
Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling

Gennaro Cordasco, Rosario De Chiara
Universit̀a degli Studi Salerno, Italy

Email: {cordasco,dechiara}@dia.unisa.it

Arnold L. Rosenberg
Colorado State University, USA
Email: rsnbrg@cs.umass.edu

Abstract—Many modern computational platforms, including
“aggressive” multicore architectures, proposed exascalearchi-
tectures, and many modalities of Internet-based computing
are “task hungry”—their performance is enhanced by always
having as many tasks eligible for allocation to processors as
possible. TheIC-scheduling paradigm for computations with
inter-task dependencies—modeled asDAGs—was developed to
address the “hunger” of such platforms, by executing an
input DAG so as to render tasks eligible for execution as
fast as possible. The fact that manyDAGs do not admit
schedules that are optimal under IC-scheduling spawned the
development of a new paradigm—AREA-Oriented scheduling
(AO-scheduling)—that coincides with optimal IC-scheduling
on DAGs that admit IC-optimal schedules but that allows
optimal AO-scheduling of all DAGs. AO-scheduling achieves
its universal applicability by weakening the often-unachievable
demand of IC-scheduling that the number of eligible tasks be
maximized at every step when executing aDAG to the always-
achievable demand that this number be maximizedon average.
The computational complexity of optimal AO-scheduling is not
yet known; therefore, this goal is replaced here by a multi-phase
heuristic that produces optimal AO-schedules for series-parallel
DAGs but possibly suboptimal schedules for generalDAGs.

As with IC-scheduling, it is not clear a priori that AO-
scheduling enhances the efficiency of executing aDAG by
minimizing the makespan of its execution. This paper employs
simulation experiments to assess the computational benefits
of AO-scheduling in a variety of scenarios and on a range
of DAGs whose structure is reminiscent of ones encountered
in scientific computing. The experiments pit AO-scheduling
against a variety of heuristics that range from lightweightones
such as FIFO scheduling to computationally more intensive
ones that mimic IC-scheduling’slocal decisions. The observed
results indicate that, statistically, AO-scheduling doesenhance
the efficiency of task-hungry platforms, by amounts that vary
according to the availability patterns of processors and the
structure of the DAG being executed.

Keywords-Scheduling DAGs; Scheduling for: task-hungry
platforms, multicore architectures, exascale architectures

I. I NTRODUCTION

Many modern computational platforms, including “ag-
gressive” multicore architectures (cf. [29]), proposed ex-
ascale architectures (cf. [12]), and many modalities of
Internet-based computing (cf. [15], [19], [20], [27]), are
“task hungry”—their performance is enhanced by always
having as many tasks eligible for allocation to processors as
possible. The server-clientIC-schedulingparadigm for com-
putations with inter-task dependencies—modeled asDAGs—
was developed to address the “hunger” of such platforms,

by executing an inputDAG so as to render tasksELIGIBLE

for execution as fast as possible (cf. [5], [7], [10], [23],
[24], [27], [28]). Dual intuition motivatesIC-scheduling:
(1) Schedules that produceELIGIBLE tasks/nodes more
quickly may prevent a computation’s stalling pending the
return of already allocated tasks. (2) If the server re-
ceives many requests for tasks at (roughly) the same
time, then having moreELIGIBLE tasks available allows it
to satisfy more requests, thereby increasing “parallelism.”
The fact that manyDAGs do not admit schedules that
are optimal under IC-scheduling [24] spawned the devel-
opment of a new paradigm—AREA-Oriented scheduling
(AO-scheduling). Optimal AO-schedules—calledAREA-max
schedulesfor reasons explained in Section II—coincide with
optimal IC-schedules onDAGs that admit such schedules;
but, AO-scheduling allows one to develop an AREA-max
schedulefor every DAG. AO-scheduling achieves its uni-
versal optimizability by weakening the often-unachievable
demand of IC-scheduling that the number ofELIGIBLE tasks
be maximized ateverystep when executing aDAG to the
always-achievable demand that this number be maximized
on average. The foundations of AO-scheduling are presented
for general DAGs in [8] and for series-parallel DAGs in
[9]. Series-parallelDAGs play a central role in thread-based
parallel programming, as inCilk [2], [3]; they are significant
in AO-scheduling because of the ease of finding AREA-
max schedules for them [9]—which leads to an efficient
heuristic for general AO-scheduling. The need for such
a heuristic resides in results from [8] that suggest that
developing AREA-max schedules for generalDAGs may
be computationally intractable. We respond to this possible
intractability in Section III-B with a multi-phase heuristic
that produces AREA-max schedules for series-parallelDAGs
but possibly suboptimal AO-schedules for generalDAGs. The
heuristic finds an AO-schedule for aDAG G by:

1) using an algorithm such as those proposed in [13],
[18], [25] to convertG to a series-parallelDAG G′.

2) developing an AO-schedule forG by “filtering” the
optimal AO-schedule forG′ produced by the efficient
algorithm of [9].

As with IC-scheduling, it is not cleara priori that AO-
scheduling enhances the efficiency of executing aDAG by
minimizing the makespan of its execution. The enhancement



of efficiency via IC-schedulingis verified experimentally
in [6], [16], [22] for many families ofDAGs, including a
broad range of randomly generatedDAGs that admit IC-
optimal schedules. But, as we have noted, manyDAGs do
not admit IC-optimal schedules—which fact motivates the
current study. The current paper employs a methodology
similar to that of [16] in order to assess the potential
computational benefits of AO-scheduling. We model a “task-
hungry” computational platform as a stream of task-seeking
clients that arrive according to a random process. We focus
on two random populations ofDAGs.

1) We study AREA-max schedules for randomly con-
structed series-parallelDAGs. SuchDAGs arise, e.g.,
via transformation from theDAGs of the preceding
paragraph; cf. [13], [18], [25]

2) We study the AO-schedules produced by our multi-
phase heuristic forDAGs that are random compositions
of small “building-block” DAGs. (We thereby focus
only on efficiently constructedAO-schedules.) The
DAGs we schedule model computations each of whose
subcomputations has the structure ofan expansion(as
in a search tree),a reduction(as in an accumulation),
a parallel-prefix (a/k/a scan), an all-to-all communi-
cation (as in a “gossip”). It is shown in [6] how com-
positions of suchDAGs represent computations such
as divide-and-conquer algorithms (e.g., mergesort or
numerical integration), matrix multiplication, the Fast-
Fourier Transform, the Discrete Laplace Transform,
and LU-decomposition. Thus, the resultingDAGs are
reminiscent of ones that arise in scientific computing.

