
Changing Challenges for Collaborative AlgorithmisArnold L. RosenbergDepartment of Computer SieneUniversity of Massahusetts at AmherstAmherst, MA 01003, USArsnbrg�s.umass.eduOtober 6, 2004AbstratTehnologial advanes and eonomi onsiderations have led to a wide variety ofmodalities of ollaborative omputing: the use of multiple omputing agents to solveindividual omputational problems. Eah new modality reates new hallenges forthe algorithm designer. Older \parallel" algorithmi devies no longer work on thenewer omputing platforms (at least in their original forms) and/or do not addressritial problems engendered by the new platforms' harateristis. In this hapter,the �eld of \ollaborative algorithmis" is divided into four epohs, representing (oneview of) the major evolutionary eras of ollaborative omputing platforms. Thehanging hallenges enountered in devising algorithms for eah epoh are disussed,and some notable sophistiated responses to the hallenges are desribed.1 IntrodutionCollaborative omputing is a regime of omputation in whih multiple agents are enlistedin the solution of a single omputational problem. Until roughly one deade ago, it wasfair to refer to ollaborative omputing as parallel omputing. Developments engenderedby both eonomi onsiderations and tehnologial advanes make the older rubri bothinaurate and misleading, as themultiproessors of the past have been joined by lusters|independent omputers interonneted by a loal-area network (LAN)|and by variousmodalities of Internet omputing|loose onfederations of omputing agents of di�eringlevels of ommitment to the ommon omputing enterprise. The agents in the newer1



ollaborative omputing milieux often do their omputing at their own times and in theirown loales|de�nitely not \in parallel."Every major tehnologial advane in all areas of omputing reates signi�ant newsheduling hallenges even while enabling new levels of omputational eÆieny (measuredin time and/or spae and/or ost). This hapter presents one algorithmiist's view of theparadigm-hallenges milestones in the evolution of ollaborative omputing platforms andof the algorithmi hallenges eah hange in paradigm has engendered. The hapter isorganized around a somewhat eentri view of the evolution of ollaborative omputingtehnology through four \epohs," eah distinguished by the hallenges one faed whendevising algorithms for the assoiated omputing platforms.1. In the epoh of shared-memory multiproessors:� One had to ope with partitioning one's omputational job into disjoint subjobsthat ould proeed in parallel on an assemblage of idential proessors. Onehad to try to keep all proessors fruitfully busy as muh of the time as possible.(The quali�er \fruitfully" indiates that the proessors are atually workingon the problem to be solved, rather than on, say, bookkeeping that ould beavoided with a bit more leverness.)� Communiation between proessors was e�eted through shared variables, soone had to oordinate aess to these variables. In partiular, one had to avoidthe potential raes when two (or more) proessors simultaneously vied for aessto a single memory module, espeially when some aess was for the purpose ofwriting to the same shared variable.� Sine all proessors were idential, one had, in many situations, to raft proto-ols that gave proessors separate identities|the proess of so-alled symmetrybreaking or leader eletion. (This was typially neessary when one proessorhad to take a oordinating role in an algorithm.)2. The epoh of message-passing multiproessors added to the tehnology of the pre-eding epoh a user-aessible interonnetion network|of known struture|arosswhih the idential proessors of one's parallel omputer ommuniated. On the onehand, one ould now build muh larger aggregations of proessors than one ouldbefore. On the other hand:� One now had to worry about oordinating the routing and transmission ofmessages aross the network, in order to selet short paths for messages, whileavoiding ongestion in the network.� One had to organize one's omputation to tolerate the often-onsiderable delaysaused by the point-to-point lateny of the network and the e�ets of networkbandwidth and ongestion. 2



� Sine many of the popular interonnetion networks were highly symmetri,the problem of symmetry breaking persisted in this epoh. Sine ommunia-tion was now over a network, new algorithmi avenues were needed to ahievesymmetry breaking.� Sine the struture of the interonnetion network underlying one's multipro-essor was known, one ould|and was well advised to|alloate substantial at-tention to network-spei� optimizations when designing algorithms that strovefor (near) optimality. (Typially, for instane, one would strive to exploit lo-ality: the fat that a proessor was loser to some proessors than to others.)A orollary of this fat is that one often needed quite disparate algorithmistrategies for di�erent lasses of interonnetion networks.3. The epoh of lusters|also known as networks of workstations (NOWs, for short)|introdued two new variables into the mix, even while rendering many sophistiatedmultiproessor-based algorithmi tools obsolete. In Setion 3, we outline some algo-rithmi approahes to the following new hallenges.� The omputing agents in a luster|be they p's, or multiproessors, or theeponymous workstations|are now independent omputers that ommuniatewith eah other over a loal-area network (LAN). This means that ommuni-ation times are larger and that ommuniation protools are more ponderous,often requiring tasks suh as: breaking long messages into pakets, enoding,omputing heksums, expliitly setting up ommuniations (say, via a hand-shake). Consequently, tasks must now be oarser-grained than with multipro-essors, in order to amortize the osts of ommuniation. Moreover, the re-spetive omputations of the various omputing agents an no longer be tightlyoupled, as they ould be in a multiproessor. Further, in general, networklateny an no longer be \hidden" via the sophistiated tehniques developedfor multiproessors. Finally, one an usually no longer translate knowledge ofnetwork topology into network-spei� optimizations.� The omputing agents in the luster, either by design or hane (suh as beingpurhased at di�erent times), are now often heterogeneous, di�ering in speeds ofproessors and/or memory systems. This means that a whole range of algorith-mi tehniques developed for the earlier epohs of ollaborative omputing nolonger work|at least in their original forms [127℄. On the positive side, hetero-geneity obviates symmetry breaking, as proessors are now often distinguishableby their unique ombinations of omputational resoures and speeds.4. The epoh of Internet omputing, in its several guises, has taken the algorithmisof ollaborative omputing preious near to|but never quite reahing|that of dis-tributed omputing. While Internet omputing is still evolving in often-unpreditable3



diretions, we detail two of its ira-2003 guises in Setion 4. Certain harateristisof present-day Internet omputing seem ertain to persist.� One now loses several types of preditability that played a signi�ant bakgroundrole in the algorithmis of prior epohs.{ Interproessor ommuniation now takes plae over the Internet. In thisenvironment:� a message shares the \airwaves" with an unpreditable number andassemblage of other messages; it may be dropped and resent; it may berouted over any of myriad paths. All of these fators make it impossibleto predit a message's transit time.� a message may be aessible to unknown (and untrusted) sites, enhan-ing the need for seurity-enhaning measures.{ The preditability of interations among ollaborating omputing agentsthat anhored algorithm development in all prior epohs no longer obtains,due to the fat that remote agents are typially not dediated to the ol-laborative task. Even in modalities of Internet omputing in whih remoteomputing agents promise to omplete omputational tasks that are as-signed to them, they typially do not guarantee when. Moreover, even theguarantee of eventual omputation is not present in all modalities of In-ternet omputing: in some modalities remote agents annot be relied uponever to omplete assigned tasks.� In several modalities of Internet omputing, omputation is now unreliable intwo senses.{ The omputing agent assigned a task may, without announement, \resignfrom" the aggregation, abandoning the task. (This is the extreme form oftemporal unpreditability just alluded to.){ Sine remote agents are unknown and anonymous in some modalities, theomputing agent assigned a task may maliiously return fallaious results.This latter threat introdues the need for omputation-related seurity mea-sures (e.g., result-heking and agent monitoring) for the �rst time to ol-laborative omputing. This problem is disussed in a news artile athhttp://www.wired.om/news/tehnology/0,1282,41838,00.htmli.In sueeding setions, we expand on the preeding disussion, de�ning the ollabora-tive omputing platforms more arefully and disussing the resulting hallenges in moredetail. Due to a number of exellent widely aessible soures that disuss and analyzethe epohs of multiproessors, both shared-memory and message-passing, our disussion ofthe �rst two of our epohs, in Setion 2, will be rather brief. Our disussion of the epohs4



of luster omputing (in Setion 3) and Internet omputing (in Setion 4) will be bothbroader and deeper. In eah ase, we desribe the subjet omputing platforms in somedetail and desribe a variety of sophistiated responses to the algorithmi hallenges ofthat epoh. Our goal is to highlight studies that attempt to develop algorithmi strategiesthat respond in novel ways to the hallenges of an epoh. Even with this goal in mind,the reader should be forewarned that:� her guide has an eentri view of the �eld, whih may di�er from the views of manyother ollaborative algorithmiists;� some of the still-evolving ollaborative omputing platforms we desribe will soondisappear, or at least morph into possibly unreognizable forms;� some of the \sophistiated responses" we disuss will never �nd appliation beyondthe spei� studies they our in.This said, I hope that this survey, with all of its limitations, will onvine the reader ofthe wonderful researh opportunities that await her \just on the other side" of the systemsand appliations literature devoted to emerging ollaborative omputing tehnologies.2 The Epohs of MultiproessorsThe quik tour of the world of multiproessors in this setion is intended to onvey asense of what stimulated muh of the algorithmi work on ollaborative omputing onthis omputing platform. The following books and surveys provide an exellent detailedtreatment of many subjets that we only touh upon and even more topis that are beyondthe sope of this hapter: [5, 45, 50, 80, 93, 97, 134℄.2.1 Multiproessor PlatformsAs tehnology allowed iruits to shrink, starting in the 1970's, it beame feasible to designand fabriate omputers that had many proessors. Indeed, a few theorists had antiipatedthese advanes in the 1960's [79℄. The �rst attempts at designing suh multiproessors en-visioned them as straightforward extensions of the familiar von Neumann arhiteture, inwhih a proessor box|now populated with many proessors|interated with a singlememory box; proessors would oordinate and ommuniate with eah other via sharedvariables. The resulting shared-memory multiproessors were easy to think about, bothfor omputer arhitets and omputer theorists [61℄. Yet, using suh multiproessors ef-fetively turned out to present numerous hallenges, exempli�ed by the following.5



