of the activity of parking:

1. having each ant determine its home quadrant;
2. having each ant use this information to plan a route to its target corner of Mn;
3. having ants that share the same home quadrant—hence, the same target corner—organize

into a configuration that minimizes the parking potential function (2.1).

Section 4.1 treats the algorithmically most complex of these activities, identifying home quadrants;
Section 4.2 treats the other two activities.

9

4.1 Quadrant Determination with the Help of Adjacent Ants

We address the problem of quadrant determination in three parts. Section 4.1.1 presents an
algorithm that allows two adjacent ants to park. Because this algorithm is somewhat complicated,
we present in Section 4.1.2 a much simpler algorithm that allows three adjacent ants to park. We
then show in Section 4.1.3 how two adjacent ants can act as “shepherds” and help any collection
of ants to determine their home quadrants.

4.1.1 Two adjacent ants can park

The following algorithm was developed in collaboration with Olivier Beaumont (INRIA and
Univ. of Bordeaux). The essence of the algorithm is depicted in Fig. 6.

Determine Wedge

L

A
L

A
R

A
L

A
R

12

2 2
1 1

Determine Quadrant
(horizontal)

Determine Quadrant
(vertical)

2

1

1

2

A

Figure 6: The essence of quadrant determination for two adjacent ants: (left) wedge determi-
nation; (middle) quadrant determination, horizontal component; (right) quadrant determination,
vertical component.

Say that there are two adjacent ants on Mn when the command to park is issued. Say, for
definiteness, that the ants are horizontally adjacent: AL, on tile 〈x, y〉, resides to the left of AR,
whose tile is 〈x, y +1〉. (This assumption loses no generality, because the ants can remember their
true initial configuration in their finite-state memories, then move into the assumed left-right
configuration, and finally compute the adjustments necessary to make the correct determination
about their home quadrants.) Our algorithm has two phases.

Determining ants’ home wedges. We begin the quadrant-identification process by having AL per-
form two walks within Mn from its initial tile; see Fig. 6(left).

The 45◦ walk. AL executes a sequence of (+1,+1) moves until it encounters Mn’s northeastern
corner or its top edge or its right edge. It then retraces its steps to tile 〈x, y〉, which is detected
by the horizontal adjacency of AR. The terminus of AL’s outward walk narrows down both AL’s
and AR’s home wedges to two possibilities:

10

Walk terminated by: AL’s home wedge: AR’s home wedge:
Mn’s corner WN or WW WE or WS

Mn’s top edge WN or WW WN or WW

Mn’s right edge WE or WS WE or WS

The 315◦ walk. AL executes a sequence of (+1,−1) moves until it encounters Mn’s northwestern
corner or its top edge or its left edge. It then retraces its steps to tile 〈x, y〉. Here again, the
terminus of AL’s outward walk narrows down both AL’s and AR’s home wedges to two possibilities.

Walk terminated by: AL’s home wedge: AR’s home wedge:
Mn’s corner or top WN or WE WN or WE

Mn’s left edge WW or WS If walk ends within one tile of Mn’s corner
then: WN or WE else: WW or WS

Thus, after the two walks, each of AL and AR knows its home wedge:

45◦ walk 315◦ walk
terminus terminus AL’s home wedge: AR’s home wedge:

corner corner/top WN WE

corner left edge WW If walk ends within one tile of Mn’s corner
then: WE else: WS

top edge corner/top WN WN

top edge left edge WW If walk ends within one tile of Mn’s corner
then: WN else: WW

right edge corner/top WE WE

right edge left edge WS If walk ends within one tile of Mn’s corner
then: WE else: WS

Determining ants’ home quadrants. AL and AR use the knowledge of their home wedge(s) to
determine their home quadrant(s). Having been very detailed in determining the ants’ home
wedges, we relax a bit in determining their home quadrants, by leaving detailed calculations to
the reader. Quadrant determination involves two subprocedures.

The horizontal procedure (Fig. 6(middle)). AL and AR move in lockstep to the bottom edge of
Mn. Having achieved this edge, they set out in lockstep on independent diagonal roundtrip walks.
AL proceeds outward at an angle of 315◦, via (+1,−1) moves until it hits Mn’s left edge; it then
reverses direction until it regains the bottom edge. Simultaneously, AR proceeds at an angle of
45◦, via (+1,+1) moves until it hits Mn’s right edge; it then reverses direction until it regains
the bottom edge. Importantly, the angles of the outward and return walks ensure that each ant
returns to its original tile on the bottom edge.