We simulate executing each generatedDAG on our platform
model: (a) using an AO-schedule and (b) using a variety of
scheduling heuristics that range from lightweight common
heuristics such as FIFO scheduling to computationally more
intensive ones that mimic IC-scheduling’slocal decisions.

The results we observe indicate that, statistically, AO-
schedulingdoes significantly enhance the efficiency of task-
hungry platforms, by amounts that vary according to the
availability patterns of processors and the structure of the
DAG being executed.

II. BACKGROUND

A. Basic notions

We study computations that are described byDAGs. Each
DAG G has a setVG of nodes, each representing atask, and
a setAG of (directed)arcs, each representing an intertask
dependency. For arc(u → v) ∈ AG :

• taskv cannot be executed until tasku is;
• u is a parentof v, andv is a child of u in G.

The number of children ofu is its outdegree. A parentless
node is asource; a childless node is atarget. G is connected
if it is so when one ignores arc orientations. When one
executes aDAG G, a nodev ∈ VG becomesELIGIBLE (for
execution) only after all of its parents have been executed;

hence, every source ofG is ELIGIBLE at the beginning of an
execution. The goal is to render all ofG’s targetsELIGIBLE.
Informally, ascheduleΣ for G is a rule for selecting which
ELIGIBLE node to execute at each step of an execution ofG;
formally, Σ is a topological sortof G, i.e., a linearization of
VG under which all arcs point from left to right (cf. [11]). We
do not allow recomputation of nodes/tasks, so a node loses
its ELIGIBLE status once it is executed. In compensation,
after v ∈ VG has been executed, there may be new nodes
that are renderedELIGIBLE; this occurs whenv is their last
parent to be executed.

We henceforth refer totasksrather thannodes, to empha-
size the computational aspect of our study.

B. Series-parallelDAGs (SP-DAGs)

A (2-terminal) series-parallelDAG G (SP-DAG, for short)
is produced via the following operations (cf. Fig. 1):

Figure 1. Compositions of SP-DAGs.

1) Create a basic SP-DAG G, that has:

a) two nodes, asources and atarget t, which are
jointly G’s terminals,

b) one arc,(s → t), directed froms to t.

2) Compose SP-DAGs, G′ with terminalss′, t′, andG′′,
with terminalss′′, t′′:

a) Parallel composition: Form G = G′ ⇑ G′′ by
identifying/mergings′ with s′′ to form a new
sources and t′ with t′′ to form a new targett.

b) Series composition: Form G = (G′ → G′′) by
identifying/mergingt′ with s′′. G has the single
sources′ and the single targett′′.

C. Quality metrics

We measure the quality of a scheduleΣ for DAG G via
the rate at whichΣ renders nodes ofG ELIGIBLE: the faster,
the better. To this end, we defineEΣ(t), the quality ofΣ at
stept, as the number of nodes ofG that areELIGIBLE after
Σ has executedt nodes1 (t ∈ [1, NG ]).

The goal of IC-schedulingis to executeG ’s nodes in an
order that maximizesEΣ(t) at every stept ∈ [1, NG] of the

1[a, b] denotes the set of integers{a, a + 1, . . . , b}; NG
def
= |VG |.



execution. A scheduleΣ∗ that achieves this demanding goal
is IC-optimal; formally,

(∀t ∈ [1, NG ]) EΣ∗(t) = max
Σ a schedule forG

{EΣ(t)}

The goal of AO-schedulingis to maximize theAREAof
a scheduleΣ for G, whereAREA(Σ), is the sum

AREA(Σ)
def
= EΣ(0) + EΣ(1) + · · · + EΣ(NG).

The normalized AREA,Ê(Σ)
def
= AREA(Σ) ÷ NG , is

the averagenumber of nodes that areELIGIBLE when Σ
executesG.2 The goal of AO-scheduling is, thus, to find an
AREA-max schedulefor G, i.e., a scheduleΣ⋆ such that

AREA(Σ⋆) = max
Σ a schedule forG

AREA(Σ).

Easily (see [24]), manyDAGs with simple structures,
including manytree-DAGs3 and SP-DAGs do not admit IC-
optimal schedules. Hence, even these well-structured fami-
lies benefit from the more inclusive goal of AO-scheduling.

III. F INDING GOOD AO-SCHEDULESEFFICIENTLY

A. The Complexity of AREA-Maximization

It is shown in [8] that, for everyDAG G:

• G admits an AREA-max schedule.
• If G admits an IC-optimal schedule, then every such

schedule is AREA-max, and vice-versa.

This good news is tempered by a demonstrated close rela-
tionship between the problem of producing an AREA-max
schedule for aDAG G and theMaximum Linear Arrangement
(MLA) Problem forG [26]. This relationship makes it likely
that the general problem of producing AREA-max schedules
is computationally intractable. Fortunately, efficient such
algorithms exist for two important classes ofDAGs.

Lemma 3.1 ([8]): One can find an AREA-max schedule
for any n-nodemonotonic tree-DAG4 G in time O(n log n).

The algorithm of Lemma 3.1 adapts an algorithm from
[1] that optimally solves the MLA Problem for monotonic
tree-DAGs.

Lemma 3.2 ([9]): One can find an AREA-max schedule
for any n-node SP-DAG G in time O(n2).

In brief, the algorithm of Lemma 3.2 exploitsG’s series-
parallel structure in the following way.

• It decomposesG (using an algorithm such as the SP-
DAG-recognizing algorithm of [30]) to produce the tree
T G that exposesG’s series-parallel structure; cf. Fig. 2.

• It recursively unrollsT G from the leaves up, crafting
an AREA-max schedule for each ofT G ’s node-DAGs.

2The term “area” arises by formal analogy with Riemann sums as
approximations to integrals.

3A tree-DAG is a DAG that remains cycle-free when the orientation of
its arcs is ignored.

