Changing Challenges for Collaborative Algorithmics

Arnold L. Rosenberg
Department of Computer Science
University of Massachusetts at Amherst
Ambherst, MA 01003, USA
rsnbrg@cs.umass.edu

October 6, 2004

Abstract

Technological advances and economic considerations have led to a wide variety of
modalities of collaborative computing: the use of multiple computing agents to solve
individual computational problems. Each new modality creates new challenges for
the algorithm designer. Older “parallel” algorithmic devices no longer work on the
newer computing platforms (at least in their original forms) and/or do not address
critical problems engendered by the new platforms’ characteristics. In this chapter,
the field of “collaborative algorithmics” is divided into four epochs, representing (one
view of) the major evolutionary eras of collaborative computing platforms. The
changing challenges encountered in devising algorithms for each epoch are discussed,
and some notable sophisticated responses to the challenges are described.

1 Introduction

Collaborative computing is a regime of computation in which multiple agents are enlisted
in the solution of a single computational problem. Until roughly one decade ago, it was
fair to refer to collaborative computing as parallel computing. Developments engendered
by both economic considerations and technological advances make the older rubric both
inaccurate and misleading, as the multiprocessors of the past have been joined by clusters—
independent computers interconnected by a local-area network (LAN)—and by various
modalities of Internet computing—loose confederations of computing agents of differing
levels of commitment to the common computing enterprise. The agents in the newer

collaborative computing milieux often do their computing at their own times and in their
own locales—definitely not “in parallel.”

Every major technological advance in all areas of computing creates significant new
scheduling challenges even while enabling new levels of computational efficiency (measured
in time and/or space and/or cost). This chapter presents one algorithmicist’s view of the
paradigm-challenges milestones in the evolution of collaborative computing platforms and
of the algorithmic challenges each change in paradigm has engendered. The chapter is
organized around a somewhat eccentric view of the evolution of collaborative computing
technology through four “epochs,” each distinguished by the challenges one faced when
devising algorithms for the associated computing platforms.

1. In the epoch of shared-memory multiprocessors:

e One had to cope with partitioning one’s computational job into disjoint subjobs
that could proceed in parallel on an assemblage of identical processors. One
had to try to keep all processors fruitfully busy as much of the time as possible.
(The qualifier “fruitfully” indicates that the processors are actually working
on the problem to be solved, rather than on, say, bookkeeping that could be
avoided with a bit more cleverness.)

e Communication between processors was effected through shared variables, so
one had to coordinate access to these variables. In particular, one had to avoid
the potential races when two (or more) processors simultaneously vied for access
to a single memory module, especially when some access was for the purpose of
writing to the same shared variable.

e Since all processors were identical, one had, in many situations, to craft proto-
cols that gave processors separate identities—the process of so-called symmetry
breaking or leader election. (This was typically necessary when one processor
had to take a coordinating role in an algorithm.)

2. The epoch of message-passing multiprocessors added to the technology of the pre-
ceding epoch a user-accessible interconnection network—of known structure—across
which the identical processors of one’s parallel computer communicated. On the one
hand, one could now build much larger aggregations of processors than one could
before. On the other hand:

e One now had to worry about coordinating the routing and transmission of
messages across the network, in order to select short paths for messages, while
avoiding congestion in the network.

e One had to organize one’s computation to tolerate the often-considerable delays
caused by the point-to-point latency of the network and the effects of network
bandwidth and congestion.

e Since many of the popular interconnection networks were highly symmetric,
the problem of symmetry breaking persisted in this epoch. Since communica-
tion was now over a network, new algorithmic avenues were needed to achieve
symmetry breaking.

e Since the structure of the interconnection network underlying one’s multipro-
cessor was known, one could—and was well advised to—allocate substantial at-
tention to network-specific optimizations when designing algorithms that strove
for (near) optimality. (Typically, for instance, one would strive to exploit lo-
cality: the fact that a processor was closer to some processors than to others.)
A corollary of this fact is that one often needed quite disparate algorithmic
strategies for different classes of interconnection networks.

3. The epoch of clusters—also known as networks of workstations (NOWs, for short)—
introduced two new variables into the mix, even while rendering many sophisticated
multiprocessor-based algorithmic tools obsolete. In Section 3, we outline some algo-
rithmic approaches to the following new challenges.

e The computing agents in a cluster—be they pc’s, or multiprocessors, or the
eponymous workstations—are now independent computers that communicate
with each other over a local-area network (LAN). This means that communi-
cation times are larger and that communication protocols are more ponderous,
often requiring tasks such as: breaking long messages into packets, encoding,
computing checksums, explicitly setting up communications (say, via a hand-
shake). Consequently, tasks must now be coarser-grained than with multipro-
cessors, in order to amortize the costs of communication. Moreover, the re-
spective computations of the various computing agents can no longer be tightly
coupled, as they could be in a multiprocessor. Further, in general, network
latency can no longer be “hidden” via the sophisticated techniques developed
for multiprocessors. Finally, one can usually no longer translate knowledge of
network topology into network-specific optimizations.

e The computing agents in the cluster, either by design or chance (such as being
purchased at different times), are now often heterogeneous, differing in speeds of
processors and/or memory systems. This means that a whole range of algorith-
mic techniques developed for the earlier epochs of collaborative computing no
longer work—at least in their original forms [127]. On the positive side, hetero-
geneity obviates symmetry breaking, as processors are now often distinguishable
by their unique combinations of computational resources and speeds.

4. The epoch of Internet computing, in its several guises, has taken the algorithmics
of collaborative computing precious near to—but never quite reaching—that of dis-
tributed computing. While Internet computing is still evolving in often-unpredictable

directions, we detail two of its circa-2003 guises in Section 4. Certain characteristics
of present-day Internet computing seem certain to persist.

e One now loses several types of predictability that played a significant background
role in the algorithmics of prior epochs.

— Interprocessor communication now takes place over the Internet. In this
environment:

*x a message shares the “airwaves” with an unpredictable number and
assemblage of other messages; it may be dropped and resent; it may be
routed over any of myriad paths. All of these factors make it impossible
to predict a message’s transit time.

* a message may be accessible to unknown (and untrusted) sites, enhanc-
ing the need for security-enhancing measures.

— The predictability of interactions among collaborating computing agents
that anchored algorithm development in all prior epochs no longer obtains,
due to the fact that remote agents are typically not dedicated to the col-
laborative task. Even in modalities of Internet computing in which remote
computing agents promise to complete computational tasks that are as-
signed to them, they typically do not guarantee when. Moreover, even the
guarantee of eventual computation is not present in all modalities of In-
ternet computing: in some modalities remote agents cannot be relied upon
ever to complete assigned tasks.

e In several modalities of Internet computing, computation is now unreliable in
two senses.

— The computing agent assigned a task may, without announcement, “resign
from” the aggregation, abandoning the task. (This is the extreme form of
temporal unpredictability just alluded to.)

— Since remote agents are unknown and anonymous in some modalities, the
computing agent assigned a task may maliciously return fallacious results.
This latter threat introduces the need for computation-related security mea-
sures (e.g., result-checking and agent monitoring) for the first time to col-
laborative computing. This problem is discussed in a news article at

(http://www.wired.com/news/technology/0,1282,41838,00.html).