Once an ant regains the bottom edge, it checks for the presence of the other ant in the appropriate
adjacent tile, to determine the outcome of their round-trip “race.” Note that AL has traveled
2mL steps, while AR has traveled 2mR steps, where mL +mR = n− 2. A discrete set of outcomes
of the “race” provides AL and AR bounds on the columns of Mn where each began to park: Did
the “race” end in a tie? Did the winner win by exactly one step? Did the winner win by more
than one step? Provided that AL and AR did not both begin in wedge WE and that both did not
begin in wedge WW , the information about home columns allows AL and AR to determine their

11

home quadrants. In order to accommodate situations wherein AL and AR both began in WE or
both began in WW , we need to supplement the information about home columns obtained from
the horizontal procedure with information about home rows. To this end, we employ a vertical
analogue of the horizontal procedure.

The vertical procedure (Fig. 6(right)). AL and AR move in lockstep to the left edge of Mn, whence
they set out in lockstep on independent diagonal roundtrip walks. AL proceeds outward at an
angle of 45◦, via (+1,+1) moves until it hits Mn’s top edge, where it reverses direction until it
regains the left edge. Simultaneously, AR proceeds at an angle of 135◦, via (−1,+1) moves until
it hits Mn’s bottom edge, where it reverses direction until it regains the left edge.

In direct analogy with the information about columns that the horizontal procedure yields, the
vertical procedure procedure affords bounds on the home rows of AL and AR.

After executing both the horizontal and vertical procedures, AL and AR can determine their
respective home quadrants. As noted earlier, this final determination requires AL and AR to
adjust the results from the various walks we have described, if necessary, to account for the initial
realignment. Once possessing this knowledge, it is an easy matter for AL and AR to park greedily.

4.1.2 Three adjacent ants can park

Say that there are three adjacent ants, A1, A2, and A3, on Mn when the command to park
is issued. Via local communication, the ants can recognize which of the six possible distinct
configurations they occupy as a group, and each can remember its location relative to the others.
It can, therefore, adjust the result of the quadrant determination algorithm that we describe now
and depict schematically in Fig. 7.

Vertical

1
A

3

A
1

A
3

Horizontal placement

placement

A

Figure 7: The essence of the parking algorithm for three adjacent ants: (Left) Determining each
ant’s horizontal placement. (Right) Determining each ant’s vertical placement.

Determining ants’ home quadrants.
Horizontal placement (Fig. 7(Left)). The ants align themselves vertically in the top-to-bottom
order A1, A2, A3, with A2 retaining its original position. (If A2 originally sits on either the top or
bottom edge of Mn, then the ants will have to shift one tile northward or southward. We leave
the clerical details to the reader.) A1 marches leftward to the left edge of Mn and returns to its
pre-march position, above A2. In lockstep, A3 marches rightward to the right edge of Mn and
returns to its pre-march position, below A2.

12

• If A1 and A3 return to A2 at the same step, or if A1 returns to A2 one step before A3 does,
then A2 began this activity residing in one of Mn’s western quadrants. Moreover, A1 and
A3 can determine their original quadrants by noting how they moved in order to achieve
the vertical alignment.

• If A1 returns to A2 two or more steps before A3 does, then all three ants began this activity
residing in one of Mn’s western quadrants.

The situation when A3 returns to A2 before A1 does is almost the mirror image—except for the
asymmetry in eastern and western quadrants’ boundaries.

Vertical placement (Fig. 7(Right)). This determination is achieved by “rotating the horizontal-
placement algorithm by 90◦.” One begins with the ants in the left-to-right configuration A1, A2,
A3, with A2 retaining its original position. (Again, a simple modification works if A2 began on
either the left or right edge of Mn.) A1 and A3 reprise their scouting roles from the horizontal-
placement algorithm, except now with upward and downward initial trajectories, respectively.
Mirroring the analysis of the horizontal-placement algorithm, each ant can now determine whether
it began in a northern quadrant of Mn or a southern one.

After horizontal and vertical placement, each ant knows which quadrant it began in. Possessing
this knowledge, the ants can park in the manner detailed in Section 4.2.

4.1.3 Two adjacent ants acting as shepherds

All ants in any collection that contains (at least) two adjacent ants are able to determine their
respective home quadrants—with the help of the adjacent ants. As we verify this, we encounter
for the first time instances of ants blocking the intended paths of other ants. We deal with this
problem by simply having conflicting ants switch roles—which is possible because all ants are
identical. If ant A is blocking ant B’s progress, then A “becomes” B and continues B’s blocked
trajectory; and ant B “becomes” ant A and moves onto the tile that A relinquishes when it
“became” B. We henceforth invoke this strategy without further comment.

Proposition 4.1. Any collection of ants that contains two or more adjacent ants can determine
all home quadrants within O(n2) synchronous steps.