4A tree-DAG is monotonicif all arcs either point away from a unique
source or toward a unique target.

Figure 2. An example of the series-parallel decomposition of a SP-DAG.

B. Toward Efficient AO-Scheduling for GeneralDAGs

We exploit two algorithmic sources to devise an efficient
(specifically, time-O(n2)) four-phase AO-scheduling heuris-
tic for generaln-nodeDAGs. Given ann-nodeDAG G:
Phase 1: Find G’s transitive skeletonG′.
This phase, which removes all shortcut arcs fromG, reduces
the overall complexity of finding the AO-schedule. Formally,
G′ is a smallest sub-DAG of G that sharesG ’s node-set and
transitive closure. Easily,G andG′ share all of their AREA-
max schedules, because removing shortcuts does not impact
any node’s dependencies.
Phase 2: ConvertG′ to an SP-DAG σ(G′) (SP-izeG′).
We invoke anSP-ization algorithm—i.e., an algorithm that
converts an arbitraryDAG to an SP-DAG—that:

• maintains inσ(G′) all of the internode dependencies
inherent inG′;

• (approximately) retains the degree of parallelism in-
herent inG′ (this precludes, e.g., havingσ(G′) simply
linearizeG′);

• operates within timeO(n2).

Note thatσ(G′) will generally contain additional “synchro-
nizing” nodes, which are not nodes ofG′. See Fig. 3.

One finds SP-ization algorithms that fit our requirements
in sources such as [13], [18], [25]. For convenience, we use
the second, more efficient, SP-ization algorithm from [13] in
our experiments. It remains a topic of research to find an SP-
ization algorithm that is best suited for our AO-scheduling
heuristic.
Phase 3: Find an AREA-max scheduleΣ′ for σ(G′).
We invoke the algorithm of Lemma 3.2. It remains a topic
of research to see if a more efficient algorithm exists.
Phase 4: “Filter” the AREA-max scheduleΣ′ for σ(G′) to
obtain the AO-scheduleΣ for G.
(Recall that Σ′ is a linearization ofσ(G′).) “Filtering”
Σ′ removes the additional nodes added by the SP-ization
algorithm. For each additional nodeu, we assign the parents
of u in G a priority that equals the priority ofu in Σ′. Σ then
schedules equal-priority nodes ofG greedily, by theiryield—
the number ofELIGIBLE nodes their execution produces.



Figure 3. A sample SP-ization. Additional nodes have fuzzy borders.

We illustrate the preceding heuristic on the LU-
decompositionDAG G of Fig. 3(a).G contains no shortcut
arcs, soG′ = G. One possible SP-izationσ(G′) of G′

appears in Fig. 3(b); note the two additional nodes,o and
p. The algorithm of Lemma 3.2 produces the Area-max
schedule(a, b, f, c, d, e, o, i, j, g, h, p, l, k, m, n) for σ(G′):
note the node-numbering in Fig. 3(b). Finally, we obtain
an AO-scheduleΣ for G by simply removing nodeso
and p from Σ′. We have found that the AO-schedules
produced by our heuristic are more efficient if we allow
them latitude in executing the parents of additional nodes—
which is why we introduce the just-mentioned priority
scheme. In the current case, e.g., we produce the AO-
schedule(a, b, {c, d, e, f}, i, {g, h, j}, l, k, m, n) and man-
date that equal-priority nodes be executed greedily, by
yield; this greedy strategy schedules the sets{c, d, e, f} and
{g, h, j} in the order(c, f, d, e) and (g, j, h), respectively.
By looking at theDAG G carefully, one can see that the
final schedule,(a, b, c, f, d, e, i, g, j, h, l, k, m, n), is AREA-
maximizing.

IV. OUR EXPERIMENTS

We now describe our experiments and their results.

A. Experimental Design

1) Overview: We randomly generateDAGs from a pop-
ulation that shares structural characteristics with a variety
of “real” computation-DAGs, especially those encountered
in scientific computing. We craft five schedules for each
generatedDAG, one using the AO-scheduling heuristic of
Section III, and four using heuristics that represent a range of
sophistication and computational intensiveness. We compare
the five schedules using two metrics:

1) the batched makespanof each schedule, which is
obtained using a probabilistic model that specifies the
arrival patterns of “hungry” clients and the execution
time of each allocated task;

2) theAREAof each schedule.

Our interest in the schedules’ AREAs results from the
observed smaller makespans of our AO-schedules.

2) The DAGs that we execute:We generateDAGs ran-
domly from two populations.
—Randomn-node SP-DAGs.
—Randomn-node LEGOR©-DAGs (named for the toy). We
begin, as in [24], with a repertoire ofConnected Bipar-
tite Building BlockDAGs (CBBBs, for short). We employ
various-size instances of six CBBB-structures, to represent
a variety of subcomputations of the final computation-DAG.

• The leftmost twoDAGs in Fig. 4 exemplifyexpansive
subcomputations such as occur in a search tree.

• The third and fourthDAGs from the left in Fig. 4
exemplify reductivesubcomputations such as occur in
an accumulation tree.

• The fifth DAG from the left in Fig. 4 exemplifies pieces
of subcomputations such as the parallel-prefix.

• The sixth DAG from the left in Fig. 4 exemplifies the
basic building blocks of computation-DAGs such as
comparators, sorters, and the Fast Fourier Transform.

• The seventhDAG from the left in Fig. 4 exemplifies
the basic building blocks of computation-DAGs such
as total-exchange comparators and the Fast Fourier
Transform.

• The rightmostDAG in Fig. 4 exemplifies the basic build-
ing blocks of computation-DAGs that perform pivoting
operations. It is also a sub-DAG of a largefunctional
Magnetic Resonance ImagingDAG studied in [22].

We generate a random LEGOR©-DAG by selecting a sequence
of CBBBs, randomized according to both size and structure,
andcomposingthe CBBBs from left to right in the manner
described in [24], which is depicted schematically in Fig. 5.

3) The five competing schedulers:The scheduler against
which all other schedulers are measured is our AO-scheduler
AO. This heuristic has two modes of operation.