In succeeding sections, we expand on the preceding discussion, defining the collabora-
tive computing platforms more carefully and discussing the resulting challenges in more
detail. Due to a number of excellent widely accessible sources that discuss and analyze
the epochs of multiprocessors, both shared-memory and message-passing, our discussion of
the first two of our epochs, in Section 2, will be rather brief. Our discussion of the epochs

of cluster computing (in Section 3) and Internet computing (in Section 4) will be both
broader and deeper. In each case, we describe the subject computing platforms in some
detail and describe a variety of sophisticated responses to the algorithmic challenges of
that epoch. Our goal is to highlight studies that attempt to develop algorithmic strategies
that respond in novel ways to the challenges of an epoch. Even with this goal in mind,
the reader should be forewarned that:

e her guide has an eccentric view of the field, which may differ from the views of many
other collaborative algorithmicists;

e some of the still-evolving collaborative computing platforms we describe will soon
disappear, or at least morph into possibly unrecognizable forms;

e some of the “sophisticated responses” we discuss will never find application beyond
the specific studies they occur in.

This said, I hope that this survey, with all of its limitations, will convince the reader of
the wonderful research opportunities that await her “just on the other side” of the systems
and applications literature devoted to emerging collaborative computing technologies.

2 The Epochs of Multiprocessors

The quick tour of the world of multiprocessors in this section is intended to convey a
sense of what stimulated much of the algorithmic work on collaborative computing on
this computing platform. The following books and surveys provide an excellent detailed
treatment of many subjects that we only touch upon and even more topics that are beyond
the scope of this chapter: [5, 45, 50, 80, 93, 97, 134].

2.1 Multiprocessor Platforms

As technology allowed circuits to shrink, starting in the 1970’s, it became feasible to design
and fabricate computers that had many processors. Indeed, a few theorists had anticipated
these advances in the 1960’s [79]. The first attempts at designing such multiprocessors en-
visioned them as straightforward extensions of the familiar von Neumann architecture, in
which a processor box—now populated with many processors—interacted with a single
memory box; processors would coordinate and communicate with each other via shared
variables. The resulting shared-memory multiprocessors were easy to think about, both
for computer architects and computer theorists [61]. Yet, using such multiprocessors ef-
fectively turned out to present numerous challenges, exemplified by the following.

e Where/how does one identify the parallelism in one’s computational problem? This
question persists to this day, feasible answers changing with evolving technology.
Since there are approaches to this question that often to not appear in the standard
references, we shall discuss the problem briefly in Section 2.2.

e How does one keep all available processors fruitfully occupied—the problem of load
balancing? One finds sophisticated multiprocessor-based approaches to this problem
in primary sources such as [58, 111, 123, 138|.

e How does one coordinate access to shared data by the several processors of (espe-
cially, a shared-memory) multiprocessor? The difficulty of this problem increases
with the number of processors. One significant approach to sharing data requires
establishing order among a multiprocessor’s indistinguishable processors, by select-
ing “leaders” and “subleaders,” etc. How does one efficiently pick a “leader” among
indistinguishable processors—the problem of symmetry breaking? One finds sophis-
ticated solutions to this problem in primary sources such as [8, 46, 107, 108].

A variety of technological factors suggest that shared memory is likely a better idea as an
abstraction than as a physical actuality. This fact led to the development of distributed
shared memory multiprocessors, in which each processor had its own memory module,
and accesses to remote data was through an interconnection network. Once one had pro-
cessors communicating over an an interconnection network, it was a small step from the
distributed shared memory abstraction to explicit message-passing, i.e., to having proces-
sors communicate with each other directly rather than through shared variables. In one
sense, the introduction of interconnection networks to parallel architectures was liberat-
ing: one could now (at least in principle) envision multiprocessors with many thousands
of processors. On the other hand, the explicit algorithmic use of networks gave rise to a
new set of challenges.

e How can one route large numbers of messages within a network without engendering
congestion (“hot spots”) that renders communication insufferably slow? This is one
of the few algorithmic challenges in parallel computing that has an acknowledged
champion. The two-phase randomized routing strategy developed in [150, 154] prov-
ably works well in a large range of interconnection networks (including the popular
butterfly and hypercube networks) and empirically works well in many others.

e Can one exploit the new phenomenon—I/ocality—that allows certain pairs of proces-
sors to intercommunicate faster than others? The fact that locality can be exploited
to algorithmic advantage is illustrated in [1, 101]. The phenomenon of locality in
parallel algorithmics is discussed in [124, 156].

e How can one cope with the situation in which the structure of one’s computational
problem—as exposed by the graph of data dependencies—is incompatible with the

structure of the interconnection network underlying the multiprocessor that one has
access to? This is another topic that is not treated fully in the references, so we
discuss it briefly in Section 2.2.

e How can one organize one’s computation so that one accomplishes valuable work
while awaiting responses from messages, either from the memory subsystem (memory
accesses) or from other processors. A number of innovative and effective responses
to variants of this problem appear in the literature; see , e.g., [10, 36, 66].

In addition to the preceding challenges, one now also faced the largely unanticipated insu-
perable problem that one’s interconnection network may not “scale.” Beginning in 1986,
a series of papers demonstrated that the physical realizations of large instances of the
most popular interconnection networks could not afford one performance consistent with
idealized analyses of those networks [31, 155, 156, 157]. A word about this problem is
in order, since the phenomenon it represents influences so much of the development of
parallel architectures. We live in a three-dimensional world: areas and volumes in space
grow polynomially fast when distances are measured in units of length. This physical
polynomial growth notwithstanding, for many of the algorithmically attractive intercon-
nection networks—hypercubes, butterfly networks, and de Bruijn networks, to name just
three—the number of nodes (read: “processors”) grows erponentially when distances are
measured in number of interprocessor links. This means, in short, that the interprocessor
links of these networks must grow in length as the networks grow in number of processors.
Analyses that predict performance in number of traversed links do not reflect the effect of
link-length on actual performance. Indeed, the anaysis in [31] suggests—on the preceding
grounds—that only the polynomially growing mesh-like networks can supply in practice
efficiency commensurate with idealized theoretical analyses.!

We now discuss briefly a few of the challenges that confronted algorithmicists during
the epochs of multiprocessors. We concentrate on topics that are not treated extensively
in books and surveys as well as on topics that retain their relevance beyond these epochs.

2.2 Algorithmic Challenges and Responses

Finding Parallelism. The seminal study [37] was the first to systematically distinguish
between the inherently sequential portion of a computation and the parallelizable portion.
The analysis in that source led to “Brent’s Scheduling Principle,” which states, in simplest
form, that the time for a computation on a p-processor computer need be no greater than
t + n/p where t is the time for the inherently sequential portion of the computation, and
n is the total number of operations that must be performed. While the study illustrates

'Fig. 1 depicts the four mentioned networks. See [93, 134] for definitions and discussions of these and
related networks. Additional sources such as [4, 21, 90] illustrate the algorithmic use of such networks.

[oT0] _ " JTo01]

Figure 1: Four interconnection networks. Row 1: the 4 x 4 mesh, the 3-dimensional de
Bruiyn network; row 2: the 4-dimensional boolean hypercube, the 3-level butterfly network
(note the two copies of level 0)

how to achieve the bound of the Principle for a class of arithmetic computations, it leaves
open the challenge of discovering the parallelism in general computations. Two major
approaches to this challenge appear in the literature and are discussed here.