Proof. We have a collection of m ≥ 2 ants, A1, . . . , Am, that contains at least two adjacent ants—
without loss of generality, ants A1 and A2. We have A1 and A2 act as shepherds that help all
other ants, A3, . . . , Am, determine their home quadrants. The quadrant-determining algorithm
operates in three phases.

Phase 1: A1 and A2 determine their home quadrant(s), using the algorithm of Section 4.1.1. They
store this information in their memories; they will use it to park in phase 3.

Phase 2: A1 and A2 help other ants determine their home quadrants. There are four subphases
to this phase:

13

Subphase a: A1 and A2 distinguish east from west. A1 and A2 head to the southwestern corner of
Mn, where they begin to walk. A1 makes a round trip from tile 〈0, 0〉 to tile 〈0, n− 1〉 and back,
in order to determine the parity of n.

If n is even, then:

• A2 moves one tile eastward at every time-step until it reaches Mn’s right edge. At that
point, it reverses direction and begins to move one tile westward at every time-step.

• Starting one step later, A1 moves one tile eastward at every third time-step.

• A1 and A2 stop when they meet in adjacent tiles, with A1 on tile 〈0, 1

2
n− 1〉 and A2 on tile

〈0, 1

2
n〉.

When A1 and A2 meet, they have determined the midpoint of Mn’s bottom row (hence, of every
row). To wit:

• A2’s U-shaped trajectory from tile 〈0, 0〉 to tile 〈0, n − 1〉 and thence to tile 〈0, 1

2
n〉 takes

(n − 1) + (1

2
n − 1) = 3

2
n − 2 time-steps.

• A1’s trajectory from tile 〈0, 0〉 to tile 〈0, 1

2
n − 1〉 takes 1

2
n − 3 steps. Because it starts one

step later than A2 does, A1 arrive at tile 〈0, 1

2
n − 1〉 after 3

2
n − 2 time-steps.

If n is odd, then:

• A2 moves one tile eastward at every time-step until it reaches Mn’s right edge. At that
point, it reverses direction and begins to move one tile westward at every time-step.

• Starting one time-step later, A1 moves one tile eastward at every third time-step.

• A1 and A2 stop when they meet in adjacent tiles, with A1 on tile 〈0,
⌈

1

2
n
⌉

− 1〉 and A2 on
tile 〈0,

⌈

1

2
n
⌉

〉.

When A1 and A2 meet, they have determined the midpoint of Mn’s bottom row (hence, of every
row). To wit:

• A2’s U-shaped trajectory from tile 〈0, 0〉 to tile 〈0, n − 1〉 and thence to tile 〈0,
⌈

1

2
n
⌉

〉 takes
(n − 1) + (

⌊

1

2
n
⌋

− 1) = 3
⌈

1

2
n
⌉

− 4 time-steps.

• A1’s trajectory from tile 〈0, 0〉 to tile 〈0,
⌈

1

2
n
⌉

− 1〉 takes 3
⌈

1

2
n
⌉

− 3 steps. Because it starts
one step later than A2 does, A1 arrive at tile 〈0,

⌈

1

2
n
⌉

− 1〉 after 3
⌈

1

2
n
⌉

− 4 time-steps.

Subphase b: A1 and A2 identify easterners and westerners. A1 walks through the western half of
Mn, column by column, telling each encountered ant that it is a westerner—i.e., that it resides
in either QNW or QSW . Simultaneously, A2 does the same in the eastern half of Mn, column by
column, telling each encountered ant that it is an easterner—i.e., that it resides in either QNE or
QSE.

A1 and A2 meet at the northwestern corner of Mn after their walks.

Subphase c: A1 and A2 distinguish north from south. A1 and A2 start at the northwestern corner
of Mn and begin to walk:

14

• A1 moves one tile southward at every second time-step.

• A2 moves one tile southward at every time-step until it reaches Mn’s bottom edge. At that
point, it reverses direction and begins to move one tile northward at every time-step, until
it meets A1.

When A1 and A2 meet, they have determined the midpoint of Mn’s left column (hence of every
column).

Subphase d: A1 and A2 identify northerners and southerners. A1 walks through the northern
half of Mn, row by row, telling each encountered ant that it is a northerner—i.e., that it resides
in either QNE or QNW . A2 does the same in the southern half of Mn, row by row, telling each
encountered ant that it is a southerner—i.e., that it resides in either QSE or QSW .

By the end of Phase 2, every ant knows its home quadrant.