� Where/how does one identify the parallelism in one's omputational problem? Thisquestion persists to this day, feasible answers hanging with evolving tehnology.Sine there are approahes to this question that often to not appear in the standardreferenes, we shall disuss the problem briey in Setion 2.2.� How does one keep all available proessors fruitfully oupied|the problem of loadbalaning? One �nds sophistiated multiproessor-based approahes to this problemin primary soures suh as [58, 111, 123, 138℄.� How does one oordinate aess to shared data by the several proessors of (espe-ially, a shared-memory) multiproessor? The diÆulty of this problem inreaseswith the number of proessors. One signi�ant approah to sharing data requiresestablishing order among a multiproessor's indistinguishable proessors, by selet-ing \leaders" and \subleaders," et. How does one eÆiently pik a \leader" amongindistinguishable proessors|the problem of symmetry breaking? One �nds sophis-tiated solutions to this problem in primary soures suh as [8, 46, 107, 108℄.A variety of tehnologial fators suggest that shared memory is likely a better idea as anabstration than as a physial atuality. This fat led to the development of distributedshared memory multiproessors, in whih eah proessor had its own memory module,and aesses to remote data was through an interonnetion network. One one had pro-essors ommuniating over an an interonnetion network, it was a small step from thedistributed shared memory abstration to expliit message-passing, i.e., to having proes-sors ommuniate with eah other diretly rather than through shared variables. In onesense, the introdution of interonnetion networks to parallel arhitetures was liberat-ing: one ould now (at least in priniple) envision multiproessors with many thousandsof proessors. On the other hand, the expliit algorithmi use of networks gave rise to anew set of hallenges.� How an one route large numbers of messages within a network without engenderingongestion (\hot spots") that renders ommuniation insu�erably slow? This is oneof the few algorithmi hallenges in parallel omputing that has an aknowledgedhampion. The two-phase randomized routing strategy developed in [150, 154℄ prov-ably works well in a large range of interonnetion networks (inluding the popularbuttery and hyperube networks) and empirially works well in many others.� Can one exploit the new phenomenon|loality|that allows ertain pairs of proes-sors to interommuniate faster than others? The fat that loality an be exploitedto algorithmi advantage is illustrated in [1, 101℄. The phenomenon of loality inparallel algorithmis is disussed in [124, 156℄.� How an one ope with the situation in whih the struture of one's omputationalproblem|as exposed by the graph of data dependenies|is inompatible with the6



struture of the interonnetion network underlying the multiproessor that one hasaess to? This is another topi that is not treated fully in the referenes, so wedisuss it briey in Setion 2.2.� How an one organize one's omputation so that one aomplishes valuable workwhile awaiting responses from messages, either from the memory subsystem (memoryaesses) or from other proessors. A number of innovative and e�etive responsesto variants of this problem appear in the literature; see , e.g., [10, 36, 66℄.In addition to the preeding hallenges, one now also faed the largely unantiipated insu-perable problem that one's interonnetion network may not \sale." Beginning in 1986,a series of papers demonstrated that the physial realizations of large instanes of themost popular interonnetion networks ould not a�ord one performane onsistent withidealized analyses of those networks [31, 155, 156, 157℄. A word about this problem isin order, sine the phenomenon it represents inuenes so muh of the development ofparallel arhitetures. We live in a three-dimensional world: areas and volumes in spaegrow polynomially fast when distanes are measured in units of length. This physialpolynomial growth notwithstanding, for many of the algorithmially attrative interon-netion networks|hyperubes, buttery networks, and de Bruijn networks, to name justthree|the number of nodes (read: \proessors") grows exponentially when distanes aremeasured in number of interproessor links. This means, in short, that the interproessorlinks of these networks must grow in length as the networks grow in number of proessors.Analyses that predit performane in number of traversed links do not reet the e�et oflink-length on atual performane. Indeed, the anaysis in [31℄ suggests|on the preedinggrounds|that only the polynomially growing mesh-like networks an supply in pratieeÆieny ommensurate with idealized theoretial analyses.1We now disuss briey a few of the hallenges that onfronted algorithmiists duringthe epohs of multiproessors. We onentrate on topis that are not treated extensivelyin books and surveys as well as on topis that retain their relevane beyond these epohs.2.2 Algorithmi Challenges and ResponsesFinding Parallelism. The seminal study [37℄ was the �rst to systematially distinguishbetween the inherently sequential portion of a omputation and the parallelizable portion.The analysis in that soure led to \Brent's Sheduling Priniple," whih states, in simplestform, that the time for a omputation on a p-proessor omputer need be no greater thant + n=p where t is the time for the inherently sequential portion of the omputation, andn is the total number of operations that must be performed. While the study illustrates1Fig. 1 depits the four mentioned networks. See [93, 134℄ for de�nitions and disussions of these andrelated networks. Additional soures suh as [4, 21, 90℄ illustrate the algorithmi use of suh networks.7



1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,0 0,3

1,3

2,3

3,0 3,1 3,2 3,3

000

001

100

010 101

011

110

111

0001

0101

0011

0111

0010

0110

1011

1111

1001

1101

0100

0000 1010

1110

1000

1100

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

0

1

2

0Figure 1: Four interonnetion networks. Row 1: the 4 � 4 mesh, the 3-dimensional deBruijn network; row 2: the 4-dimensional boolean hyperube, the 3-level buttery network(note the two opies of level 0)how to ahieve the bound of the Priniple for a lass of arithmeti omputations, it leavesopen the hallenge of disovering the parallelism in general omputations. Two majorapproahes to this hallenge appear in the literature and are disussed here.Parallelizing omputations via lustering/partitioning. Two related major ap-proahes have been developed for sheduling omputations on parallel omputing plat-forms, when the omputation's intertask dependenies are represented by a omputation-dag|a direted ayli graph, eah of whose ars (x ! y) betokens the dependene oftask y on task x; soures never appear on the righthand side of an ar; sinks never appearon the lefthand side.The �rst suh approah is to luster a omputation-dag's tasks into \bloks" whosetasks are so tightly oupled that one would want to alloate eah blok to a single proessorto obviate any ommuniation when exeuting these tasks. A number of eÆient heuristishave been developed to e�et suh lustering for general omputation-dags [67, 83, 103,139℄. Suh heuristis typially base their lustering on some easily omputed harateristiof the dag, suh as its ritial path|the most resoure-onsuming soure to-sink path,inluding both omputation time and volume of intertask data|or its dominant sequene|a soure-to-sink path, possibly augmented with dummy ars, that aounts for the entiremakespan of the omputation. Several experimental studies ompare these heuristis ina variety of settings [54, 68℄, and systems have been developed to exploit suh lusteringin devising shedules [43, 140, 162℄. Numerous algorithmi studies have demonstrated8



analytially the provable e�etiveness of this approah for speial sheduling lasses ofomputation-dags [65, 117℄.Dual to the preeding lustering heuristis is the proess of lustering by graph separa-tion. Here one seeks to partition a omputation-dag into subdags by \utting" ars thatinteronnet loosely oupled bloks of tasks. When the tasks in eah blok are mapped to asingle proessor, the small numbers of ars interonneting pairs of bloks lead to relativelysmall|hene, inexpensive|interproessor ommuniations. This approah has been stud-ied extensively in the parallel-algorithms literature, with regard to myriad appliations,ranging from iruit layout to numerial omputations to nonserial dynami programming.A small sampler of the literature on spei� appliations appears in [28, 55, 64, 99, 106℄;heuristis for aomplishing eÆient graph partitioning (espeially into roughly equal-sizesubdags) appear in [40, 60, 82℄; further sample appliations, together with a survey of theliterature on algorithms for �nding graph separators appears in [134℄.Parallelizing using dataow tehniques. A quite di�erent approah to �ndingparallelism in omputations builds on the ow of data in the omputation. This approahoriginated with the VLSI revolution fomented by Mead and Conway [105℄, whih enour-aged omputer sientists to apply their tools and insights to the problem of designingomputers. Notable among the novel ideas emerging from this inux was the notion ofsystoli array|a dataow-driven speial-purpose parallel (o)proessor [86, 87℄. A majorimpetus for the development of this area was the disovery, in [109, 120℄, that for ertainlasses of omputations|inluding, e.g., those spei�able via nested for-loops|suh ma-hines ould be designed \automatially." This area soon developed a life of its own asa tehnique for �nding parallelism in omputations, as well as designing speial-purposeparallel mahines. There is now an extensive literature on the use of systoli design prin-iples for a broad range of spei� omputations [38, 39, 89, 91, 122℄, as well as for largegeneral lasses of omputations that are delimited by the struture of their ow of data[49, 75, 109, 112, 120, 121℄.Mismathes between network and job struture. Parallel eÆieny in multipro-essors often demands using algorithms that aommodate the struture of one's ompu-tation to that of the host multiproessor's network. This was notied by systems builders[71℄ as well as algorithms designers [93, 149℄. The reader an appreiate the importaneof so tuning one's algorithm by perusing the following studies of the operation of sorting:[30, 52, 52, 74, 77, 92, 125, 141, 148℄. The overall groundrules in these studies are onstant:one is striving to minimize the worst-ase number of omparisons when sorting n numbers;only the underlying interonnetion network hanges. We now briey desribe two broadlyappliable approahes to addressing potential mismathes with the host network.Network emulations. The theory of network emulations fouses on the problem ofmaking one omputation-graph|the host|\at like" or \look like" another|the guest.9