Parallelizing computations via clustering/partitioning. Two related major ap-
proaches have been developed for scheduling computations on parallel computing plat-
forms, when the computation’s intertask dependencies are represented by a computation-
dag—a directed acyclic graph, each of whose arcs (z — y) betokens the dependence of
task y on task x; sources never appear on the righthand side of an arc; sinks never appear
on the lefthand side.

The first such approach is to cluster a computation-dag’s tasks into “blocks” whose
tasks are so tightly coupled that one would want to allocate each block to a single processor
to obviate any communication when executing these tasks. A number of efficient heuristics
have been developed to effect such clustering for general computation-dags [67, 83, 103,
139]. Such heuristics typically base their clustering on some easily computed characteristic
of the dag, such as its critical path—the most resource-consuming source to-sink path,
including both computation time and volume of intertask data—or its dominant sequence—
a source-to-sink path, possibly augmented with dummy arcs, that accounts for the entire
makespan of the computation. Several experimental studies compare these heuristics in
a variety of settings [54, 68], and systems have been developed to exploit such clustering
in devising schedules [43, 140, 162]. Numerous algorithmic studies have demonstrated

analytically the provable effectiveness of this approach for special scheduling classes of
computation-dags [65, 117].

Dual to the preceding clustering heuristics is the process of clustering by graph separa-
tion. Here one seeks to partition a computation-dag into subdags by “cutting” arcs that
interconnect loosely coupled blocks of tasks. When the tasks in each block are mapped to a
single processor, the small numbers of arcs interconnecting pairs of blocks lead to relatively
small—hence, inexpensive—interprocessor communications. This approach has been stud-
ied extensively in the parallel-algorithms literature, with regard to myriad applications,
ranging from circuit layout to numerical computations to nonserial dynamic programming.
A small sampler of the literature on specific applications appears in [28, 55, 64, 99, 106];
heuristics for accomplishing efficient graph partitioning (especially into roughly equal-size
subdags) appear in [40, 60, 82]; further sample applications, together with a survey of the
literature on algorithms for finding graph separators appears in [134].

Parallelizing using dataflow techniques. A quite different approach to finding
parallelism in computations builds on the flow of data in the computation. This approach
originated with the VLSI revolution fomented by Mead and Conway [105], which encour-
aged computer scientists to apply their tools and insights to the problem of designing
computers. Notable among the novel ideas emerging from this influx was the notion of
systolic array—a dataflow-driven special-purpose parallel (co)processor [86, 87]. A major
impetus for the development of this area was the discovery, in [109, 120], that for certain
classes of computations—including, e.g., those specifiable via nested for-loops—such ma-
chines could be designed “automatically.” This area soon developed a life of its own as
a technique for finding parallelism in computations, as well as designing special-purpose
parallel machines. There is now an extensive literature on the use of systolic design prin-
ciples for a broad range of specific computations [38, 39, 89, 91, 122], as well as for large
general classes of computations that are delimited by the structure of their flow of data
[49, 75, 109, 112, 120, 121].

Mismatches between network and job structure. Parallel efficiency in multipro-
cessors often demands using algorithms that accommodate the structure of one’s compu-
tation to that of the host multiprocessor’s network. This was noticed by systems builders
[71] as well as algorithms designers [93, 149]. The reader can appreciate the importance
of so tuning one’s algorithm by perusing the following studies of the operation of sorting:
[30, 52, 52, 74, 77,92, 125, 141, 148]. The overall groundrules in these studies are constant:
one is striving to minimize the worst-case number of comparisons when sorting n» numbers;
only the underlying interconnection network changes. We now briefly describe two broadly
applicable approaches to addressing potential mismatches with the host network.

Network emulations. The theory of network emulations focuses on the problem of
making one computation-graph—the host—*“act like” or “look like” another—the guest.

In both of the scenarios that motivate this endeavor, the host H represents an existing
interconnection network. In one scenario, the guest G is a directed graph that represents
the intertask dependencies of a computation. In the other scenario, the guest G is an undi-
rected graph that represents an ideal interconnection network that would be a congenial
host for one’s computation. In both scenarios, computational efficiency would clearly be
enhanced if H’s interconnection structure matched G’s—or could be made to appear to.

Almost all approaches to network emulation build on the theory of graph embeddings,
which was first proposed as a general computational tool in [126]. An embedding {(«, p)
of the graph G = (Vg, Eg) into the graph ‘H = (Vy, Ey) consists of a one-to-one map
a : Vg — Vi, together with a mapping of Eg into paths in H such that: for each edge
(u,v) € Eg, the path p(u,v) connects nodes a(u) and a(v) in . The two main measures
of the quality of the embedding («, p) are: the dilation, which is the length of the longest
path of H that is the image, under p, of some edge of G; the congestion, which is the
maximum, over all edges e of H, of the number of p-paths that edge e occurs in; in other
words, it is the maximum number of edges of G that are routed across e by the embedding.

It is easy to use an embedding of a network G into a network 7 to translate an algorithm
designed for G into a computationally equivalent algorithm for {. Basically: the mapping
« identifies which node of H is to emulate which node of G; the mapping p identifies the
routes in H that are used to simulate internode message-passing in G. This sketch suggests
why the quantitative side of network-emulations-via-embeddings focuses on dilation and
congestion as the main measures of the quality of an embedding. A moment’s reflection
suggests that, when one uses an embedding (a, p) of a graph G into a graph H as the
basis for an emulation of G by H, any algorithm that is designed for G is slowed down by
a factor O(congestion x dilation) when run on #. One can sometimes easily orchestrate
communications to improve this factor to O(congestion + dilation); cf. [13]. Remarkably,
one can always improve the slowdown to O(congestion + dilation); a nonconstructive proof
of this fact appears in [94]; and, even more remarkably, a constructive proof and efficient
algorithm appear in [95].

There are myriad studies of embedding-based emulations with specific guest and host
graphs. An extensive literature follows up one of the earliest studies, [6], which embeds
rectangular meshes into square ones, a problem having nonobvious algorithmic conse-
quences [18]. The algorithmic attractiveness of the boolean hypercube mentioned in Sec-
tion 2.1 is attested to by countless specific algorithms [93], but also by several studies that
show the hypercube to be a congenial host for a wide variety of graph families that are
themselves algorithmically attractive. Citing just two examples: (1) One finds in [24, 161]
two quite distinct efficient embeddings of complete trees—hence, of the ramified computa-
tions they represent—into hypercubes. Surprisingly, such embeddings exist also for trees
that are not complete [98, 158] and/or that grow dynamically [27, 96]. (2) One finds in [70]
efficient embeddings of butterfly-like networks—hence, of the convolutional computations
they represent—into hypercubes. A number of related algorithm-motivated embeddings

10

into hypercubes appear in [72]. [57] embeds the mesh-of-trees network, which is shown in
[93] to be an efficient host for many parallel computations, into hypercubes; [142] embeds
this network into the de Bruijn network. The emulations in [11, 12] attempt to exploit
the algorithmic attractiveness of the hypercube, despite its earlier-mentioned physical in-
tractability. The study in [13], unusual for its algebraic underpinnings, was motivated
by the (then-)unexplained fact—observed, e.g., in [149]—that algorithms designed for the
butterfly network run equally fast on the de Bruijn network. An intimate algebraic con-
nection discovered in [13] between these networks—the de Bruijn network is a quotient of
the butterfly—led to an embedding of the de Bruijn network into the hypercube that had
exponentially smaller dilation than any competitors known at that time.