1) When AO is presented with aDAG G that is known
to be series-parallel (say, because the composition
tree T G is provided), thenAO uses the algorithm of
Lemma 3.2 to craft an AREA-max schedule forG.

2) WhenAO is presented with aDAG G that isnot known
to be series-parallel (possibly becauseG is not an
SP-DAG), then AO uses the multi-phase heuristic of
Section III-B to craft an AO-schedule forG.

In either case,AO schedules ann-nodeDAG in time O(n2)
(using our current implementation).

The heuristics that compete againstAO differ in the data
structures that they use to store the currentELIGIBLE tasks
of G. (The definitions and characteristics of the upcoming
data structures can be found in [11].)

• The FIFO (first-in, first-out) scheduler organizesG ’s
current ELIGIBLE nodes in a FIFO queue. It serves a
“hungry” client by dequeuing the node at the front of



Figure 4. A sequence of eight CBBBs. (All arcs point upward.)

the queue; it enqueues nodes that are newly rendered
ELIGIBLE in random order.FIFO is, essentially, the
scheduler used by systems such as Condor [4].
Complexity. Each dequeue or enqueue of a single node
takes timeO(1).

• The LIFO (last-in, first-out) scheduler organizesG ’s
currentELIGIBLE nodes in a stack. It serves a “hungry”
client by popping the node at the top of the stack; it
pushes nodes that are newly renderedELIGIBLE onto
the stack in random order.
Complexity. Each push or pop of a single node takes
time O(1).

• The STATIC-GREEDY scheduler organizes nodes that
are newly renderedELIGIBLE in a MAX-priority queue
whose entries are (partially) ordered byoutdegree. It
serves a “hungry” client by dequeuing the node at the
front of the queue. It enqueues nodes that are newly
renderedELIGIBLE in random order; the priority-queue
automatically arranges these nodes in decreasing order
of outdegree (with ties broken randomly).
Complexity. Initializing the priority queue takes time
O(n); each dequeue of a single node takes timeO(1);
each enqueue of a single node takes timeO(log n).

• TheDYNAMIC -GREEDY scheduler organizes nodes that
are newly renderedELIGIBLE in a structure that is
(partially) ordered by nodes’yields (with ties broken
randomly). Theyield of an ELIGIBLE nodev at time
t is the number of non-ELIGIBLE nodes that would
be renderedELIGIBLE if v were executed at this
step. DYNAMIC -GREEDY thus makes the samelocal
decisions as does an optimal IC-scheduler (when one
exists)—but it cannot match the IC-scheduler’s tie-
breaking foresight. Because the yield of a node changes
step by step, the execution of a nodeu may change
the yields of several nodes (specifically, all those that
share a child withu), we have implementedDYNAMIC -
GREEDY by maintaining the currentlyELIGIBLE nodes
in a list of nodes with attached yield-scores.
Complexity. Initializing the list takes timeO(n). Serv-
ing a “hungry” client takes timeO(n), using an
EXTRACT-MAX operation. After an outdegree-d task
v has completed, adding the resulting newELIGIBLE

tasks takes timeO(n): (a) We must potentially add all
d of v’s children to the list ofELIGIBLE nodes; (b) we
must update the current yields of all nodes that share
a child with v (which could beO(n) in number). This
means thatDYNAMIC -GREEDY and AO have propor-
tional worst-case computational complexities.

4) The computational platform:The setup described
thus far suffices for our AREA-measuring experiment. Our
batched-makespan experiment, however, demands a model
of the computational platform in whichDAGs will be exe-
cuted. We employ a server-centric model similar to that in
[16], the IC-scheduling precursor to this paper. We model
the simulated execution of aDAG G by scheduling heuris-
tic5 HEUR via a discrete time-ordered queue of “events.”
Each “event” is represented by the not-yet-executedresidue
of G, together with the current set ofELIGIBLE nodes,
organized as mandated byHEUR. The initial residue ofG
is G itself; the initial set ofELIGIBLE nodes comprisesG ’s
sources. The transition from one “event” to its successor
proceeds as follows

1) The server polls the available “hungry” clients and
allocates oneELIGIBLE task of G to some of these
clients. (Only some “hungry” clients get served be-
cause there may not be enoughELIGIBLE nodes to
serve them all.) Once allocated, a task is no longer
ELIGIBLE.

2) Independently, and asynchronously, the served clients
execute their allocated tasks.

3) When a client completes (executing) its allocated task,
call it v, the server removesv from the current residue
of G and adds the nodes that are renderedELIGIBLE by
v’s completion to the set of currentELIGIBLE nodes,
in the manner mandated byHEUR.

(An easy modification of this model would allow for clients
that never execute their assigned tasks.)

Our model for the computational platform is completed by
specifying two probability distributions, one that describes
the arrival pattern of “hungry” clients, and one that describes
the completion time of each task.
Client arrivals. At each time-stept of a simulatedDAG-
execution, we generate a numberct of “hungry” clients that
are seeking tasks at stept. We choosect from an exponential
distribution.
Serving clients. If et nodes ofG are ELIGIBLE at step
t, then for each scheduling heuristicHEUR, we select the
current highest-priorityℓ = min(ct, et) nodes to assign
to the “hungry” clients (usingHEUR’s priority measure).
The server does not know which clients, if any, are more
powerful than others, so it treats all clients equally. Possible
differences in client power are modeled via the distribution
of task execution times.

5HEUR ∈ {AO, FIFO, LIFO, STATIC-GREEDY, DYNAMIC -GREEDY}.



Figure 5. Composing six CBBBs into a LEGOR©-DAG: (left) the CBBBs that compose theDAG; (right) the resulting LEGOR©-DAG.

Task execution times. The execution time,t, of an allocated
task v is chosen randomly from a normal distribution. We
model v’s execution by inserting into the timeline, at time
current_time+t, the eventtask-completion(v).

When a task completion leaves an empty residue for
G, the simulation ends; thecurrent_time is stored for
subsequent analysis.