Phase 3: Ants park. Every ant except for A1 and A2 begins to park as soon as it learns its home
quadrant—which occurs no later than the end of phase 2. Because A1 and A2 learned their own
home quadrants in phase 1, they are able to park at the completion of phase 2.

4.2 Completing the Parking Process

We now describe how an ant that knows its home quadrant plans a route to its target corner of Mn

and how all ants that share the same home quadrant—hence, the same target corner—organize
themselves into a configuration that minimizes the parking potential function (2.1).

The route to the target corner. We simplify this final component of the parking process by having
all ants follow very simple routes to their respective target corners. Specifically: (1) Each ant goes
horizontally to its closer vertical edge, proceeding at the rate of one tile every second time-step, in
order to resolve traffic congestion (contention for tiles). (2) As ants reach their vertical edge, they
proceed single file along that edge to their target corner. If an ant at the end of the horizontal
component of its route encounters an ant that is already walking along the vertical edge, then the
horizontal ant defers to the vertical ant. The half-rate horizontal progress permits the delayed
ant to tell the horizontal ant behind it to stop and wait . . . and that ant tells the one behind it,
etc. Empty tiles alert ants that were proceeding horizontally to start walking again.

Organizing within the target corner. When ants that are walking along the vertical edge reach their
target corner, they begin to fill in that corner via the snaking trajectory illustrated in Fig. 8. One
shows easily that this manner of filling the corner organizes the ants into a configuration that
minimizes the parking potential function (2.1).

This completes the parking algorithm and the proof of Theorem 4.1.

5 Conclusions

We have reported here on progress in understanding the algorithmic strengths and weaknesses of
ant-inspired robots within a geographically constrained environment. The vehicle for obtaining

15

.
.
.

. . .

.
.
.

. . .

Figure 8: (Left) The generic snaking parking trajectory, as observed in QSW . (Right) The final
parking configuration of 13 ants in QSW .

this understanding has been the simple path-planning problem we call parking: have ants configure
themselves in maximally compact manner within the nearest corner. We have illustrated a variety
of initial configurations of a collection of ants that enable successful, efficient parking, the strongest
being just that the collection contains two ants that are initially adjacent. We have also exposed
a situation—a single ant in a one-dimensional world—where parking is impossible. We mention
“for the record” that if efficiency is unimportant, then any collection of ants that contains at least
four adjacent ones can perform a vast array of path-planning computations (and others as well),
by simulating an autonomous (i.e., input-less) 2-counter Register Machine whose registers have
capacity O(n2); cf. [9].

Where do we go from here? Most obviously, we would like to solve the parking problem for ants
definitively, by identifying precisely which initial configurations enable parking and which do not.
It would also be valuable to understand the capabilties of ant-inspired robots within the context
of other significant tasks that involve path planning [1, 4, 5, 7, 8], including those that involves
finding and transporting “food” and avoiding obstacles (as in [7, 8]).

Acknowledgments. This research was supported in part by NSF Grant CNS-0905399. I am indebted
to O. Beaumont and O. Brock for insightful comments and suggestions.

References

[1] L. Chen, X. Xu, Y. Chen, P. He (2004): A novel ant clustering algorithm based on Cellular automata.
IEEE/WIC/ACM Intl. Conf. Intelligent Agent Technology.

[2] D. Chowdhury, V. Guttal, K. Nishinari, A. Schadschneider (2002): A cellular-automata model of flow
in ant trails: non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, L573–L577.

[3] D. Geer (2005): Small robots team up to tackle large tasks. IEEE Distributed Systems Online, vol. 6,
no. 12.

[4] http://www.kivasystems.com/

[5] F. Marchese (1996): Cellular automata in robot path planning. EUROBOT’96, 116–125.

16

[6] M.O. Rabin and D. Scott (1959): Finite automata and their decision problems. IBM J. Res. Develop. 3,
114–125.

[7] A.L. Rosenberg (2007): Cellular ANTomata. 5th Intl. Symp. on Parallel and Distributed Processing
and Applications (ISPA). In Lecture Notes in Computer Science 4742, Springer, New York, pp. 78–90.

[8] A.L. Rosenberg (2008): Cellular ANTomata: food-finding and maze-threading. 37th Intl. Conf. on
Parallel Processing (ICPP).

[9] A.L. Rosenberg (2009): The Pillars of Computation Theory: State, Encoding, Nondeterminism. Uni-
versitext Series, Springer, New York.

[10] J.C. Shepherdson (1959): The reduction of two-way automata to one-way automata. IBM J. Res. De-
velop. 3, 198–200.

[11] G. Spezzano and D. Talia (1998): The CARPET programming environment for solving scientific
problems on parallel computers. Parallel and Distributed Computing Practices 1, 49–61.

17