The embeddings discussed thus far exploit structural properties that are peculiar to
the target guest and host graphs. When such enabling properties are hard to find, a
strategy pioneered in [25] can sometimes produce efficient embeddings. This source crafts
efficient embeddings based on the ease of recursively decomposing a guest graph G into
subgraphs. The insight underlying this embedding-via-decomposition strategy is that re-
cursive bisection—the repeated decomposition of a graph into like-sized subgraphs by
“cutting” edges—affords one a representation of G as a binary-tree-like structure.?2 The
root of this structure is the graph G; the root’s two children are the two subgraphs of
G—-call them Gy and G;—that the first bisection partitions G into. Recursively, the two
children of node G, of the tree-like structure (where z is a binary string) are the two sub-
graphs of G,—call them G .o and G,;—that the bisection partitions G, into. The technique
of [25] transforms an (efficient) embedding of this “decomposition tree” into a host graph
‘H into an (efficient) embedding of G into H, whose dilation (and, often, congestion) can
be bounded using a standard measure of the ease of recursively bisecting G. A very few
studies extend and/or improve the technique of [25]; see, e.g., [78, 114].

When networks G and H are incompatible—i.e., there is no efficient embedding of
G into H—graph embeddings cannot lead directly to efficient emulations. A technique
developed in [84] can sometimes overcome this shortcoming and produce efficient network
emulations. The technique has H emulate G by alternating the following two phases:

Computation phase. Use an embedding-based approach to emulate G piecewise for short
periods of time (whose durations are determined via analysis).

Coordination phase. Periodically (frequency is determined via analysis) coordinate the
piecewise embedding-based emulations to ensure that all pieces have fresh informa-
tion about the state of the emulated computation.

This strategy will produce efficient emulations if one makes enough progress during the
computation phase to amortize the cost of the coordination phase. Several examples in

2See [134] for a comprehensive treatment of the theory of graph decomposition, as well as of this
embedding technique.

11

[84] demonstrate the value of this strategy; each presents a phased emulation of a network
G by a network H, that incurs only constant-factor slowdown, while any embedding-based
emulation of G by H incurs slowdown that depends on the sizes of G and H.

We mention one final, unique use of embedding-based emulations. In [115], a suite of
embedding-based algorithms is developed, to endow a multiprocessor with a capability that
would be prohibitively expensive to supply in hardware. The gauge of a multiprocessor
is the common width of its CPU and memory bus. A multiprocessor can be multigauged
if, under program control, it can dynamically change its (apparent) gauge. (Prior studies
had determined the algorithmic value of multigauging, as well as its prohibitive expense
[53, 143].) Using an embedding-based approach that is detailed in [114], the algorithms of
[115] efficiently endow a multiprocessor architecture with a multigauging capability.

The use of parameterized models. A truly revolutionary approach to the prob-
lem of matching computation structure to network structure was proposed in [153], the
birthplace of the bulk-synchronous parallel (BSP) programming paradigm. The central
thesis in [153] is that, by appropriately reorganizing one’s computation, one can obtain al-
most all of the benefits of message-passing parallel computation while ignoring all aspects
of the underlying interconnection network’s structure, save its end-to-end latency. The
needed reorganization is a form of task-clustering: one organizes one’s computation into a
sequence of computational “supersteps”—during which processors compute locally, with
no intercommunication—punctuated by communication “supersteps”—during which pro-
cessors synchronize with one another (whence the term “bulk-synchronous”) and perform
a stylized intercommunication in which each processor sends h messages to h others. (The
choice of h depends on the network’s latency.) It is shown that a combination of artful mes-
sage routing—say, using the congestion-avoiding technique of [154]—and latency-hiding
techniques—notably, the method of parallel slack that has the host parallel computer em-
ulate a computer with more processors—allows this algorithmic paradigm to achieve within
a constant factor of the parallel speedup available via network-sensitive algorithm design.
A number of studies, such as [69, 104], have demonstrated the viability of this approach
for a variety of classes of computations.

The focus on network latency and number of processors as the sole architectural param-
eters that are relevant to efficient parallel computation limits the range of architectural
platforms that can enjoy the full benefits of the BSP model. In response, the authors
of [51] have crafted a model that carries on the spirit of BSP but that incorporates two
further parameters related to interprocessor communication. The resulting LogP model
accounts for latency (the “L” in “LogP), overhead (the “0”) [the cost of setting up a com-
munication|, gap (the “g”) [the minimum interval between successive communications by
a processor|, and processor number (the “P”). Experiments described in [51] validate the
predictive value of the LogP model in multiprocessors, at least for computations involv-
ing only short interprocessor messages. The model is extended in [7], to allow long, but
equal-length, messages. One finds in [29] an interesting study of the efficiency of parallel

12

algorithms developed under the BSP and LogP models.

3 Clusters/Networks of Workstations

3.1 The Platform

Many sources eloquently argue the technological and economic inevitability of an increas-
ingly common modality of collaborative computing—the use of a cluster (or, equally com-
monly, a network) of computers to cooperate in the solution of a computational problem;
see [9, 119]. Note that while one typically talks about a network of workstations (a NOW,
for short), the constituent computers in a NOW may well be pc’s or multiprocessors; the
algorithmic challenges change quantitatively but not qualitatively depending on the archi-
tectural sophistication of the “workstations.” The computers in a NOW intercommunicate
via a LAN—Ilocal area network—whose detailed structure is typically neither known to
nor accessible by the programmer.

3.2 Some Challenges

Some of the challenges encountered when devising algorithms for (H)NOWSs differ only
quantitatively from those encountered with multiprocessors. For instance:

e The typically high latencies of LANs (compared to interconnection networks), cou-
pled with the relatively heavyweight protocols needed for robust communication,
demand coarse-grained tasks, in order to amortize the costs of communication.

Some new challenges arise from the ineffectiveness in NOWSs of certain multiprocessor-
based algorithmic strategies. For instance:

e The algorithm designer typically cannot exploit the structure of the LAN underlying
a NOW.

e The higher costs of communication, coupled with the loose coordination of a NOW'’s
workstations, render the (relatively) simple latency-hiding techniques of multipro-
cessors ineffective in clusters.

Finally, some algorithmic challenges arise in the world of collaborative computing for the
first time in clusters. For instance:

13

e The constituent workstations of a NOW may differ in processor and/or memory
speeds; i.e., the NOW may be heterogeneous (be an HNOW).

All of the issues raised here make parameterized models such as those discussed at the
end of Section 2.2 an indispensable tool to the designers of algorithms for (H)NOWs.
The challenge is to craft models that are at once faithful enough to ensure algorithmic
efficiency on real NOWs and simple enough to be analytically tractable. The latter goal is
particularly elusive in the presence of heterogeneity. Consequently, much of the focus in
this section is on models that have been used successfully to study several approaches to
computing in (H)NOWs.

3.3 Some Sophisticated Responses

Since the constituent workstations of a NOW are at best loosely coupled, and since in-
terworkstation communication is typically rather costly in a NOW, the major strategies
for using NOWSs in collaborative computations center around three loosely coordinated
scheduling mechanisms—workstealing, cycle-stealing, and worksharing—that, respectively,
form the foci of the following three subsections.