B. Experimental Methodology

Client arrivals. We choose the numberct of “hungry” clients
at stept from exponential distributions with rate parameters
λ = 1, 1/2, 1/4, 1/8, 1/16, 1/32. Because the expected
value of an exponential distribution with rate parameterλ is
just µ = 1/λ, our chosen values ofλ provide, respectively,
1, 2, 4, 8, 16, and32 clients per poll on average.
Task execution times. We choose the execution time of an
allocated task randomly from a normal distribution with
mean1. We have studied two distributions, one with standard
deviation 0.1 and one with standard deviation0.5. The
latter parameter, in particular, allows us to observe the
performance of our heuristics on platforms having a rather
high level ofheterogeneity.
DAG sizes. Our experiments simulate the execution ofDAGs
that range in size from200 nodes to4, 000 nodes. We
thereby observe the performance of our heuristics onDAGs
that range from subcomputations to full computations.
Generating randomDAGs having roughlyn nodes. (The
specifics of the random processes we use make it hard to
specify the number of nodes exactly.)
• SP-DAGs. We generate a random binary treeT and
randomly designate each internal node ofT either aseries-
composition nodeor a parallel-composition node. We then
view T as the composition treeT G of an n-node SP-DAG.
• LEGOR©-DAGs. While the size of the currentDAG is
smaller thann, we randomly choose an(m ≤ n)-node
instanceH of one of our six genres of CBBB. Inductively,
after processingi ≥ 0 CBBBs, we have a LEGOR©-DAG

Gi that has, say,t targets. We next randomly select some
0 < k ≤ t sources ofH from a harmonic-like distribution;
specifically, the probability of selectingk = t−h+1 sources
is proportional to 1/h; we use a harmonic distribution

in order to foster connections among CBBBs. We finally
merge/identify thek selected sources ofH with a randomly
chosenk of Gi’s targets. The resulting LEGOR©-DAG is
Gi+1. The final LEGOR©-DAG, G, is achieved when the then-
currentGi has the desired size. Fig. 5 illustrates the initial
and final steps of this process.
CBBB sizes. We consider three different families of
LEGO R©-DAGs, that differ in the way the sizes of the
constituent CBBBs (the parameterm) is chosen:

• Uniform LEGOR©-DAGs: the value ofm is drawn ran-
domly from the set[2, 20];

• Exponential LEGOR©-DAGs: the value ofm is drawn
from an exponential distribution withλ = 1/10 (so
that CBBBs have10 nodes on average);

• Harmonic LEGOR©-DAGs: the value ofm is drawn from
a harmonic distribution that generates CBBBs having
average size10.

Experimental procedures. For both the makespan-
comparison and AREA-comparison experiments, we
execute four sets of45 DAGs each:5 DAGs of each size
n ≈ 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000.
Each trial involves100 executions of eachDAG. The results
on like-sizedDAGs are averaged. We then use the means
and variances of the schedulers’ performances (makespans
or AREAs) for our comparisons and analyses.

C. Experimental Results and Discussion

1) Makespan-comparison:The experiment described in
this section is intended to evaluate AO-scheduling in a “real”
setting, i.e., to do for AO-scheduling what the study in [16]
does for optimal IC-scheduling.

We have considered120 different test settings, each
setting characterized by the class ofDAGs considered, the
scheduling heuristic analyzed, and the rate of arrivals of
“hungry” clients. Each test setting is identified by a triple
(D, H, µ) where

• D indicates the class ofDAGs:D ∈ {SP-DAGs, Uniform
LEGO R©-DAGs, Exponential LEGOR©-DAGs, Harmonic
LEGO R©-DAGs}.

• H indicates the scheduling heuristic:H ∈ {AO,
DYNAMIC -GREEDY, STATIC-GREEDY, FIFO, LIFO}.



Figure 6. Timing-ratios forrandom SP-DAGs when the average number
of “hungry” clients isµ = 1, 2, 4, 8, 16, 32 (top to bottom).

• µ indicates the mean number of “hungry” clients per
step:µ ∈ {1, 2, 4, 8, 16, 32}.

For this experiment, the standard deviation of task-execution
time is fixed at0.1. For each test setting, we execute each
DAG one hundred times, collecting the final simulation times.

Figure 7. Timing-ratios forUniform LEGOR©-DAGs when the average
number of “hungry” clients isµ = 1, 2, 4, 8, 16, 32 (top to bottom).

We illustrate the performance of heuristicAO, as com-
pared with its four competitors, via thetiming-ratiosT (H)÷
T (AO), where T (H) denotes the simulation time ob-
served using scheduling heuristicH ∈ {DYNAMIC -GREEDY,
STATIC-GREEDY, FIFO, LIFO}. Note that larger values of



Figure 8. Timing-ratios forExponential LEGO-DAGs when the average
number of “hungry” clients isµ = 2, 8, 32 (top to bottom).

the ratio favor heuristicAO. We present both means and
95% confidence intervals in Figs. 6, 7, 8 and 9. To enhance
legibility, we present a separate plot for each value of both
D and µ. To conserve space, we present the results about
random SP-DAGs andUniform LEGO R©-DAGs with all the
values ofµ analyzed, whereas the results aboutExponential
andHarmonicones are presented only forµ = 2, 4, 8, solely
to indicate that the three families of LEGOR©-DAGs exhibit
very similar behavior; cf. Figs. 7, 8, 9. In each plot, the
X-axis indicateDAG-size, while theY -axis indicates the
timing-ratios for the four heuristics that compete withAO.

Our first observation mirrors one from [16]: one observes
the benefits of AO-scheduling only for “intermediate” arrival
ratesµ of “hungry” clients. This is not surprising. When
clients arrive very infrequently, i.e., whenµ ≈ 1, any
heuristic will require time close ton to execute ann-node
DAG; one observes this in the top plots of Figs. 6 and 7. At
the other extreme, when clients “flood” the system, there is
so much “parallelism” that the only hard limitation forany
heuristic will be the length of aDAG’s inherently sequential
“critical path.” In both of these extremes, makespan will not
depend on the scheduling heuristic.

Between the preceding extremes, though, there is a range
of values ofµ where the scheduling heuristic has a strong
influence on makespan; in our trials, when1 < µ ≤ 32,
AO always completed executing theDAG in less (simulated)
time than its competitors. Importantly, we observed that:

Within a broad range of client arrivals, the

Figure 9. Timing-ratios forHarmonic LEGOR©-DAGs when the average
number of “hungry” clients isµ = 2, 8, 32 (top to bottom).

makespan of a heuristic, as exposed in Figs. 6,
7, 8 and 9, correlates strongly with the AREAs of
the heuristic’s schedules, as exposed in Fig. 12.
In other words, we observed that schedules with
higher AREAs completed executingDAGs with
smaller makespans.