In both of the senarios that motivate this endeavor, the host H represents an existinginteronnetion network. In one senario, the guest G is a direted graph that representsthe intertask dependenies of a omputation. In the other senario, the guest G is an undi-reted graph that represents an ideal interonnetion network that would be a ongenialhost for one's omputation. In both senarios, omputational eÆieny would learly beenhaned if H's interonnetion struture mathed G's|or ould be made to appear to.Almost all approahes to network emulation build on the theory of graph embeddings,whih was �rst proposed as a general omputational tool in [126℄. An embedding h�; �iof the graph G = (VG; EG) into the graph H = (VH; EH) onsists of a one-to-one map� : VG ! VH, together with a mapping of EG into paths in H suh that: for eah edge(u; v) 2 EG, the path �(u; v) onnets nodes �(u) and �(v) in H. The two main measuresof the quality of the embedding h�; �i are: the dilation, whih is the length of the longestpath of H that is the image, under �, of some edge of G; the ongestion, whih is themaximum, over all edges e of H, of the number of �-paths that edge e ours in; in otherwords, it is the maximum number of edges of G that are routed aross e by the embedding.It is easy to use an embedding of a network G into a networkH to translate an algorithmdesigned for G into a omputationally equivalent algorithm for H. Basially: the mapping� identi�es whih node of H is to emulate whih node of G; the mapping � identi�es theroutes inH that are used to simulate internode message-passing in G. This sketh suggestswhy the quantitative side of network-emulations-via-embeddings fouses on dilation andongestion as the main measures of the quality of an embedding. A moment's reetionsuggests that, when one uses an embedding h�; �i of a graph G into a graph H as thebasis for an emulation of G by H, any algorithm that is designed for G is slowed down bya fator O(ongestion � dilation) when run on H. One an sometimes easily orhestrateommuniations to improve this fator to O(ongestion + dilation); f. [13℄. Remarkably,one an always improve the slowdown to O(ongestion + dilation); a nononstrutive proofof this fat appears in [94℄; and, even more remarkably, a onstrutive proof and eÆientalgorithm appear in [95℄.There are myriad studies of embedding-based emulations with spei� guest and hostgraphs. An extensive literature follows up one of the earliest studies, [6℄, whih embedsretangular meshes into square ones, a problem having nonobvious algorithmi onse-quenes [18℄. The algorithmi attrativeness of the boolean hyperube mentioned in Se-tion 2.1 is attested to by ountless spei� algorithms [93℄, but also by several studies thatshow the hyperube to be a ongenial host for a wide variety of graph families that arethemselves algorithmially attrative. Citing just two examples: (1) One �nds in [24, 161℄two quite distint eÆient embeddings of omplete trees|hene, of the rami�ed omputa-tions they represent|into hyperubes. Surprisingly, suh embeddings exist also for treesthat are not omplete [98, 158℄ and/or that grow dynamially [27, 96℄. (2) One �nds in [70℄eÆient embeddings of buttery-like networks|hene, of the onvolutional omputationsthey represent|into hyperubes. A number of related algorithm-motivated embeddings10



into hyperubes appear in [72℄. [57℄ embeds the mesh-of-trees network, whih is shown in[93℄ to be an eÆient host for many parallel omputations, into hyperubes; [142℄ embedsthis network into the de Bruijn network. The emulations in [11, 12℄ attempt to exploitthe algorithmi attrativeness of the hyperube, despite its earlier-mentioned physial in-tratability. The study in [13℄, unusual for its algebrai underpinnings, was motivatedby the (then-)unexplained fat|observed, e.g., in [149℄|that algorithms designed for thebuttery network run equally fast on the de Bruijn network. An intimate algebrai on-netion disovered in [13℄ between these networks|the de Bruijn network is a quotient ofthe buttery|led to an embedding of the de Bruijn network into the hyperube that hadexponentially smaller dilation than any ompetitors known at that time.The embeddings disussed thus far exploit strutural properties that are peuliar tothe target guest and host graphs. When suh enabling properties are hard to �nd, astrategy pioneered in [25℄ an sometimes produe eÆient embeddings. This soure raftseÆient embeddings based on the ease of reursively deomposing a guest graph G intosubgraphs. The insight underlying this embedding-via-deomposition strategy is that re-ursive bisetion|the repeated deomposition of a graph into like-sized subgraphs by\utting" edges|a�ords one a representation of G as a binary-tree-like struture.2 Theroot of this struture is the graph G; the root's two hildren are the two subgraphs ofG|all them G0 and G1|that the �rst bisetion partitions G into. Reursively, the twohildren of node Gx of the tree-like struture (where x is a binary string) are the two sub-graphs of Gx|all them Gx0 and Gx1|that the bisetion partitions Gx into. The tehniqueof [25℄ transforms an (eÆient) embedding of this \deomposition tree" into a host graphH into an (eÆient) embedding of G into H, whose dilation (and, often, ongestion) anbe bounded using a standard measure of the ease of reursively biseting G. A very fewstudies extend and/or improve the tehnique of [25℄; see, e.g., [78, 114℄.When networks G and H are inompatible|i.e., there is no eÆient embedding ofG into H|graph embeddings annot lead diretly to eÆient emulations. A tehniquedeveloped in [84℄ an sometimes overome this shortoming and produe eÆient networkemulations. The tehnique has H emulate G by alternating the following two phases:Computation phase. Use an embedding-based approah to emulate G pieewise for shortperiods of time (whose durations are determined via analysis).Coordination phase. Periodially (frequeny is determined via analysis) oordinate thepieewise embedding-based emulations to ensure that all piees have fresh informa-tion about the state of the emulated omputation.This strategy will produe eÆient emulations if one makes enough progress during theomputation phase to amortize the ost of the oordination phase. Several examples in2See [134℄ for a omprehensive treatment of the theory of graph deomposition, as well as of thisembedding tehnique. 11



[84℄ demonstrate the value of this strategy; eah presents a phased emulation of a networkG by a network H, that inurs only onstant-fator slowdown, while any embedding-basedemulation of G by H inurs slowdown that depends on the sizes of G and H.We mention one �nal, unique use of embedding-based emulations. In [115℄, a suite ofembedding-based algorithms is developed, to endow a multiproessor with a apability thatwould be prohibitively expensive to supply in hardware. The gauge of a multiproessoris the ommon width of its CPU and memory bus. A multiproessor an be multigaugedif, under program ontrol, it an dynamially hange its (apparent) gauge. (Prior studieshad determined the algorithmi value of multigauging, as well as its prohibitive expense[53, 143℄.) Using an embedding-based approah that is detailed in [114℄, the algorithms of[115℄ eÆiently endow a multiproessor arhiteture with a multigauging apability.The use of parameterized models. A truly revolutionary approah to the prob-lem of mathing omputation struture to network struture was proposed in [153℄, thebirthplae of the bulk-synhronous parallel (BSP) programming paradigm. The entralthesis in [153℄ is that, by appropriately reorganizing one's omputation, one an obtain al-most all of the bene�ts of message-passing parallel omputation while ignoring all aspetsof the underlying interonnetion network's struture, save its end-to-end lateny. Theneeded reorganization is a form of task-lustering: one organizes one's omputation into asequene of omputational \supersteps"|during whih proessors ompute loally, withno interommuniation|puntuated by ommuniation \supersteps"|during whih pro-essors synhronize with one another (whene the term \bulk-synhronous") and performa stylized interommuniation in whih eah proessor sends h messages to h others. (Thehoie of h depends on the network's lateny.) It is shown that a ombination of artful mes-sage routing|say, using the ongestion-avoiding tehnique of [154℄|and lateny-hidingtehniques|notably, the method of parallel slak that has the host parallel omputer em-ulate a omputer with more proessors|allows this algorithmi paradigm to ahieve withina onstant fator of the parallel speedup available via network-sensitive algorithm design.A number of studies, suh as [69, 104℄, have demonstrated the viability of this approahfor a variety of lasses of omputations.The fous on network lateny and number of proessors as the sole arhitetural param-eters that are relevant to eÆient parallel omputation limits the range of arhiteturalplatforms that an enjoy the full bene�ts of the BSP model. In response, the authorsof [51℄ have rafted a model that arries on the spirit of BSP but that inorporates twofurther parameters related to interproessor ommuniation. The resulting LogP modelaounts for lateny (the \L" in \LogP), overhead (the \o") [the ost of setting up a om-muniation℄, gap (the \g") [the minimum interval between suessive ommuniations bya proessor℄, and proessor number (the \P"). Experiments desribed in [51℄ validate thepreditive value of the LogP model in multiproessors, at least for omputations involv-ing only short interproessor messages. The model is extended in [7℄, to allow long, butequal-length, messages. One �nds in [29℄ an interesting study of the eÆieny of parallel12



algorithms developed under the BSP and LogP models.3 Clusters/Networks of Workstations3.1 The PlatformMany soures eloquently argue the tehnologial and eonomi inevitability of an inreas-ingly ommon modality of ollaborative omputing|the use of a luster (or, equally om-monly, a network) of omputers to ooperate in the solution of a omputational problem;see [9, 119℄. Note that while one typially talks about a network of workstations (a NOW,for short), the onstituent omputers in a NOW may well be p's or multiproessors; thealgorithmi hallenges hange quantitatively but not qualitatively depending on the arhi-tetural sophistiation of the \workstations." The omputers in a NOW interommuniatevia a LAN|loal area network|whose detailed struture is typially neither known tonor aessible by the programmer.3.2 Some ChallengesSome of the hallenges enountered when devising algorithms for (H)NOWs di�er onlyquantitatively from those enountered with multiproessors. For instane:� The typially high latenies of LANs (ompared to interonnetion networks), ou-pled with the relatively heavyweight protools needed for robust ommuniation,demand oarse-grained tasks, in order to amortize the osts of ommuniation.Some new hallenges arise from the ine�etiveness in NOWs of ertain multiproessor-based algorithmi strategies. For instane:� The algorithm designer typially annot exploit the struture of the LAN underlyinga NOW.� The higher osts of ommuniation, oupled with the loose oordination of a NOW'sworkstations, render the (relatively) simple lateny-hiding tehniques of multipro-essors ine�etive in lusters.Finally, some algorithmi hallenges arise in the world of ollaborative omputing for the�rst time in lusters. For instane: 13



� The onstituent workstations of a NOW may di�er in proessor and/or memoryspeeds; i.e., the NOW may be heterogeneous (be an HNOW).All of the issues raised here make parameterized models suh as those disussed at theend of Setion 2.2 an indispensable tool to the designers of algorithms for (H)NOWs.The hallenge is to raft models that are at one faithful enough to ensure algorithmieÆieny on real NOWs and simple enough to be analytially tratable. The latter goal ispartiularly elusive in the presene of heterogeneity. Consequently, muh of the fous inthis setion is on models that have been used suessfully to study several approahes toomputing in (H)NOWs.3.3 Some Sophistiated ResponsesSine the onstituent workstations of a NOW are at best loosely oupled, and sine in-terworkstation ommuniation is typially rather ostly in a NOW, the major strategiesfor using NOWs in ollaborative omputations enter around three loosely oordinatedsheduling mehanisms|workstealing, yle-stealing, and worksharing|that, respetively,form the foi of the following three subsetions.3.3.1 Cluster omputing via workstealingWorkstealing is a modality of luster omputing wherein an idle workstation seeks workfrom a busy one. This alloation of responsibility for �nding work has the bene�t thatidle workstations, not busy ones, do the unprodutive hore of searhing for work. Themost omprehensive study of workstealing is the series of papers [32℄{[35℄, whih sheduleomputations in a multiproessor or in a (homogeneous) NOW. These soures develop theirapproah to workstealing from the level of programming abstration through algorithmdesign and analysis through implementation as a working system (alled Cilk [32℄). As willbe detailed imminently, these soures use a strit form of multithreading as a mehanismfor subdividing a omputation into hunks (spei�ally, threads of unit-time tasks) that aresuitable for sharing among ollaborating workstations. The strength and elegane of theresults in these soures has led to a number of other noteworthy studies of multithreadedomputations, inluding [1, 14, 59℄. A very abstrat study of workstealing, whih allowsone to assess the impat of hanges in algorithmi strategy easily, appears in [110℄, whihwe desribe a bit later.A. Case study: [34℄ From an algorithmi perpsetive, the main paper in the seriesabout Cilk and its algorithmi underpinnings is [34℄, whih presents and analyzes a (ran-domized) mehanism for sheduling \well-strutured" multithreaded omputations, ahiev-ing both time and spae omplexity that are within onstant fators of optimal.14