3.3.1 Cluster computing via workstealing

Workstealing is a modality of cluster computing wherein an idle workstation seeks work
from a busy one. This allocation of responsibility for finding work has the benefit that
idle workstations, not busy ones, do the unproductive chore of searching for work. The
most comprehensive study of workstealing is the series of papers [32]-[35], which schedule
computations in a multiprocessor or in a (homogeneous) NOW. These sources develop their
approach to workstealing from the level of programming abstraction through algorithm
design and analysis through implementation as a working system (called Cilk [32]). As will
be detailed imminently, these sources use a strict form of multithreading as a mechanism
for subdividing a computation into chunks (specifically, threads of unit-time tasks) that are
suitable for sharing among collaborating workstations. The strength and elegance of the
results in these sources has led to a number of other noteworthy studies of multithreaded
computations, including [1, 14, 59]. A very abstract study of workstealing, which allows
one to assess the impact of changes in algorithmic strategy easily, appears in [110], which
we describe a bit later.

A. Case study: [34] From an algorithmic perpsective, the main paper in the series
about Cilk and its algorithmic underpinnings is [34], which presents and analyzes a (ran-
domized) mechanism for scheduling “well-structured” multithreaded computations, achiev-
ing both time and space complexity that are within constant factors of optimal.

14

Within the model of [34], a thread is a collection of unit-time tasks, linearly ordered
by dependencies; graph-theoretically, a thread is, thus, a linear computation-dag. A mul-
tithreaded computation is a set of threads that are interconnected in a stylized way. There
is a root thread. Recursively, any task of any thread 7' may have k > 0 spawn-arcs to the
initial tasks of k threads that are children of T. If thread T" is a child of thread T via a
spawn-arc from task ¢ of T, then the last task of 7" has a continue-arc to some task t' of T
that is a successor of task ¢t. Both the spawn-arcs and continue-arcs individually thus give
the computation the structure of a tree-dag. See Fig. 2. All of the arcs of a multithreaded

T
t s v u
O=0=C0CemO—=0

, ~.
O—=0O—=~0—=0 “O0—=0O
t u’ s’ " v’

Vi T

Figure 2: An exemplary multithreaded computation. Thread T' (resp., T") is a child of
thread T, via the spawn-arc from task t to task t' (resp., from task s to task s') and the
continue-arc from task u' to task u (resp., from task v' to task v).

computation represent data dependencies that must be honored when executing the com-
putation. A multithreaded computation is strict if all data-dependencies for the tasks of a
thread 7" go to an ancestor of thread 7" in the thread-tree; the computation is fully strict if
all dependencies in fact go to 7"’s parent in the tree. Easily, any multithreaded computa-
tion can be made fully strict by altering the dependency structure; this restructuring may
affect the available parallelism in the computation but will not compromise its correctness.
The study in [34] focuses on scheduling fully strict multithreaded computations.

In the computing platform envisioned in [34], a multithreaded computation is stored
in shared memory. Each individual thread T has a block of memory (called an activation
frame) within the local memory of the workstation that “owns” T, that is dedicated to
the computation of T’s tasks. Space is measured in terms of activation frames.

Time is measured in [34] as a function of the number of workstations that are collabo-
rating in the target computation. 7, is the minimum computation time when there are p
collaborating workstations; therefore, 7} is the total amount of work in the computation.
Ty is dag-depth of the computation, i.e., the length of the longest source-to-sink path in
the associated computation-dag; this is the “inherently sequential” part of the computa-
tion. Analogously, S, is the minimum space requirement for the target computation, S;
being the “activation depth” of the computation.

Within the preceding model, the main contribution of [34] is a provably efficient ran-

15

domized workstealing algorithm, Procedure Worksteal (see Fig. 3), which executes the
fully strict multithreaded computation rooted at thread 7. In the Procedure, each work-

Normal execution. A workstation P seeking work removes (pops) the thread at the bottom of its
ready deque—call it thread T—and begins executing 1"s tasks seriatim.

A stalled thread is enabled. If executing one of T's tasks enables a stalled thread 7", then the
now-ready thread T" is pushed onto the bottom of P’s ready deque. (A thread stalls when the
next task to be executed must await data from a task that belongs to another thread.)

/*Because of full strictness: thread 7" must be thread T's parent; thread T’s deque must be
empty when 7" is inserted.*/

A new thread is spawned. If the task of thread T that is currently being executed spawns a
child thread T”, then thread T is pushed onto the bottom of P’s ready deque, and P begins
to work on thread T".

A thread completes or stalls. If thread T' completes or stalls, then P checks its ready deque.

Nonempty ready deque. If its deque is not empty, then P pops the bottommost thread
and starts working on it.

Empty ready deque. If its deque is empty, then P initiates workstealing. It chooses a
workstation P’ uniformly at random, “steals” the topmost thread in P'’s ready deque,
and starts working on that thread. If P'’s ready deque is empty, then P chooses another
random “victim.”

Figure 3: Procedure Worksteal(T') executes the multithreaded computation rooted at
thread T'

station maintains a ready deque of threads that are eligible for execution; these deques
are accessible by all workstations. Each deque has a bottom and a top; threads can be
inserted at the bottom and removed from either end. A workstation uses its ready deque
as a procedure stack, pushing and popping from the bottom. Threads that are “stolen”
by other workstations are removed from the top of the deque. It is shown in [34] that
Procedure Worksteal is close to optimal in both time and space complexity.

e For any fully strict multithreaded computation, Procedure Worksteal, when run on
a p-workstation NOW, uses space < Sip.

e Let Procedure Worksteal execute a multithreaded computation on a p-workstation
NOW. If the computation has dag-depth Ty, and work Ty, then the expected run-
ning time, including scheduling overhead, is O(Ty/p + Ts,). This is clearly within a
constant factor of optimal.

16

B. Case study: [110] The study in [34] follows the traditional algorithmic paradigm.
An algorithm is described in complete detail, down to the design of its underlying data
structures. The performance/behavior of the algorithm is then analyzed in a setting ap-
propriate to the genre of the algorithm. For instance, since Procedure Worksteal is a
randomized algorithm, its performance is analyzed in [34] under the assumption that its
input multithreaded computation is selected uniformly at random from the ensemble of
such computations. In contrast to the preceding approach, the study in [110] describes
an algorithm abstractly, via its state space and state-transition function. The perfor-
mance/behavior of the algorithm is then analyzed by positing a process for generating the
inputs that trigger state changes. We illustrate this change of worldview by describing
Procedure Worksteal and its analysis in the framework of [110] in some detail. We then
briefly summarize some of the other notable results in that source.

In the setting of [110], when a computer (such as a homogeneous NOW) is used as
a workstealing system, its workstations execute tasks that are generated dynamically via
a Poisson process of rate A < 1. Tasks require computation time that is distributed
exponentially with mean 1; these times are not known to workstations. Tasks are scheduled
in a First-Come-First-Served fashion, with tasks awaiting execution residing in a FIFO
queue. The load of a workstation P at time ¢ is the number of tasks in P’s queue at that
time. At certain times (characterized by the algorithm being analyzed), a workstation
P’ can steal a task from another workstation P. When that happens, a task at the
output end of P’s queue (if there is one) instantaneously migrates to the input end of P'"’s
queue. Formally, a workstealing system is represented by a sequence of variables that yield
snapshots of the state of the system as a function of the time ¢. Say that the NOW being
analyzed has n constituent workstations.

e ny(t) is the number of workstations that have load I.

[Ny

ef

[J ml(t)

I
n;(t) is the number of workstations that have load > I.
i=0

def

pi(t) = ny(t)/n is the fraction of workstations of load I.

si(t) £ 3 pi(t) = my(t)/n is the fraction of workstations of load > .