The amountof observed advantage in makespan depended
on three factors: the value ofµ, the size of theDAG

being executed and the family ofDAGs. Several cases (e.g.,
µ = 8, 16) show an improvement in the range of7–12% for
LEGO R©-DAGs and10–14% for SP-DAGs. Recall thatAO

always provides anAREA-maxschedule for each SP-DAG

but not necessarily for each LEGOR©-DAG.
Comparing the competitors’ schedules, we observe that

DYNAMIC -GREEDY always outperforms the other competi-
tors by a considerable margin. This is not surprising because
DYNAMIC -GREEDY dynamically makes the same local deci-
sion as an IC-optimal schedule. In compensation,DYNAMIC -
GREEDY is much more demanding computationally than
the other heuristics.STATIC-GREEDY and FIFO perform
roughly equivalently much of the time, butSTATIC-GREEDY

sometimes significantly outperformFIFO; e.g., (LEGOR©-
DAGs, STATIC-GREEDY, 16) is much better than (LEGOR©-
DAGs, FIFO, 16). LIFO is always the worst heuristic; for SP-
DAGs, though, the three static heuristics:STATIC-GREEDY,
FIFO, andLIFO, do not differ substantially.
The impact of client arrival-rates. We have just noted that
average client arrival rateµ influences the performance



Figure 10. Timing-ratios for random SP-DAGs of different sizes. Clockwise
from the top-left:1000 nodes,2000 nodes,3000 nodes,4000 nodes. The
X-axes indicate the average number of “hungry” clients at each poll.

Figure 11. Timing-ratios for random Uniform LEGOR©-DAGs of different
sizes. Clockwise from the top-left:1000 nodes,2000 nodes,3000 nodes,
4000 nodes. TheX-axes indicate the average number of “hungry” clients
at each poll.

of AO relative to its competitors. In order to refine this
observation, with an eye toward better understanding howµ
influences the relative qualities of schedules, we provide,in
Figs. 10 and 11, plots that show the performance advantage
of AO (in terms of timing-ratios) as a function ofµ; the
values ofµ appear logarithmically along theX-axes of the
plots. Both figures present four plots each, depicting the

Table I
THE AVERAGE PARALLELIZABILITY OF SP-DAGS AND LEGO R©-DAGS.

DAG-size DAG-size normalized Critical
(nodes) (arcs) AREA Path Length

SP-DAGs 1000 1219 70 150
2000 2429 75 328
3000 3666 106 411
4000 4920 181 445

LEGO-DAGs 1000 2885 76 58
2000 5644 132 74
3000 8332 189 92
4000 11114 255 119

average time-ratios when heuristics executeDAGs having
four (approximate):1000 nodes,2000 nodes,3000 nodes
and4000 nodes.

The most notable similarity in the plots is that all are uni-
modal: for small rates,AO’s relative performance improves
with increasingµ; this trend continues to a unique peak,
after which its relative performance degrades with increasing
µ. Moreover, the peak advantage ofAO is comparable for
DAGs of similar sizes, whether they be LEGOR©-DAGs or
SP-DAGs. However, there are also notable differences in the
plots, particularly between LEGOR©-DAGs as a class and SP-
DAGs as a class. Specifically we observe the advantage ofAO

peaking at a higher value ofµ for LEGO R©-DAGs than for
SP-DAGs. Moreover, while the value ofµ that maximizes the
advantage ofAO for SP-DAGs grows roughly linearly with
DAG-size (the maximizing values range from2 for 1000-
nodeDAGs to 8 for 4000-nodeDAGs), this does not appear
to happen with LEGOR©-DAGs (the maximizing values there
start at8, for 1000-nodeDAGs, and then jump to16 for the
other threeDAG-sizes).

In an attempt to understand why our twoDAG families
react differently to the average client arrival rate, we have
analyzed certain characteristics ofDAGs from these families.
Based on our analysis of the data in Table I, we conjecture
that the maximizing value ofµ depends on the inherent
degree of parallelism provided by theDAG being executed.
Notably, the entries in the table show that theDAGs in
our two families provide quite different degrees of inherent
parallelism. Specifically, LEGOR©-DAGs have smaller critical
path lengths and a higher normalized AREAs than SP-DAGs.
(The observed difference would be even larger if we used
optimal AREA-oriented—i.e., AREA-max—schedules for
LEGO R©-DAGs rather than the often-suboptimal schedules
provided by heuristicAO.) Basically, the values of normal-
ized AREA and critical path length show that LEGOR©-DAGs
are more “parallelizable” than SP-DAGs.
Accommodating heterogeneity by allowing large variance
in task execution-times. A major motivation for the de-
velopment of IC-scheduling (cf. [27])—hence also of AO-
scheduling—was the observedtemporal unpredictabilityof
many modern computing platforms, which precludes the



accurate use of classical, critical-path based,DAG-scheduling
strategies (cf. [21]). As noted in sources such as [19], [27],
we seldom know literallynothing quantitative about the
computational platform; it is more that our knowledge is
very indefinite. A basic tenet of both IC-scheduling and AO-
scheduling is that one does not have to deal explicitly with
this uncertainty when scheduling aDAG—as long as one
enhances the rate of producingELIGIBLE tasks. We test this
tenet in our experiments by allowing great variability in task
execution-times, specifically via the variance (or standard
deviation) in our model’s distribution of these times. How
important, though, is the size of the allowed variance? This
section seeks guidance on this question.

Our primary model allows10% deviation in the average
task execution-time: a mean time of1 and a standard devia-
tion of 0.1. How would our results change if we allowed50%
deviation: mean time of1 and a standard deviation of0.5?
We have repeated all the experiments presented in earlier
sections with this new, larger standard deviation. The results
are rather surprising. When we increase our model’s standard
deviation from 0.1 to 0.5—a truly significant change!—
the observed relative performance of heuristicAO is almost
unchanged! Because the new results are so close to the one
we have presented, there would be no value in exhibiting
new plots. We have analyzed the relationship between the
average makespan obtained with the two standard deviations
in task execution-times,0.1 and0.5, and have observed that
these differences do not exceed0.05%. Consequently, we
can report that the quality of AO-schedules (as generated
by heuristic AO) relative to the four competing heuristics
is virtually unaffected by both heterogeneity and temporal
unpredictability in “task-hungry” platforms.