Within the model of [34℄, a thread is a olletion of unit-time tasks, linearly orderedby dependenies; graph-theoretially, a thread is, thus, a linear omputation-dag. A mul-tithreaded omputation is a set of threads that are interonneted in a stylized way. Thereis a root thread. Reursively, any task of any thread T may have k � 0 spawn-ars to theinitial tasks of k threads that are hildren of T . If thread T 0 is a hild of thread T via aspawn-ar from task t of T , then the last task of T 0 has a ontinue-ar to some task t0 of Tthat is a suessor of task t. Both the spawn-ars and ontinue-ars individually thus givethe omputation the struture of a tree-dag. See Fig. 2. All of the ars of a multithreaded
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Figure 2: An exemplary multithreaded omputation. Thread T 0 (resp., T 00) is a hild ofthread T , via the spawn-ar from task t to task t0 (resp., from task s to task s0) and theontinue-ar from task u0 to task u (resp., from task v0 to task v).omputation represent data dependenies that must be honored when exeuting the om-putation. A multithreaded omputation is strit if all data-dependenies for the tasks of athread T go to an anestor of thread T in the thread-tree; the omputation is fully strit ifall dependenies in fat go to T 's parent in the tree. Easily, any multithreaded omputa-tion an be made fully strit by altering the dependeny struture; this restruturing maya�et the available parallelism in the omputation but will not ompromise its orretness.The study in [34℄ fouses on sheduling fully strit multithreaded omputations.In the omputing platform envisioned in [34℄, a multithreaded omputation is storedin shared memory. Eah individual thread T has a blok of memory (alled an ativationframe) within the loal memory of the workstation that \owns" T , that is dediated tothe omputation of T 's tasks. Spae is measured in terms of ativation frames.Time is measured in [34℄ as a funtion of the number of workstations that are ollabo-rating in the target omputation. Tp is the minimum omputation time when there are pollaborating workstations; therefore, T1 is the total amount of work in the omputation.T1 is dag-depth of the omputation, i.e., the length of the longest soure-to-sink path inthe assoiated omputation-dag; this is the \inherently sequential" part of the omputa-tion. Analogously, Sp is the minimum spae requirement for the target omputation, S1being the \ativation depth" of the omputation.Within the preeding model, the main ontribution of [34℄ is a provably eÆient ran-15



domized workstealing algorithm, Proedure Worksteal (see Fig. 3), whih exeutes thefully strit multithreaded omputation rooted at thread T . In the Proedure, eah work-Normal exeution. A workstation P seeking work removes (pops) the thread at the bottom of itsready deque|all it thread T|and begins exeuting T 's tasks seriatim.A stalled thread is enabled. If exeuting one of T 's tasks enables a stalled thread T 0, then thenow-ready thread T 0 is pushed onto the bottom of P 's ready deque. (A thread stalls when thenext task to be exeuted must await data from a task that belongs to another thread.)/*Beause of full stritness: thread T 0 must be thread T 's parent; thread T 's deque must beempty when T 0 is inserted.*/A new thread is spawned. If the task of thread T that is urrently being exeuted spawns ahild thread T 0, then thread T is pushed onto the bottom of P 's ready deque, and P beginsto work on thread T 0.A thread ompletes or stalls. If thread T ompletes or stalls, then P heks its ready deque.Nonempty ready deque. If its deque is not empty, then P pops the bottommost threadand starts working on it.Empty ready deque. If its deque is empty, then P initiates workstealing. It hooses aworkstation P 0 uniformly at random, \steals" the topmost thread in P 0's ready deque,and starts working on that thread. If P 0's ready deque is empty, then P hooses anotherrandom \vitim."Figure 3: Proedure Worksteal(T ) exeutes the multithreaded omputation rooted atthread Tstation maintains a ready deque of threads that are eligible for exeution; these dequesare aessible by all workstations. Eah deque has a bottom and a top; threads an beinserted at the bottom and removed from either end. A workstation uses its ready dequeas a proedure stak, pushing and popping from the bottom. Threads that are \stolen"by other workstations are removed from the top of the deque. It is shown in [34℄ thatProedure Worksteal is lose to optimal in both time and spae omplexity.� For any fully strit multithreaded omputation, Proedure Worksteal, when run ona p-workstation NOW, uses spae � S1p.� Let Proedure Worksteal exeute a multithreaded omputation on a p-workstationNOW. If the omputation has dag-depth T1 and work T1, then the expeted run-ning time, inluding sheduling overhead, is O(T1=p+ T1). This is learly within aonstant fator of optimal. 16



B. Case study: [110℄ The study in [34℄ follows the traditional algorithmi paradigm.An algorithm is desribed in omplete detail, down to the design of its underlying datastrutures. The performane/behavior of the algorithm is then analyzed in a setting ap-propriate to the genre of the algorithm. For instane, sine Proedure Worksteal is arandomized algorithm, its performane is analyzed in [34℄ under the assumption that itsinput multithreaded omputation is seleted uniformly at random from the ensemble ofsuh omputations. In ontrast to the preeding approah, the study in [110℄ desribesan algorithm abstratly, via its state spae and state-transition funtion. The perfor-mane/behavior of the algorithm is then analyzed by positing a proess for generating theinputs that trigger state hanges. We illustrate this hange of worldview by desribingProedure Worksteal and its analysis in the framework of [110℄ in some detail. We thenbriey summarize some of the other notable results in that soure.In the setting of [110℄, when a omputer (suh as a homogeneous NOW) is used asa workstealing system, its workstations exeute tasks that are generated dynamially viaa Poisson proess of rate � < 1. Tasks require omputation time that is distributedexponentially with mean 1; these times are not known to workstations. Tasks are sheduledin a First-Come-First-Served fashion, with tasks awaiting exeution residing in a FIFOqueue. The load of a workstation P at time t is the number of tasks in P 's queue at thattime. At ertain times (haraterized by the algorithm being analyzed), a workstationP 0 an steal a task from another workstation P . When that happens, a task at theoutput end of P 's queue (if there is one) instantaneously migrates to the input end of P 0'squeue. Formally, a workstealing system is represented by a sequene of variables that yieldsnapshots of the state of the system as a funtion of the time t. Say that the NOW beinganalyzed has n onstituent workstations.� nl(t) is the number of workstations that have load l.� ml(t) def= lXi=0 ni(t) is the number of workstations that have load � l.� pl(t) def= nl(t)=n is the fration of workstations of load l.� sl(t) def= 1Xi=l pi(t) = ml(t)=n is the fration of workstations of load � l.The state of a workstealing system at time t is the in�nite-dimensional vetor ~s(t) def=hs0(t); s1(t); s2(t); : : :i.The goal in [110℄ is to analyze the limiting behavior, as n ! 1, of n-workstationworkstealing systems under a variety of randomized workstealing algorithms. The mathe-matial tools that haraterize the study are enabled by two features of the model we have17



desribed thus far. (1) Under the assumption of Poisson arrivals and exponential servietimes, the entire workstealing system is Markovian: its next state, ~s(t+ 1), depends onlyon its present state, ~s(t), not on any earlier history. (2) The fat that a workstealingsystem hanges state instantaneously allows one to view time as a ontinuous variable,thereby enabling the use of di�erentials rather than di�erenes when analyzing hanges inthe variables that haraterize a system's state.We enhane legibility heneforth by omitting the time variable t when it is lear fromontext. Note that s0 � 1 and that the sl are noninreasing, sine sl�1 � sl = pl. Thesystems analyzed in [110℄ also have liml!1 sl = 0.We introdue the general proess of haraterizing a system's (limiting) performane byfousing momentarily on a system in whih no workstealing takes plae. Let us representby dt a small interval of time, in whih only one event (a task arrival or departure) takesplae at a workstation. The model of task arrivals (via a Poisson proess with rate �)means that the expeted hange in the variable ml due to task arrivals is �(ml�1 �ml)dt.By similar reasoning, the expeted hange in ml due to task departures|reall that thereis no stealing going on|is just (ml �ml+1)dt. It follows that the expeted net behaviorof the system over short intervals is:dmldt = �(ml�1 �ml)� (ml �ml+1);or, equivalently, (by eliminating the ubiquitous fator of n, the size of the NOW),dsldt = �(sl�1 � sl)� (sl � sl+1): (3.1)This last haraterization of state hanges illustrates the hanges' independene from theaggregate number of workstations, depending instead only on the densities of workstationswith various loads. The tehnial impliations of this fat is disussed in some details in[110℄, with appropriate pointers to the underlying mathematial texts.In order to analyze the performane of ProedureWorksteal within the urrent model,one must onsider how the Proedure's various ations are pereived by the workstationsof the subjet workstealing system. First, under the Proedure, a workstation P thatompletes its last task seeks to steal a task from a randomly hosen fellow workstation,P 0, sueeding with probability s2 (the probability that P 0 has at least two tasks). Hene,P now pereives ompletion of its �nal task as emptying its queue only with probability1� s2. Mathematially, we thus have the following modi�ed �rst equation of system (3.1):ds1dt = �(s0 � s1)� (s1 � s2)(1� s2): (3.2)For l > 1, sl now dereases whenever a workstation with load l either ompletes a task orhas a task stolen from it. The rate at whih workstations steal tasks is just s1�s2, i.e., the18