1=l

The state of a workstealing system at time t is the infinite-dimensional vector 5(t) %

<80(t), Sl(t), Sg(t), .. >
The goal in [110] is to analyze the limiting behavior, as n — oo, of n-workstation

workstealing systems under a variety of randomized workstealing algorithms. The mathe-
matical tools that characterize the study are enabled by two features of the model we have

17

described thus far. (1) Under the assumption of Poisson arrivals and exponential service
times, the entire workstealing system is Markovian: its next state, §(¢ 4+ 1), depends only
on its present state, 5(¢), not on any earlier history. (2) The fact that a workstealing
system changes state instantaneously allows one to view time as a continuous variable,
thereby enabling the use of differentials rather than differences when analyzing changes in
the variables that characterize a system’s state.

We enhance legibility henceforth by omitting the time variable ¢ when it is clear from
context. Note that so = 1 and that the s; are nonincreasing, since s; ; — s; = p;. The
systems analyzed in [110] also have lim; ., s; = 0.

We introduce the general process of characterizing a system’s (limiting) performance by
focusing momentarily on a system in which no workstealing takes place. Let us represent
by dt a small interval of time, in which only one event (a task arrival or departure) takes
place at a workstation. The model of task arrivals (via a Poisson process with rate \)
means that the expected change in the variable m; due to task arrivals is A(m;_; — m;)dt.
By similar reasoning, the expected change in m; due to task departures—recall that there
is no stealing going on—is just (m; — my,1)dt. It follows that the expected net behavior
of the system over short intervals is:

dm
—p = Mmoo) = (g me),

or, equivalently, (by eliminating the ubiquitous factor of n, the size of the NOW),

dSl
dt

This last characterization of state changes illustrates the changes’ independence from the
aggregate number of workstations, depending instead only on the densities of workstations
with various loads. The technical implications of this fact is discussed in some details in
[110], with appropriate pointers to the underlying mathematical texts.

=)\(Sl,1 — Sl) — (Sl — Sl+1). (31)

In order to analyze the performance of Procedure Worksteal within the current model,
one must consider how the Procedure’s various actions are perceived by the workstations
of the subject workstealing system. First, under the Procedure, a workstation P that
completes its last task seeks to steal a task from a randomly chosen fellow workstation,
P', succeeding with probability s, (the probability that P’ has at least two tasks). Hence,
P now perceives completion of its final task as emptying its queue only with probability
1 — s. Mathematically, we thus have the following modified first equation of system (3.1):

dSl
dt
For [> 1, s; now decreases whenever a workstation with load [either completes a task or
has a task stolen from it. The rate at which workstations steal tasks is just s; —ss, i.e., the

= Msg — s1) — (81 — $2)(1 — s2). (3.2)

18

rate at which workstation complete their final tasks. We thus complete our modification
of system (3.1) as follows.

dSl

For | >1 —
or s dt

=Asi1—81) — (81— s131) (1 + 81 — 82). (3.3)

The limiting behavior of the workstealing system is characterized by seeking the fized
point of system (3.2, 3.3), i.e., the state § for which every ds;/dt = 0.

Denoting the sought fixed point by © = (mg, 71, 79, . . .), we have:
e 1y = 1, because sg = 1 for all t;
e m; = A, because:

— tasks complete at rate s;n, the number of busy workstations;
— tasks arrive at rate An;

— at the fixed point, tasks arrive and complete at the same rate;
e from (3.2) and the fact that ds;/d¢ = 0 at the fixed point, we have

1+ A —vI+20—3X2

2

Ty —

e from (3.3) and the fact that ds;/d¢ = 0 at the fixed point, we have, by induction,

Y -2
For [> 2 = | — .
cion e () s

The message of the preceding analysis becomes clear only when one performs the same
exercise with the system (3.1), which characterizes a “workstealing system” in which there
is no workstealing. For that system, one finds that m; = \!, indicating that, in the limiting
state, tasks are being completed at rate A. Under the workstealing regimen of Procedure
Worksteal, we still have the m;, for [> 2, decreasing geometrically, but now the damping
ratio is PR p— < A. In other words, workstealing under the Procedure has the same
effect as increasing the service rate of tasks in the workstealing system!

Simulation experiments in [110] help one evaluate the paper’s abstract treatment. The
experiments indicate that, even with n = 128 workstations, the model’s predictions are
quite accurate, at least for smaller arrival rates. Moreover, the quality of these predictions
improve with larger n and smaller arrival rates.

The study in [110] goes on to consider several variations on the basic theme of work-
stealing, including precluding: e stealing work from workstations whose queues are almost
empty; e stealing work when load gets below a (positive) threshold. Additionally, one
finds in [110] refined analyses and more complex models for workstealing systems.

19

3.3.2 Cluster computing via cycle-stealing

Cycle-stealing, the use by one workstation of idle computing cycles of another, views the
world through the other end of the computing telescope from workstealing. The basic
observation that motivates cycle-stealing is that the workstations in clusters tend to be
idle much of the time—due, say, to a user’s pausing for deliberation or for a telephone call,
etc.—and that the resulting idle cycles can fruitfully be “stolen” by busy workstations [100,
145]. Although cycle-stealing ostensibly puts the burden of finding available computing
cycles on the busy workstations (the criticisms leveled against cycle-stealing by advocates
of workstealing), the just-cited sources indicate that this burden can often be offloaded
onto a central resource, or at least onto a workstation’s operating system (rather than its
application program).

The literature contains relatively few rigorously analyzed scheduling algorithms for
cycle-stealing in (H)NOWSs. Among the few such studies, [16] and the series [26, 128, 129,
131] view cycle-stealing as an adversarial enterprise, in which the cycle-stealer attempts
to accomplish as much work as possible on the “borrowed” workstation before its owner
returns—which event results in the cycle-stealer’s job being killed!

A. Case study: [16] One finds in this source a randomized cycle-stealing strategy
which, with high probability, accomplishes within a logarithmic factor of optimal work
production. The underlying formal setting is as follows.

e All of the n workstations that are candidates as cycle donors are equally powerful
computationally; i.e., the subject NOW is homogeneous.

e The cycle-stealer has a job that requires d steps of computation an any of these
candidate donors.

e At least one of the candidate donors will be idle for a period of D > 3dlogn time
units (= steps).

Within this setting, the following simple randomized strategy provably steals cycles suc-
cessfully, with high probability.

Phase 1. At each step, the cycle-stealer checks the availability of all n workstations in turn:
first P, then P,, and so on.

Phase 2. If, when checking workstation P;, the cycle-stealer finds that it was idle at the last
time unit, s/he flips a coin and assigns the job to P; with probability (1/d)n**/P~2, where
z is the number of time units for which P, has been idle.

20

The provable success of this strategy is expressed as follows.

e With probability > 1 — O((dlogn)/D + 1/n), the preceding randomized strategy will
allow the cycle-stealer to get his/her job done.

It is claimed in [16] that same basic strategy will actually allow the cycle-stealer to get
logn d-step jobs done with the same probability.