2) AREA-comparison:The results of our makespan-
oriented experiment suggest that AO-scheduling, as imple-
mented by heuristicAO, has a benign impact on computa-
tional performance. This inference has led us to wonder:

• How much larger in AREA are the schedules produced
by heuristicAO than the schedules produced by its four
heuristic competitors?

• How well do the observed differences in the makespan-
performance of the four competitors track the differ-
ences in the AREAs of schedules produced by these
heuristics?

This section is devoted to studying these questions via an
experiment that compares the AREAs of schedules produced
by heuristicAO to the AREAs of schedules for the same
DAGs that are produced byAO’s four competitor heuristics.
An additional question of interest is motivated by the heuris-
tic AO’s dual nature; cf. Section IV-A3.

• By design, heuristicAO operates differently depending
on how a DAG G is presented to it. IfG is pre-
sented via a series-parallel decomposition tree, then
AO uses the algorithm from [9] to provide an AREA-

max schedule forG; else, if G is presented via some
standard presentation ofDAGs, say as an adjacency list
(see [11]), thenAO uses the multi-phase procedure of
Section III-B to provide a heuristic approximation to
an AREA-max schedule. The question: If we present
an SP-DAG G to heuristicAO in two ways, via a series-
parallel decomposition tree and via an adjacency list,
how different will be the AREAs of the schedules for
G that AO provides?

We have attempted to answer these question via an experi-
ment that considers20 different test settings. each character-
ized by the class of theDAGs considered and the scheduling
heuristic analyzed. For each test setting we execute each
DAG 100 times, collecting the schedule’s AREA value.
Fig. 12 presents the mean recorded AREA values, as well
as the ranges[min, max]. The figure presents one plot for
different-size instances of each of the families ofDAGs
indicated in the figure caption; the sizes of theDAG-instances
appear along theX-axes.

Results from Fig. 12. Of course, for SP-DAGs, the sched-
ules provided by theAO scheduler, being AREA-max always
have the largest AREAs. As hoped, for generalDAGs, the
AREA-superiority of schedules provided by theAO heuristic
persists. This second observation suggests that the procedure
in Section III-B that defines theAO heuristic works very well
in terms of AO-scheduling. This suggestion is reinforced by
the fact that difference between the AREAs of scheduled
provided by theAO heuristic and those provided by the
competitor heuristics grows more than linearly with the size
of the DAG being scheduled.

Considering all of experimental results, as exposed in
Figs. 6, 7, 10, and 12, we provide three observations that
support our hypothesis thatthere is a strong positive relation
between the AREA of a schedule and its makespan(at least
as simulated by our makespan experiment).

• The schedules provided by all five heuristics—AO and
its competitors—have the same relative ranking in the
makespan and AREA experiments;i.e., statistically,AO

outperforms DYNAMIC -GREEDY, which outperforms
STATIC-GREEDY, which outperformsFIFO, which out-
performsLIFO.

• When used on SP-DAGs, the schedules provided by
the STATIC-GREEDY, FIFO, and LIFO heuristics have
roughly the same AREA, as well as roughly the same
makespan.

• The ratio between the (optimal) AREAs of sched-
ules provided by theAO heuristic and the AREAs of
schedules provided by the four competitor heuristics is
roughly4 for SP-DAGs and only roughly2 for LEGOR©-
DAGs. This correlates positively with the relative im-
provements in makespan for the same families ofDAGs.

In the interest of full disclosure, we do not yet know
if the observed differences between results for SP-DAGs



Figure 12. AREA comparison. From top to bottom: Random SP-DAGs,
Uniform LEGOR©-DAGs, Exponential LEGOR©-DAGs, Harmonic LEGOR©-
DAGs.

and for LEGOR©-DAGs are inherent, due to the different
characteristics of suchDAGs (cf. Table I), or algorithmic,
due to a possible loss of quality introduced by the heuristics
of Section III-B.

V. CONCLUSION

Building on the novelAREA-oriented(AO) scheduling
paradigm of [8], we have assessed the quality of AO-
schedules for a variety of artificially generatedDAGs whose

structures are reminiscent of those encountered in real sci-
entific computations. The hope is that the rate at which AO-
schedules produceDAG-nodes that are eligible for allocation
to clients will make such schedules computationally advan-
tageous for modern “task-hungry” computational platforms,
such as Internet-based platforms, aggressively multi-core
platforms, and exascale platforms.

Our assessment pitted our new efficient heuristic,AO, for
producing AO-schedules against four common scheduling
heuristics that represent different points in the sophistication-
complexity space of schedulers. We have shown via simu-
lation experiments that

• The schedules produced byAO have AREAs that are
closer to optimalitythan are the schedules produced by
the four competing heuristics.

• The schedules produced byAO have lower makespans
than do the four competing heuristics, based on a
probabilistic model of the computational platform and
the DAG-executing process.

Importantly, our experiments suggest that there is a strong
positive relationship between the AREA of aDAG-schedule
and the schedule’s performance, as measured by its
makespan.

We view the new scheduling heuristic,AO, which operates
within time quadratic in the size of theDAG being scheduled,
as an important advance because:

• The problem of finding truly AREA-maximizing sched-
ules is likely to be computationally intractable [8].

• AO represents the first efficient scheduling mechanism
that provably enhances the rate of producing allocation-
eligible nodes foreverycomputation-DAG.

Finally our experiments have a high degree ofrobustness.
The demonstrated computational benefits of AO-scheduling
persist even when the “task-hungry” platforms have a high
degree of heterogeneity and/or a high degree of temporal
unpredictability. (We model both of these scheduling chal-
lenges by allowing a large variance in task execution-times
within our probabilistic model.)
Where we are going. Our demonstration of the computa-
tional benefits of AO-scheduling reinforces the importance
of the two algorithmic questions raised in Section III-B.