rate at whih workstation omplete their �nal tasks. We thus omplete our modi�ationof system (3.1) as follows.For l > 1; dsldt = �(sl�1 � sl)� (sl � sl+1)(1 + s1 � s2): (3.3)The limiting behavior of the workstealing system is haraterized by seeking the �xedpoint of system (3.2, 3.3), i.e., the state ~s for whih every dsl=dt = 0.Denoting the sought �xed point by ~� = h�0; �1; �2; : : :i, we have:� �0 = 1, beause s0 = 1 for all t;� �1 = �, beause:{ tasks omplete at rate s1n, the number of busy workstations;{ tasks arrive at rate �n;{ at the �xed point, tasks arrive and omplete at the same rate;� from (3.2) and the fat that ds1=dt = 0 at the �xed point, we have�2 = 1 + ��p1 + 2�� 3�22 ;� from (3.3) and the fat that dsl=dt = 0 at the �xed point, we have, by indution,For l > 2; �l =  �1 + �� �2!l�2 �2:The message of the preeding analysis beomes lear only when one performs the sameexerise with the system (3.1), whih haraterizes a \workstealing system" in whih thereis no workstealing. For that system, one �nds that �l = �l, indiating that, in the limitingstate, tasks are being ompleted at rate �. Under the workstealing regimen of ProedureWorksteal, we still have the �l, for l > 2, dereasing geometrially, but now the dampingratio is �1 + �� �2 < �. In other words, workstealing under the Proedure has the samee�et as inreasing the servie rate of tasks in the workstealing system!Simulation experiments in [110℄ help one evaluate the paper's abstrat treatment. Theexperiments indiate that, even with n = 128 workstations, the model's preditions arequite aurate, at least for smaller arrival rates. Moreover, the quality of these preditionsimprove with larger n and smaller arrival rates.The study in [110℄ goes on to onsider several variations on the basi theme of work-stealing, inluding preluding: � stealing work from workstations whose queues are almostempty; � stealing work when load gets below a (positive) threshold. Additionally, one�nds in [110℄ re�ned analyses and more omplex models for workstealing systems.19



3.3.2 Cluster omputing via yle-stealingCyle-stealing, the use by one workstation of idle omputing yles of another, views theworld through the other end of the omputing telesope from workstealing. The basiobservation that motivates yle-stealing is that the workstations in lusters tend to beidle muh of the time|due, say, to a user's pausing for deliberation or for a telephone all,et.|and that the resulting idle yles an fruitfully be \stolen" by busy workstations [100,145℄. Although yle-stealing ostensibly puts the burden of �nding available omputingyles on the busy workstations (the ritiisms leveled against yle-stealing by advoatesof workstealing), the just-ited soures indiate that this burden an often be o�oadedonto a entral resoure, or at least onto a workstation's operating system (rather than itsappliation program).The literature ontains relatively few rigorously analyzed sheduling algorithms foryle-stealing in (H)NOWs. Among the few suh studies, [16℄ and the series [26, 128, 129,131℄ view yle-stealing as an adversarial enterprise, in whih the yle-stealer attemptsto aomplish as muh work as possible on the \borrowed" workstation before its ownerreturns|whih event results in the yle-stealer's job being killed!A. Case study: [16℄ One �nds in this soure a randomized yle-stealing strategywhih, with high probability, aomplishes within a logarithmi fator of optimal workprodution. The underlying formal setting is as follows.� All of the n workstations that are andidates as yle donors are equally powerfulomputationally; i.e., the subjet NOW is homogeneous.� The yle-stealer has a job that requires d steps of omputation an any of theseandidate donors.� At least one of the andidate donors will be idle for a period of D � 3d logn timeunits (= steps).Within this setting, the following simple randomized strategy provably steals yles su-essfully, with high probability.Phase 1. At eah step, the yle-stealer heks the availability of all n workstations in turn:�rst P1, then P2, and so on.Phase 2. If, when heking workstation Pi, the yle-stealer �nds that it was idle at the lasttime unit, s/he ips a oin and assigns the job to Pi with probability (1=d)n3x=D�2, wherex is the number of time units for whih Pi has been idle.20



The provable suess of this strategy is expressed as follows.� With probability � 1� O((d logn)=D + 1=n), the preeding randomized strategy willallow the yle-stealer to get his/her job done.It is laimed in [16℄ that same basi strategy will atually allow the yle-stealer to getlogn d-step jobs done with the same probability.B. Case study: [131℄ In [26, 128, 129, 131℄, yle-stealing is viewed as a game againsta maliious adversary who seeks to interrupt the borrowed workstation in order to killall work in progress and thereby minimize the work amount of produed during a yle-stealing opportunity. (In these studies, yles are stolen from one workstation at a time,so the enterprise is una�eted by the presene or absene of heterogeneity.) Clearly, yle-stealing within the desribed adversarial model an aomplish produtive work only if themetaphorial \maliious adversary" is somehow restrained from just interrupting everyperiod when the yle-donor is doing work for the yle-stealer, thereby killing all workdone by the donor. The restraint studied in the Known-Risk model of [26, 128, 131℄ residesin two assumptions: (1) we know the instantaneous probability that the yle-donor hasnot been relaimed by its owner; (2) the life funtion P that exposes this probabilistiinformation|P(t) is the probability that the donor has not been relaimed by its ownerby time t|is \smooth." The formal setting is as follows.� The yle-stealer, A, has a large bag of mutually independent tasks of equal sizes(whih measures the ost of desribing eah task) and omplexities (whih measuresthe ost of omputing eah task).� Eah pair of ommuniations|in whih A sends work to the donor, B, and B returnsthe results of that work to A|inurs a �xed ost . This ost is kept independentof the marginal per-task ost of ommuniating between A and B by inorporatingthe latter ost into the time for omputing a task.� B is dediated to A's work during the yle-stealing opportunity, so its omputationtime is known exatly.� Time is measured in work-units (rather than wall-lok time); one unit of work isthe time it takes for:{ workstation A to transmit a single task to workstation B. (This is the marginaltransmission time for the task: the (�xed) setup time for eah ommuniation|during whih many tasks will typially be transmitted|is aounted for by theparameter .) 21



{ workstation B to exeute that task;{ workstation B to return its results for that task to workstation A.Within this setting, a yle-stealing opportunity is a sequene of episodes during whihworkstation A has aess to workstation B, puntuated by interrupts aused by the returnof B's owner. When sheduling an opportunity, the vulnerability of A to interrupts, withtheir attendant loss of work in progress on B, is dereased by partitioning eah episodeinto periods, eah beginning with A sending work to B and ending either with an interruptor with B returning the results of that work. A's disretionary power thus resides solelyin deiding how muh work to send in eah period, so an (episode-)shedule is simplya sequene of positive period-lengths: S = t0; t1; : : :. A length-t period in an episodeaomplishes t 	  def= max(0; t � ) units of work if it is not interrupted and 0 units ofwork if it is interrupted. Thus, the episode sheduled by S aomplishes k�1Xi=1(ti 	 ) unitsof work when it is interrupted during period k.Fous on a yle-stealing episode whose lifespan (def= its maximum possible duration)is L time units. As noted earlier, we are assuming that we know the risk of B's beingrelaimed, via a dereasing life funtion,P(t) def= Pr(B has not been interrupted by time t);whih satis�es: � P(0) = 1 (to indiate B's availability at the start of the episode); �P(L) = 0 (to indiate that the interrupt will have ourred by time L). The earlierassertion that life funtions must be \smooth" is embodied in the formal requirementthat P be di�erentiable in the interval (0; L). The goal is to maximize the expeted workprodution from an episode governed by the life funtion P, i.e., to �nd a shedule S whoseexpeted work prodution,Exp-Work(S;P) def= LXi=0(ti 	 )P(Ti); (3.4)is maximum, over all shedules for P . In summation (3.4): eah Ti is the partial sumTi def= t0 + t2 + � � �+ ti:The presene of positive subtration, 	, in (3.4) makes analyses of life funtions diÆulttehnially. Fortunately, one an avoid this diÆulty for all but the last term of thesummation. Say that a shedule is produtive if eah period|save possibly the last|haslength > . The following is proved in [26℄ and, in the following strit form, in [128℄.22



� One an e�etively3 replae any shedule S for life funtion P by a produtive shed-ule bS suh that Exp-Work(bS;P) � Exp-Work(S;P).One �nds in [131℄ a proof that the following haraterization of optimal shedules allowsone to ompute suh shedules e�etively.� The produtive shedule S = t0; t1; : : : ; tm�1 is optimal for the di�erentiable life fun-tion P if, and only if, for eah period-index k � 0, save the last, period-length tk isgiven by4 P(Tk) = max (0; P(Tk�1) + (tk�1 � )P 0(Tk�1)) : (3.5)Sine the expliit omputation of shedules from system (3.5) an be omputationallyineÆient, relying on general funtion optimization tehniques, the following simplifyinginitial onditions are presented in [131℄ for ertain simple life funtions.� When P is onvex (resp., onave),5 the initial period-length t0 is bounded above andbelow as follows, with the parameter  = 1 (resp.,  = 1=2).vuut24 � P(t0)P 0(t0) + 2 � t0 � 2vuut24 � P(t0)P 0( t0) + :3.3.3 Cluster omputing via worksharingWhereas workstealing and yle-stealing involve a transation between two workstationsin an (H)NOW, worksharing typially involves many workstations working ooperatively.The quali�er \ooperatively" distinguishes the enterprise of worksharing from the passiveooperation of the work donor in workstealing and the grudging ooperation of the yledonor in yle-stealing.In this setion, we desribe three studies of worksharing: the study in [2℄, one of fourproblems studied in [20℄, and the most general HNOW model of [17℄. (We deal with thesesoures in the indiated order to emphasize relevant similarities and di�erenes.) Thesesoures di�er markedly in their models of the HNOW in whih worksharing ours, theharateristis of the work that is being shared, and the way in whih worksharing is or-hestrated. Indeed, part of our motivation in highlighting these three studies is to illustratehow apparently minor hanges in model|of the omputing platform or the workload|an lead to major hanges in the algorithmis required to solve the worksharing problem3The quali�er \e�etively" means that the proof is onstrutive.4As usual, f 0 denotes the �rst derivative of the univariate funtion f .5The life funtion P is onave (resp., onvex) if its derivative P 0: � never vanishes at a point x whereP(x) > 0; � is everywhere noninreasing (resp., everywhere nondereasing).23