B. Case study: [131] In [26, 128, 129, 131], cycle-stealing is viewed as a game against
a malicious adversary who seeks to interrupt the borrowed workstation in order to kill
all work in progress and thereby minimize the work amount of produced during a cycle-
stealing opportunity. (In these studies, cycles are stolen from one workstation at a time,
so the enterprise is unaffected by the presence or absence of heterogeneity.) Clearly, cycle-
stealing within the described adversarial model can accomplish productive work only if the
metaphorical “malicious adversary” is somehow restrained from just interrupting every
period when the cycle-donor is doing work for the cycle-stealer, thereby killing all work
done by the donor. The restraint studied in the Known-Risk model of [26, 128, 131] resides
in two assumptions: (1) we know the instantaneous probability that the cycle-donor has
not been reclaimed by its owner; (2) the life function P that exposes this probabilistic
information—7P(t) is the probability that the donor has not been reclaimed by its owner
by time t—is “smooth.” The formal setting is as follows.

e The cycle-stealer, A, has a large bag of mutually independent tasks of equal sizes
(which measures the cost of describing each task) and complexities (which measures
the cost of computing each task).

e Each pair of communications—in which A sends work to the donor, B, and B returns
the results of that work to A—incurs a fixed cost c¢. This cost is kept independent
of the marginal per-task cost of communicating between A and B by incorporating
the latter cost into the time for computing a task.

e B is dedicated to A’s work during the cycle-stealing opportunity, so its computation
time is known exactly.

e Time is measured in work-units (rather than wall-clock time); one wunit of work is
the time it takes for:

— workstation A to transmit a single task to workstation B. (This is the marginal
transmission time for the task: the (fixed) setup time for each communication—
during which many tasks will typically be transmitted—is accounted for by the
parameter c.)

21

— workstation B to execute that task;

— workstation B to return its results for that task to workstation A.

Within this setting, a cycle-stealing opportunity is a sequence of episodes during which
workstation A has access to workstation B, punctuated by interrupts caused by the return
of B’s owner. When scheduling an opportunity, the vulnerability of A to interrupts, with
their attendant loss of work in progress on B, is decreased by partitioning each episode
into periods, each beginning with A sending work to B and ending either with an interrupt
or with B returning the results of that work. A’s discretionary power thus resides solely
in deciding how much work to send in each period, so an (episode-)schedule is simply
a sequence of positive period-lengths: & = tg,¢;,.... A length-¢ period in an episode
accomplishes t © ¢ = max(0, ¢t — ¢) units of work if it is not interrupted and 0 units of
k—1
work if it is interrupted. Thus, the episode scheduled by & accomplishes Z(tz O ¢) units
of work when it is interrupted during period k. -
Focus on a cycle-stealing episode whose lifespan (d:er its maximum possible duration)
is L time units. As noted earlier, we are assuming that we know the risk of B’s being
reclaimed, via a decreasing life function,

P(t) ¥ Pr(B has not been interrupted by time t),

which satisfies: ® P(0) = 1 (to indicate B’s availability at the start of the episode); o
P(L) = 0 (to indicate that the interrupt will have occurred by time L). The earlier
assertion that life functions must be “smooth” is embodied in the formal requirement
that P be differentiable in the interval (0, L). The goal is to maximize the expected work
production from an episode governed by the life function P, i.e., to find a schedule & whose
expected work production,

ExP-WORK(S;P) & i(ti S c)P(T;), (3.4)

i=0
is maximum, over all schedules for P. In summation (3.4): each 7; is the partial sum
def

T, = to+tg+---+t

The presence of positive subtraction, ©, in (3.4) makes analyses of life functions difficult
technically. Fortunately, one can avoid this difficulty for all but the last term of the
summation. Say that a schedule is productive if each period—save possibly the last—has
length > c¢. The following is proved in [26] and, in the following strict form, in [128].

22

e One can effectively® replace any schedule S for life function P by a productive sched-
ule S such that Exp-WORK(S; P) > Exp-WORK(S; P).

One finds in [131] a proof that the following characterization of optimal schedules allows
one to compute such schedules effectively.

e The productive schedule S = tg,tq,...,tym 1 is optimal for the differentiable life func-
tion P if, and only if, for each period-index k > 0, save the last, period-length t; is
given by

P(Tk) = Inax (0, P(kal) + (tk,1 - C)P,(kal)) . (35)

Since the explicit computation of schedules from system (3.5) can be computationally
inefficient, relying on general function optimization techniques, the following simplifying
initial conditions are presented in [131] for certain simple life functions.

e When P is convex (resp., concave),® the initial period-length ty is bounded above and
below as follows, with the parameter ¢ =1 (resp., ¥ =1/2).

2 cP(ty)
4 Pt

é _ CP(to)
4 P'(¢to)

2

+ - < 1

o
VAN

3.3.3 Cluster computing via worksharing

Whereas workstealing and cycle-stealing involve a transaction between two workstations
in an (H)NOW, worksharing typically involves many workstations working cooperatively.
The qualifier “cooperatively” distinguishes the enterprise of worksharing from the passive
cooperation of the work donor in workstealing and the grudging cooperation of the cycle
donor in cycle-stealing.

In this section, we describe three studies of worksharing: the study in (2], one of four
problems studied in [20], and the most general HNOW model of [17]. (We deal with these
sources in the indicated order to emphasize relevant similarities and differences.) These
sources differ markedly in their models of the HNOW in which worksharing occurs, the
characteristics of the work that is being shared, and the way in which worksharing is or-
chestrated. Indeed, part of our motivation in highlighting these three studies is to illustrate
how apparently minor changes in model—of the computing platform or the workload—
can lead to major changes in the algorithmics required to solve the worksharing problem

3The qualifier “effectively” means that the proof is constructive.

4As usual, f' denotes the first derivative of the univariate function f.

>The life function P is concave (resp., conver) if its derivative P': e never vanishes at a point z where
P(z) > 0; o is everywhere nonincreasing (resp., everywhere nondecreasing).

23

(nearly) optimally. (Since the model of [20] is described at a high level in that paper, we
have speculatively interpreted the architectural antecedents of the model’s features for the
purposes of enabling the comparison in this section.)

All three of these studies focus on some variant of the following scenario. A master
workstation P, has a large bag of mutually independent tasks of equal sizes and complex-
ities. Py has the opportunity to employ the computing power of an HNOW A comprising
workstations Py, P, ..., P,. P, transmits work to each of N’s workstations, and each
workstation (eventually) sends results back to P,. Throughout the worksharing process,
N’s workstations are dedicated to Py’s workload. Some of the major differences among
the models of the three sources are highlighted in Table 1. The “N/A” (“Not Applicable”)
entries in the table reflect the fact that only short messages (single tasks) are transmitted
in [17]. The goal of all three sources is to allocate and schedule work optimally, within the

Model Feature H 2] ‘ [20] ‘ [17]
Does each communication incur a substantial “setup” overhead? || Yes | No | No
Is complex message (un)packaging allowed/accounted for? Yes | No | N/A
Can a workstation send and receive messages simultaneously? No | No | Yes
Is the HNOW N’s network pipelineable? Yes | Yes | N/A

(A “Yes” allows savings by transmitting several tasks or
results at a time, with only one “setup.”)

Does F; allocate multiple tasks at a time? Yes | Yes | No
Are N'’s workstations allowed to redistribute tasks? No | No | Yes
Are tasks “partitionable?” Yes | No | No

(A “Yes” allows the allocation of fractional tasks.)

Table 1: Comparing the models of [2], [20], and [17].

context of the following problems.

The HNOW-Utilization Problem. P, seeks to reach a “steady-state”, in
which the average amount of work accomplished per time unit 1s maximized.