• Does there exist an algorithm for crafting AREA-max
schedules for SP-DAGs that is more efficient than the
quadratic-time algorithm of Lemma 3.2?

• Does there exist an algorithm for SP-izing arbi-
trary DAGs whose use would improve the AREAs
and makespans of schedules provided by our AO-
scheduling heuristicAO?

Additionally, the “success” of our experiments suggests
the desirability of assessing the value of AO-scheduling via
experiments with real computations rather than simulated
artificial ones. We hope to follow this path in the not-distant
future.



Acknowledgement:The research of A. Rosenberg was
supported in part by NSF Grant CNS-0905399. The authors
thank A. Gonzáles-Escribano and his team for providing
access to theirDAG-SP-ization code.

REFERENCES

[1] D. Adolphson and T.C. Hu (1973): Optimal linear ordering.
SIAM J. Appl. Math. 25, 403–423.

[2] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson,
K.H. Randall, Y. Zhou (1995): Cilk: An efficient multithreaded
runtime system.5th ACM SIGPLAN Symp. on Principles and
Practices of Parallel Programming (PPoPP’95).

[3] R.D. Blumofe and C.E. Leiserson (1998): Space-efficient
scheduling of multithreaded computations.SIAM J. Com-
put. 27, 202–229.

[4] Condor Project, Univ. of Wisconsin, http://www.cs.wisc.edu/
condor.

[5] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Advances
in IC-scheduling theory: scheduling expansive and reductive
dags and scheduling dags via duality.IEEE Trans. Parallel
and Distributed Systems 18, 1607–1617.

[6] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Apply-
ing IC-scheduling theory to some familiar computations.Wk-
shp. on Large-Scale, Volatile Desktop Grids (PCGrid’07).

[7] G. Cordasco, G. Malewicz, A.L. Rosenberg (2010): Extending
IC-scheduling via the Sweep algorithm.J. Parallel and Dis-
tributed Computing 70, 201–211.

[8] G. Cordasco and A.L. Rosenberg (2009): On schedulingDAGs
to maximize area.23rd IEEE Int’l Parallel and Distr. Process-
ing Symp. (IPDPS’09).

[9] G. Cordasco and A.L. Rosenberg (2010): Area-maximizing
schedules for series-parallelDAGs. 16th Int’l Conf. on Par-
allel Computing (EURO-PAR’10), Part II. In Lecture Notes in
Computer Science 6272, Springer, Berlin, 380–392.

[10] G. Cordasco, A.L. Rosenberg, M. Sims (2008): On clustering
tasks in IC-optimalDAGs.37th Int’l Conf. on Parallel Process-
ing (ICPP’08).

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999):
Introduction to Algorithms(2nd ed.). MIT Press, Cambridge,
MA.

[12] J. Dongarra et al. (2010): International Exascale Software
Project Roadmap. Tech. Rpt. UT-CS-10-652, Univ. Tennessee.

[13] A. González-Escribano, A. van Gemund, V. Cardeñoso-
Payo (2002): Mapping unstructured applications into nested
parallelism.High Performance Computing for Computational
Science (VECPAR ’02).

[14] A. González-Escribano, A. van Gemund and V. Cardeñoso-
Payo (2009): Performance implications of synchronization
structure in parallel programming.Parallel Computing 35 (8-
9), 455–474.

[15] I. Foster and C. Kesselman [eds.] (2004):The Grid: Blueprint
for a New Computing Infrastructure (2nd Edition). Morgan-
Kaufmann, San Francisco.

[16] R. Hall, A.L. Rosenberg, A. Venkataramani (2007): A com-
parison ofDAG-scheduling strategies for Internet-based com-
puting. 21st IEEE Int’l Parallel and Distr. Processing Symp.
(IPDPS’07)

[17] L. He, Z. Han, H. Jin, L. Pan, S. Li (2000): DAG-based
parallel real time task scheduling algorithm on a cluster.
Int’l Conf. on Parallel and Distr. Processing Techniques and
Applications, 437–443.

[18] S. Jayasena and S. Ganesh (2003): Conversion of NSP DAGs
to SP DAGs. MIT Course Notes 6.895.

[19] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models
and scheduling mechanisms for global computing applications.
Int’l Parallel and Distr. Processing Symp. (IPDPS’02)

[20] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and
M. Lebofsky (2000): SETI@home: massively distributed com-
puting for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press.

[21] Y.-K. Kwok and I. Ahmad (1999): Static scheduling algo-
rithms for allocating directed task graphs to multiprocessors.
ACM Computing Surveys 31, 406–471.

[22] G. Malewicz, I. Foster, A.L. Rosenberg and M. Wilde (2007):
A tool for prioritizing DAGMan jobs and its evaluation.J. Grid
Computing 5, 197–212.

[23] G. Malewicz and A.L. Rosenberg (2005): On batch-
scheduling dags for Internet-based computing.11th Int’l
Conf. on Parallel Computing (EURO-PAR’05). In Lecture
Notes in Computer Science 3648, Springer, Berlin, 262–271.

[24] G. Malewicz, A.L. Rosenberg and M. Yurkewych (2006): To-
ward a theory for scheduling dags in Internet-based computing.
IEEE Trans. Comput. 55, 757–768.

[25] M. Mitchell (2004): Creating minimal vertex series paral-
lel graphs from directed acyclic graphs.2004 Australasian
Symp. on Information Visualisation 35, 133–139.

[26] C.H. Papadimitriou and M. Yannakakis (1991): Optimization,
approximation, and complexity classes.J. Computer and Sys-
tem Scis. 43, 425–440.

[27] A.L. Rosenberg (2004): On scheduling mesh-structuredcom-
putations for Internet-based computing.IEEE Trans. Com-
put. 53, 1176–1186.

[28] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for
scheduling some common computation-dags for Internet-based
computing.IEEE Trans. Comput. 54, 428–438.

[29] S. Tomov, J. Dongarra, M. Baboulin (2010): Towards dense
linear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing 36 (5-6), 232–240,

[30] J. Valdes, R.E. Tarjan and E.L. Lawler (1982): The recogni-
tion of series-parallel digraphs.SIAM J. Comput. 11, 289–313.