(nearly) optimally. (Sine the model of [20℄ is desribed at a high level in that paper, wehave speulatively interpreted the arhitetural anteedents of the model's features for thepurposes of enabling the omparison in this setion.)All three of these studies fous on some variant of the following senario. A masterworkstation P0 has a large bag of mutually independent tasks of equal sizes and omplex-ities. P0 has the opportunity to employ the omputing power of an HNOW N omprisingworkstations P1, P2, . . . , Pn. P0 transmits work to eah of N 's workstations, and eahworkstation (eventually) sends results bak to P0. Throughout the worksharing proess,N 's workstations are dediated to P0's workload. Some of the major di�erenes amongthe models of the three soures are highlighted in Table 1. The \N/A" (\Not Appliable")entries in the table reet the fat that only short messages (single tasks) are transmittedin [17℄. The goal of all three soures is to alloate and shedule work optimally, within theModel Feature [2℄ [20℄ [17℄Does eah ommuniation inur a substantial \setup" overhead? Yes No NoIs omplex message (un)pakaging allowed/aounted for? Yes No N/ACan a workstation send and reeive messages simultaneously? No No YesIs the HNOW N 's network pipelineable? Yes Yes N/A(A \Yes" allows savings by transmitting several tasks orresults at a time, with only one \setup.")Does P0 alloate multiple tasks at a time? Yes Yes NoAre N 's workstations allowed to redistribute tasks? No No YesAre tasks \partitionable?" Yes No No(A \Yes" allows the alloation of frational tasks.)Table 1: Comparing the models of [2℄, [20℄, and [17℄.ontext of the following problems.The HNOW-Utilization Problem. P0 seeks to reah a \steady-state", inwhih the average amount of work aomplished per time unit is maximized.The HNOW-Exploitation Problem. P0 has aess to N for a prespei�ed�xed period of time (the lifespan) and seeks to aomplish as muh work aspossible during this period.The HNOW-Rental Problem. P0 seeks to omplete a prespei�ed �xedamount of work on N during as short a period as possible.The study in [17℄ onentrates on the HNOW-Utilization Problem. Those of [2, 20℄onentrate on the HNOW-Exploitation Problem; this onentration is just for expository24



onveniene, sine the HNOW-Exploitation and -Rental Problems are omputationallyequivalent within the models of [2, 20℄; i.e., an optimal solution to either an be onvertedto an optimal solution to the other.A. Case study: [2℄ This study employs a rather detailed arhitetural model for theHNOW N , the HiHCoHP model of [41℄, whih haraterizes eah workstation Pi of N viathe parameters in Table 2. A word about message pakaging and unpakaging is in order.Computation-related parameters for N 's workstationsComputation Eah Pi needs �i work units to ompute a task.By onvention: �1 � �2 � � � � � �n � 1.Message-(un)pakaging Eah Pi needs:�i def= �i�n time units per paket to pakage a messagefor transmission(e.g., break into pakets, ompute heksums, enode);�i def= �i�n time units per paket to unpakage a reeivedmessage.Communiation-related parameters for N 's networkCommuniation setup Two workstations require � time units to set up aommuniation (say, via a handshake).Network lateny The �rst paket of a message traverses N 's network in� time units.Network transit time Subsequent pakets traverse N 's network in � time units.Table 2: A summary of the HiHCoHP model.� In many atual HNOW arhitetures, the pakaging (�) and unpakaging (�) ratesare (roughly) equal. One would lose little auray, then, by equating them.� Sine (un)pakaging a message requires a �xed, known omputation, the (ommon)ratio �i=�i is a measure of the granularity of the tasks in the workload.� When message enoding/deoding is not needed (e.g., in an HNOW of trustedworkstations), message (un)pakaging is likely a lightweight operation; when en-oding/deoding is needed, the time for message (un)pakaging an be signi�ant.In summary, within the HiHCoHP model, a p-paket message from workstation Pi toworkstation Pj takes an aggregate of (� + �� �) + (�i + �j + �)p time units.25



The omputational protools onsidered in [2℄ for solving the HNOW-ExploitationProblem build on single paired interations between P0 and eah workstation Pi of N : P0sends work to Pi; Pi does the work; Pi sends results to P0. The total interation betweenP0 the single workstation Pi is orhestrated as shown in Fig. 4. This interation is extrapo-
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Figure 5: The timeline (not to sale) for 3 \rented" workstations, indiating eah work-station's lifespan. Note that eah Pi's lifespan is partitioned in the �gure between its in-arnations as some Psa and some Pfb.work prodution of the protool P(�;�) that is spei�ed by the startup indexing � =hs1; s2; : : : ; sni and �nishing indexing � = hf1; f2; : : : ; fni over a lifespan of duration L isgiven by the following system of linear equations.0BBBBBB� VC1 + �1 B1;2 � � � B1;nB2;1 VC2 + �2 � � � B2;n... ... � � � ...Bn�1;1 Bn�1;2 � � � Bn�1;nBn;1 Bn;2 � � � VCn + �n
1CCCCCCA �0BBBBBB� w1w2...wn�1wn

1CCCCCCA = 0BBBBBB� L� (1 + 2)FCL� (2 + 2)FC...L� (n�1 + 2)FCL� (n + 2)FC
1CCCCCCA ; (3.6)where� SBi is the set of startup indies of workstations that start before Pi;� FAi is the set of �nishing indies of workstations that �nish after Pi;� i def= jSBij+ jFAij;� Bi;j = 8>>><>>>: �0 + � + �Æ if j 2 SBi and j 2 FAi�0 + � if j 2 SBi and j 62 FAi�Æ if j 62 SBi and j 2 FAi0 otherwise. 27



The nonsingularity of the oeÆient matrix in (3.6) indiates that the work prodution ofprotool P(�;�) is, indeed, spei�ed ompletely by the indexings � and �.Of partiular signi�ane in [2℄ are the FIFO worksharing protools, whih are de�nedby the relation � = �. For suh protools, system (3.6) simpli�es to:0BBBBBBB� VCs1 + �s1 �Æ � � � �Æ�0 + � VCs2 + �s2 � � � �Æ... ... � � � ...�0 + � �0 + � � � � �Æ�0 + � �0 + � � � � VCsn + �sn
1CCCCCCCA � 0BBBBBBB� ws1ws2...wsn�1wsn

1CCCCCCCA = 0BBBBBBB� L� (n + 1)FCL� (n + 1)FC...L� (n + 1)FCL� (n + 1)FC
1CCCCCCCA (3.7)It is proved in [2℄ that, surprisingly:� All FIFO protools produe the same amount of work in L time units, no matter whattheir startup indexing. This work prodution is obtained by solving system (3.7).FIFO protools solve the HNOW-Exploitation Problem asymptotially optimally [2℄:� For all suÆiently long lifespans L, a FIFO protool produes at least as muh workin L time units as any protool P(�;�).It is worth noting that having to shedule the transmission of results, in addition to inputs,is the soure of muh of the ompliation enountered in proving the preeding result.B. Case study: [20℄ As noted earlier, the ommuniation model in [20℄ is spei�ed at ahigh level of abstration. In an e�ort to ompare that model with the HiHCoHP model, wehave ast the former model within the framework of the latter, in a way that is onsistentwith the algorithmi setting and results of [20℄. One largely osmeti di�erene betweenthe two models is that all speeds are measured in absolute (wall-lok) units in [20℄, inontrast to the relative work units in [2℄. More substantively, the ommuniation modelof [20℄ an be obtained from the HiHCoHP model via the following simpli�ations.� There is no ost assessed for setting up a ommuniation (the HiHCoHP ost �).Importantly, the absene of this ost removes any disinentive to replaing a singlelong message by a sequene of shorter ones.� Certain osts in the HiHCoHP model are deemed negligible, hene, ignorable:{ the per-paket transit rate (�) in a pipelined network,{ the per-paket pakaging (the �i) and unpakaging (the �i) osts.28



These assumptions impliitly assert that the tasks in one's bag are very oarse,espeially if message-(un)pakaging inludes en/deoding.These simpli�ations imply that, within the model of [20℄:� The heterogeneity of the HNOW N is manifest only in the di�ering omputationrates of N 's workstations.� In a pipelined network, the distribution of work to and the olletion of results fromeah of N 's workstation take �xed onstant time. Spei�ally, P0 sends work at aost of t(work)om time units per transmission and reeives results at a ost of t(results)omtime units per transmission.Within this model, [20℄ derives eÆient optimal or near-optimal shedules for the fourvariants of the HNOW-Exploitation Problem that orrespond to the four paired answersto the questions: \Do tasks produe nontrivial-size results?" \Is N 's network pipelined?"For those variants that are NP-Hard, near-optimality is the most that one an expet toahieve eÆiently|and this is what [20℄ ahieves.The Pipelined HNOW-Exploitation Problem|whih is the only version we disuss|isformulated in [20℄ as an integer optimization problem. (Tasks are atomi, in ontrast to[2℄.) One alloates an integral number|all it ai|of tasks to eah workstation Pi via aprotool that has the essential struture depited in Fig. 5, altered to aommodate thesimpli�ed ommuniation model. One then solves the following optimization problem.Find: A startup indexing: � = hs1; s2; : : : ; sniA �nishing indexing: � = hf1; f2; : : : ; fniAn alloation of tasks: Eah Pi gets ai tasksThat maximizes: nXi=1 ai (the number of tasks omputed)Subjet to the onstraint: All work gets done within the lifespan; formally:(81 � i � n) [si � t(work)om + ai � ti + fi � t(results)om � L℄ (3.8)Not surprisingly, the (deision version of the) preeding optimization problem is NP-Complete, hene, likely omputationally intratable. This fat is proved in [20℄ via redu-tion from a variant of the Numerial 3-D Mathing Problem. Stated formally:� Finding an optimal solution to the HNOW-Exploitation Problem within the model of[20℄ is NP-omplete in the strong sense6.6The strong form of NP-ompleteness measures the sizes of integers by their magnitudes rather thanthe lengths of their numerals. 29



Those familiar with disrete optimization problems would tend to expet a Hardnessresult here beause this formulation of the HNOW-Exploitation Problem requires �nding amaximum \paired-mathing" in an edge-weighted version of the tripartite graph depitedin Fig. 6: A \paired-mathing" is one that uses both of the permutations � and � in
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for the lefthand and righthand sides of the graph of Fig. 6, whih is tantamount to ignoringthe interations between � and � when seeking work-alloations. We ahieve the desireddeoupling via the following edge-weighting!(i; Pj) = $L=2� i � t(work)omtj % and !(Pj; k) = $L=2� k � t(results)omtj % :We then �nd independent lefthand and righthand maximum mathings, eah within timeO(n5=2). It is shown in [20℄ that the solution produed by this deoupled mathing problemdeviates from the true optimal solution by only an additive disrepany of � n.� There is an O(n5=2)-time work-alloation algorithm whose solution (within the modelof [20℄) to the HNOW-Exploitation Problem in an n-workstation HNOW is (addi-tively) within n of optimal.C. Case study: [17℄ The framework of this study is quite di�erent from that of [2, 20℄,sine it fouses on the HNOW-Utilization Problem rather than the HNOW-ExploitationProblem. In ommon with the latter soures, a master workstation enlists the omputa-tional resoures of an HNOW N in omputing a bag of tasks that are equal in both sizeand omplexity. Here, however, the master workstation is a member|all it Pm|of theHNOW N . Moreover, here the bag of tasks is massive, and there is no a priori limit to theduration of the worksharing enterprise. Additionally, the form of worksharing onsideredis di�erent from and, in some ways, more ambitious than in [2, 20℄. Now, Pm alloatesone task at a time, and workstations may redistribute these work alloations (one taskat a time) at will, along diret ommuniation links between seleted pairs of worksta-tions. Finally, in ontrast to the HNOW-Exploitation Problem, one wants here to havethe worksharing regimen reah an optimal \steady state," in whih the average aggregatenumber of tasks omputed per time-step is maximized. We desribe here only the mostgeneral of the sheduling results in [17℄, whih plaes no a priori restrition on whih pairsof workstations an ommuniate diretly with eah other.As in the HiHCoHP model, eah workstation Pi of [17℄ has a omputation rate �i(f. Table 2) whih indiates the amount of time Pi takes to ompute one task|but theindies here do not reet relative speeds. Every pair of workstations, Pi and Pj, hasan assoiated ost ij of transmitting a single task (with all material neessary for itsomputation) between Pi and Pj, in either diretion. To simplify the development, theost assoiated with a task is \double-ended," in the sense that it inludes the ost oftransmitting both that task and (at a later time) the results from that task. If Pi and Pjan ommuniate diretly with one another|for short, are neighbors|then ij is �nite;if they annot, then, by onvention, ij = 1. The ommuniation model in [17℄ is thusloser to that of [131℄ than to that of [2℄, for in the latter, the possible di�erenes between31



pakaging and unpakaging times may render ommuniation osts asymmetri. Severalregimens are onsidered in [17℄ onerning what proesses may our in parallel. We foushere only on their \base model," in whih a workstation an simultaneously reeive atask (or a result) from one neighbor, send a task (or a result) to one (possibly di�erent)neighbor, and proess some task (that it already has). In summation, if workstation Pisends a task to workstation Pj at time-step t, then, until time t+ ij:� Pj annot start exeuting this task nor initiate another reeive operation;� Pi annot initiate another send operation.Within the preeding model, the goal of the study|optimal steady-state performane|is formalized as follows. For eah 1 � i � n, let n(i) be the set of indies of workstationPi's neighbors. During a snapshot depiting one unit of ativity by the HNOW N :� �i is the fration of time during whih Pi is omputing;� sij is the fration of time during whih Pi is sending to neighbor Pj;� rij is the fration of time during whih Pi is reeiving from neighbor Pj.The quantity �i=�i is the throughput of workstation Pi during the isolated time unit. Towit, Pi is apable of omputing 1=�i tasks in one time unit; in the snapshot, only thefration �i of that time unit is spent omputing. The goal is to maximize the quantityThroughput-rate def= nXi=1 �i�i : (3.9)subjet to the following seven sets of onstraints imposed by the model.1: for all i: 0 � �i � 1for all i, j 2 n(i): 0 � sij � 1for all i, j 2 n(i): 0 � rij � 1These reet the fat that �i, sij, and rij are proper frations.2: for all i, j 2 n(i): sij = rjiEah Pj reeives whatever eah neighbor Pi sends it.3: for all i: Pj2n(i) sij � 1for all i: Pj2n(i) rij � 1These reet the single-port ommuniation regimen.4: for all i, j 2 n(i): sij + rji � 1Even though a link is bidiretional, its bandwidth an never be exeeded.(Multiply the inequality by the bandwidth 1=ij to larify the onstraint.)32



5: for all i 6= m: Xj2n(i) rijij = �i�i + Xj2n(i) sijijA onservation law: For every Pi exept the master Pm|whih starts out with\in�nitely many" tasks|the number of tasks that Pi reeives should equal thenumber that it omputes, plus the number that it relays to other Pj.6: for all j 2 n(m): rmj = 0Sine Pm is saturated with tasks ab initio, there an be no advantage tosending it additional tasks.7: �m � 1The model allows Pm to ompute without interruption.The preeding formulation of the goal a�ords one an eÆient alogorithm for optimallysolving the HNOW-Utilization Problem on the HNOW N [17℄.� The optimization problem (3.9), augmented with the seven sets of onstraints, om-prises a linear program whose solution yields the optimal solution for the HNOW-Utilization Problem on the HNOW N .� This linear program �nds this shedule in time polynomial in the size of N , as mea-sured by the number of workstations and the number of diret interworkstation links.Signi�ant related studies. One �nds in [3℄ a model that aptures the same featuresas does HiHCoHP, but without allowing for workstation heterogeneity. Using this model,it is proved that the FIFO Protool provides optimal solutions for the HNOW-ExploitationProblem in homogeneous NOWs.We remarked earlier that one �nds in [20℄ four variants of the HNOW-ExploitationProblem, not just the one variant we have desribed. In all four variants, the masterworkstation sends an alloation of equal-size, equal-omplexity tasks to all workstationsof the \exploited" HNOW N and reeives the results of those tasks; all tasks are assumedto produe the same amount of data as results; all ommuniation is single-ported. Twofamilies of worksharing protools are onsidered, one of whih has work distributed andresults olleted in the staggered manner depited in Fig. 5; the other of whih has workdistributed via a satter operation and results olleted via a gather operation.The HNOW-Rental Problem is studied in [163℄, under a model in whih tasks produeno output and ommuniation an overlap with omputation, even on the same worksta-tion. Worksharing proeeds by having the master workstation transmit equal-size hunksof work to the rented HNOW's workstations at a frequeny determined by an analysis ofthe workstations' powers. A near-optimal algorithm is derived within this setting.33



One �nds in [22, 23, 42℄ and soures ited therein a model that is simpler than thosedisussed thus far. These soures employ a very abstrat model that suppresses many ofthe osts aounted for in the other ited studies.Employing a rather di�erent approah to worksharing, the study in [15℄ onsiders howto alloate a single ompute-intensive task within an HNOW N . The deision about whihworkstation(s) will reeive the task is made based on an \aution." The master workstationdetermines whih aggregation of N 's workstations will|aording to the soure's ostmodel|yield the best performane on the autioned task.Finally, one �nds in [56℄ a largely experimental study of worksharing in HNOWs whoseworkstations share resoures in a nondediated manner. As in a Computational Grid (seeSetion 4.1), the workstations of [56℄ timeshare their yles with partners' work, ratherthan dediating yles to that work. As in [15℄, work is alloated among the HNOW'sworkstations based on antiipated performane on that work; in ontrast to [15℄: \anti-ipated performane" is expliitly determined empirially; all workstations simultaneouslyand ontinuously monitor the \antiipated performane" of their fellow HNOW members.4 Internet ComputingAdvaning tehnology has rendered the Internet a viable medium for ollaborative om-puting, via mehanisms suh as Grid omputing (GC, for short) and Web-based omputing(WC, for short). Our interest in these modalities of Internet omputing resides in their(not-unommon) use for omputing a massive olletion of (usually ompute-intensive)tasks that reside at a \master" omputing site. When so used, the \master" site viewsits \ollaborators" as remotely situated \volunteers" who must be supplied with work ina manner that enhanes the ompletion of the massive job.4.1 The Platform(s)Computational Grids. A GC projet presupposes the formation of a ComputationalGrid|a onsortium of omputing sites that ontrat to share resoures [62, 63℄. Fromtime to time, a Grid omputing site will send a task to a ompanion Grid site that hasagreed to share its omputing yles. When this ompanion site returns the result of itsurrent task, it beomes eligible for further worksharing.Web-based omputing. In a WC projet, a volunteer registers with the \master" siteand reeives a task to ompute. When a volunteer ompletes its urrent task, it revisitsthe \master" site to return the results of that task and to reeive a new task. InterestingWC projets inlude: [85, 159℄, whih perform astronomial alulations; [137℄, whih34



performs seurity-motivated number-theoreti alulations; [76, 116, 160℄, whih performmedial and biologial omputations. Suh sites bene�t from Internet omputing eitherbeause of the sheer volume of their workloads or beause of the omputational omplexityof their individual tasks.4.2 Some ChallengesThe endeavor of using the Internet for ollaborative omputing gives rise to two algorithmihallenges that are not enountered in environments in whih the omputing agents aremore tightly oupled. We term these hallenges temporal and fatual unpreditability.Temporal unpreditability. Remote omputing agents in an Internet omputing projet|be it a WC or GC projet|typially tender no guarantee of when the results from analloated task will be returned to the \master" site. Indeed, in a WC projet, that sitetypially has no guarantee that a \volunteer" will ever return results. This lak of a timeguarantee is an annoyane when the tasks omprising the ollaborative workload are mu-tually independent|i.e., form a bag of tasks|but at least one never runs out of tasksthat are eligible for alloation. (Of ourse, if all tasks must eventually be exeuted|whihis not the ase with several WC projets|then this annoyane must trigger some ation,suh as realloation, by the \master" site.) However, when the tasks in the workload haveinterdependenies that onstrain their order of exeution, this temporal unpreditabilityan lead to a form of gridlok wherein no new tasks an be alloated for an indeterminateperiod, pending the exeution of already alloated tasks. Although \safety devies" suhas deadline-triggered realloation of tasks address this danger, they do not eliminate it,sine the \bakup" remote partiipant assigned a given task may be as dilatory as theprimary one. A major hallenge is how to orhestrate the alloation of tasks in a way thatminimizes the likelihood of this form of gridlok.Fatual unpreditability. The volunteers who partiipate in a WC projet typiallyneed not authentiate their alleged identities. In many suh projets, the sheer number ofpartiipants would render the use of ostly trusted authentiation mehanisms imprati-able. This fat renders all interhanges with|and information from|volunteers totallyinseure. As noted in Setion 1, this situation apparently reates an irresistible temp-tation for hakers, who plague many WC projets, greatly inreasing the overhead forthese projets. For this reason, one might suggest using WC only for seurity-insensitiveappliations (relating, say, to proessing astronomial data [85, 159℄) where erroneous oreven mishievously or maliiously false results are not likely to have dire onsequenes.However, many of the most important appliations of WC involve very sensitive appli-ations, suh as seurity-related [137℄ or health-related [76, 116℄ ones. Indeed, for manyappliations that generate truly massive numbers of idential tasks, Web-based omputingis one of the only imaginable ways to assemble massive omputing power at manageable35



ost. The hallenge is to oordinate the volunteers in a WC projet in a way that mini-mizes potential disruptions by hakers, while not exessively slowing down the progress oflegitimate partiipants.4.3 Some Sophistiated ResponsesThere have thus far been few rigorously analyzed algorithmi studies of omputing on theInternet, via either WC or GC. One signi�ant suh study is [17℄, whih studies worksharingin Grids. By resaling model parameters, this study applies also to worksharing in HNOWs,whih is the ontext in whih we disuss it (Setion 3.3.3.C). We have opted to reservethis setion for studies that address problems unique to Internet omputing.4.3.1 Sheduling to ope with temporal unreliabilityA. Case study: [133, 136℄ These soures raft and study a model that abstrats theproess of sheduling omputation-dags for either GC or WC. The goal of the model is toallow one to avoid the gridlok enountered when a omputation stalls beause all tasksthat are eligible for exeution have been alloated but not yet returned. The model isinspired by the many pebble games on dags that have been shown, over several deades,to yield elegant formal analogues of a variety of problems related to sheduling the task-nodes of omputation-dags [47, 73, 118℄. Suh games use tokens alled pebbles to modelthe progress of a omputation on a dag: the plaement or removal of the various availabletypes of pebbles|whih is onstrained by the dependenies modeled by the dag's ars|represents the hanging (omputational) status of the dag's task-nodes. The Internet-Computing (IC, for short) Pebble Game on a omputation-dag G involves one player S,the Server, and an indeterminate number of players C1; C2; : : :, the Clients. The Server hasaess to unlimited supplies of three types of pebbles: eligible-but-unalloated (ebu,for short) pebbles, eligible-and-alloated (eaa, for short) pebbles, and exeuted(xeq, for short) pebbles. The Game's moves reet the suessive stages in the \life-yle"of a node in a omputation-dag, from eligibility for exeution through atual exeution.Fig. 7 presents the rules of the IC Pebble Game. The reader should note how the movesof the Game expose the danger of a play's being stalled inde�nitely by dilatory Clients.There is little that one an do to forestall the hanes of gridlok when playing theIC Pebble Game, absent some onstraint on the ations of the Clients. Without someonstraint, a maliious adversary (read: unfortunate behavior by Clients) ould onfute anyattempt to guarantee the availability of a node ontaining an ebu pebble|by imposing apessimal order on the exeution of alloated tasks. The onstraint imposed by the study in[133, 136℄ is the assumption that tasks are exeuted in the same order as they are alloated.(Sine many GC and WC \master" sites monitor the state of remote partiipants, this36



� At any step of the game, S may plae an ebu pebble on any unpebbled soure node of G./*Unexeuted soure nodes are always eligible for exeution, having no parents whose priorexeution they depend on.*/� Say that Client Ci approahes S requesting a task. If Ci has previously been alloated a taskthat it has not ompleted, then Ci's request is ignored; otherwise, the following ours.{ If at least one node of G ontains an ebu pebble, then S gives Ci the task orrespondingto one suh node and replaes that node's pebble by an eaa pebble.{ If no node of G ontains an ebu pebble, then Ci is told to withdraw its request, and thismove is a no-op.� When a Client returns (the results from) a task-node, S replaes that task-node's eaa pebbleby an xeq pebble. S then plaes an ebu pebble on eah unpebbled node of G all of whoseparents ontain xeq pebbles.� S's goal is to alloate nodes in suh a way that every node v of G eventually ontains an xeqpebble./*This modest goal is neessitated by the possibility that G is in�nite.*/Figure 7: The rules of the IC Pebble Gameassumption is not totally faniful.) With this assumption in plae, these studies attemptto optimize the quality of a play of the IC Pebble Game on a dag G by maximizing, at allsteps t, the aggregate number of ebu pebbles on G's nodes, as a funtion of the number ofeaa and xeq pebbles on G's nodes.The omputation-dags studied in [133, 136℄ are the four depited in Fig. 8: the (in�nite)evolving mesh-dag, redution-oriented versions of mesh-dags and tree-dags, and the FFT-dag [48℄. It is shown in [133℄ (for evolving 2-dimensional mesh-dags) and in [136℄ (for theother dags in Fig. 8) that a shedule for the dags in Fig. 8 is optimal if, and only if, italloates nodes in a parent-oriented fashion|i.e., it exeutes all parents of eah node inonseutive steps. This general result translates to the following dag-spei� instanes.� The strategy of exeuting nodes of evolving mesh-dags along suessive levels of thedag|level k omprises all nodes hx; yi suh that x + y = k|is optimal for 2-dimensional mesh-dags. (It is shown in [133℄ that this strategy is within a onstantfator of optimal for mesh-dags of higher (�xed) dimensionalities.)The proof for 2-dimensional mesh-dags is immediate from the following observation. Notwo eligible nodes an reside in the same row or the same olumn of the mesh-dag at any37
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4.3.2 Sheduling to ope with fatual unreliabilityThere is substantial work going on in the seure-omputing ommunity that is aimed atidentifying attempts to ompromise ollaborative omputing projets; see, e.g., [144℄ andsoures ited therein. We know, however, of only one study aimed at possibly eliminatinghakers from a WC projet one they are identi�ed.A. Case study: [132℄ This soure studies an unusual faet of the seurity problem inWC. It develops a omputationally lightweight sheme for keeping trak of whih volunteersin a WC projet omputed whih tasks. Muh of the sheme employs familiar algorithmitehniques involving searh trees for point- and range-queries. The unique aspet of thesheme is a strategy that assigns positive-integer indies to:1. the set of all tasks at the master site,2. all volunteers (who are allowed to arrive and depart dynamially),3. the set of tasks reserved for eah volunteer vand that interrelates the resulting three sets of indies. The interrelation mehanism is atask-alloation funtion (TAF, for short), i.e., a pairing funtion ' that maps the set N�Nof pairs of positive integers one-to-one, onto the set N of positive integers; symbolially,' : N � N $ N. Eah opy of the set N plays the role of one of the indiated sets ofindies. The potential pratiality of suh a sheme demands that the funtions ', '�1,and '(v; t+ 1)� '(v; t) all be easily omputed; to wit, the \master" site must ompute:� '(v; t) to determine the index in the overall workload of the tth task in volunteer v'sworkload;� '�1(t) to determine whih volunteer, v, was assigned task t, and what index task thas in v's workload;� '(v; t + 1) � '(v; t) to determine whih task to alloate to volunteer v when s/hereturns the results of his/her task t.In a quest for omputational ease, the primary fous in [132℄ is on TAFs that are additive(are ATAFs, for short). An ATAF assigns eah volunteer v a base task-index Bv and astride Sv; it then uses the formula'(v; t) = Bv + (t� 1)Sv39



to determine the workload task-index of the tth task assigned to volunteer v. From asystem perspetive, ATAFs have the bene�t that a volunteer's stride need be omputedonly when s/he �rst registers at the website and an be stored for subsequent appearanes.The main results of [132℄ determine how to assign base task-indies and strides tovolunteers eÆiently, both in terms of omputing these indies and in terms of having theindies grow as slowly as possible, as funtions of the volunteer-index v. The slow growthof Bv and Sv is argued in [132℄ to failitate management of the memory in whih the tasksare stored. Toward this end, a proedure for ontruting ATAFs is presented, based onthe following well-known property of the set � of positive odd integers; see [113℄.� For any positive integer , every odd integer an be written in preisely one of the2�1 forms: 2n + 1; 2n + 3; 2n + 5; : : : ; 2n + (2 � 1), for some nonnegativeinteger n.Proedure ATAF-Construtor(') (see Fig. 9) builds on the preeding result to onstrutATAFs eÆiently.Step 1. Partition the set of volunteer-task-indies into groups whose sizes are powers of 2 (with anydesired mix of equal-size and distint-size groups). Order the groups linearly in some (arbitrary)way./*We an now talk unambiguously about group 0 (whose members share group-index g = 0),group 1 (whose members share group-index g = 1), and so on.*/Step 2. Assign eah group a distint opy of the set �, via a opy-index �(g) expressed as a funtionof the group-index g./*We an now talk unambiguously about group g's opy ��(g) of the odd integers.*/Step 3. Alloate group g's opy ��(g) to its members via the ( = �(g)) instane of the itedproperty of the odd integers, using the multiplier 2g as a signature to distinguish group g'sopy of the set � from all other groups' opies.Figure 9: Proedure ATAF-Construtor('), whih onstruts an ATAF 'An expliit expression for the ATAFs of Proedure ATAF-Construtor. If we denotethe 2�(g) rows of group g as xg;1; xg;2; : : : ; xg;2�(g), then for all i 2 f1; 2; : : : ; �(g)g,'(xg;i; y) def= 2g h21+�(g)(y � 1) + (2xg;i + 1 mod 21+�(g))iFig. 10 illustrates the onstrution via a sampler of argument-result values from three sam-ple ATAFs. The �rst two exempli�ed ATAFs, '<1> and '<3>, stress ease of omputation;the third, '#(x; y), stresses slowly growing strides.40
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