The HNOW-Exploitation Problem. P, has access to N for a prespecified
fized period of time (the lifespan) and seeks to accomplish as much work as
possible during this period.

The HNOW-Rental Problem. P, seeks to complete a prespecified fized
amount of work on N' during as short a period as possible.

The study in [17] concentrates on the HNOW-Utilization Problem. Those of [2, 20]
concentrate on the HNOW-Exploitation Problem; this concentration is just for expository

24

convenience, since the HNOW-Exploitation and -Rental Problems are computationally
equivalent within the models of [2, 20]; i.e., an optimal solution to either can be converted
to an optimal solution to the other.

A. Case study: [2] This study employs a rather detailed architectural model for the
HNOW N, the HIHHCoHP model of [41], which characterizes each workstation P; of N via
the parameters in Table 2. A word about message packaging and unpackaging is in order.

Computation-related parameters for AN’s workstations

Computation Each P; needs p; work units to compute a task.
By convention: p; < ps <--- < p, = 1.

Message-(un)packaging | Each P; needs:
m piTn, time units per packet to package a message
for transmission

(e.g., break into packets, compute checksums, encode);

7w piTy time units per packet to unpackage a received

message.

Communication-related parameters for A’s network

Communication setup Two workstations require o time units to set up a
communication (say, via a handshake).

Network latency The first packet of a message traverses N’s network in
A time units.

Network transit time Subsequent packets traverse N’s network in 7 time units.

Table 2: A summary of the HHHCoHP model.

e In many actual HNOW architectures, the packaging (7) and unpackaging (7) rates
are (roughly) equal. One would lose little accuracy, then, by equating them.

e Since (un)packaging a message requires a fixed, known computation, the (common)
ratio p;/m; is a measure of the granularity of the tasks in the workload.

e When message encoding/decoding is not needed (e.g., in an HNOW of trusted
workstations), message (un)packaging is likely a lightweight operation; when en-
coding/decoding is needed, the time for message (un)packaging can be significant.

In summary, within the HHHCoHP model, a p-packet message from workstation P; to
workstation P; takes an aggregate of (o + A — 7) + (m; + 7T; + 7)p time units.

25

The computational protocols considered in [2] for solving the HNOW-Exploitation
Problem build on single paired interactions between P, and each workstation P; of N: P,
sends work to P;; P; does the work; P; sends results to FP,. The total interaction between
P, the single workstation P; is orchestrated as shown in Fig. 4. This interaction is extrapo-

P, prepares | F <~ P | F transmits P, unpacks P, does P, prepares | P.«—~F |P, transmits F, unpacks

work for P setup work work work | results for F| setup results results

I 1 I I I I I I I I
I 1 I I I I I I I I
I 1 I I I I I I I . I
LT W, b0 Atw-1)) mw | pw, | TOw, .o Ait(dw-1)) mdw, |
l I ! l l l l l l l
I 1 I I I I I I I I
I 1 I I I I I I I I
D omeemmee - ! - - - - - - ! - - - - - ! B i I R - ! - - - - - - - ! e | e - !
| T T | T | |
1 | 1 in 1 P 1 1 in 1 1
1 in P] P 7 P | 1 n i | P ’ P | 1 in P 1
| 0 0 i 1 petwork | 0 i | 0 |
: | and | : . and ; metwork :
! :network ! ! :network ! ! !

Figure 4: The timeline for Py’s use of a single “rented” workstation P; (not to scale)

lated into a full-blown worksharing protocol via a pair of ordinal-indexing schemes for N'’s
workstations, to supplement the model’s power-related indexing described in the “Com-
putation” entry of Table 2. The startup indexing specifies the order in which P, transmits
work to A’s workstations; for this purpose, we label the workstations Pj,, Pi,, ..., P;, |
to indicate that P;, receives work—hence, begins working—before P;, , does. The fin-
ishing indexing specifies the order in which N’s workstations return their work-results
to Po; for this purpose, we label the workstations Py, Py,, ..., Py,, to indicate that P,
ceases working—hence, transmits its results—before Py, does. Fig. 5 depicts a multi-
workstation protocol. If we let w; denote the amount of work allocated to workstation P;,
fori =1,2,...,n, then the goal is to find a protocol (of the type described) that maximizes
the overall work production, W = wy 4+ wy + - - - + w,,.

Abbrev. ‘ Quantity ‘ Meaning
T (14 9) Two-way transmission rate
e T + md Two-way message-packaging rate for P,
FC (0 + A — 7) | Fized overhead for an interworkstation communication
VC; w9 + 7 + 7; | Variable communication overhead rate for P;

Table 3: Some useful abbreviations
Importantly, when one allows work-allocations to be fractional, the work production

of a protocol of the form we have been discussing can be specified in a computationally
tractable, perspicuous way. Enhancing legibility via the abbreviations of Table 3, the

26

Lifespan L

e

"y

"y

Figure 5: The timeline (not to scale) for 3 “rented” workstations, indicating each work-
station’s lifespan. Note that each P;’s lifespan is partitioned in the figure between its in-
carnations as some P, and some Py, .

work production of the protocol P(X, ®) that is specified by the startup indexing ¥ =

(s1,82,...,8,) and finishing indexing ® = (fi, fa, ..., f,) over a lifespan of duration L is
given by the following system of linear equations.

VC1 + P1 B172 s Bl,n w1 L — (Cl + 2)FC
Bg’l VCy+po - BQm wWo L— (62 + Z)FC
: : e : : = : ; (3.6)
B, 11 Bn,_12 -+ Bp_in Wn_1 L — (ch-1+2)FC
Bpa By o < VCp + pp Wy, L — (¢, +2)FC
where

SB; is the set of startup indices of workstations that start before P,

FA; is the set of finishing indices of workstations that finish after P;;

ci & |SB;| + |FA;;

mo+ 7+ 70 if 7 € SB; and j € FA;
mo + 7 if j € SB; and j & FA;
70 if j & SB; and j € FA;

0 otherwise.

* Bij =

27

The nonsingularity of the coefficient matrix in (3.6) indicates that the work production of
protocol P(X, ®) is, indeed, specified completely by the indexings ¥ and ®.

Of particular significance in [2] are the FIFO worksharing protocols, which are defined
by the relation ¥ = ®. For such protocols, system (3.6) simplifies to:

VCy, + ps, T e) Wy, L—(n+1)FC
mo+7 VCyy +ps, -) W, L—(n+1)FC

: : : : = (3.7)
T+ T T +T - 70 ws, L—(n+1)FC
mo + T mo+7 - VCq, + ps, W, L—(n+1)FC

It is proved in [2] that, surprisingly:

e All FIFO protocols produce the same amount of work in L time units, no matter what
their startup indexing. This work production is obtained by solving system (3.7).

FIFO protocols solve the HNOW-Exploitation Problem asymptotically optimally [2]:

e For all sufficiently long lifespans L, a FIFO protocol produces at least as much work
in L time units as any protocol P(X, ®).

It is worth noting that having to schedule the transmission of results, in addition to inputs,
is the source of much of the complication encountered in proving the preceding result.

B. Case study: [20] As noted earlier, the communication model in [20] is specified at a
high level of abstraction. In an effort to compare that model with the HHHCoHP model, we
have cast the former model within the framework of the latter, in a way that is consistent
with the algorithmic setting and results of [20]. One largely cosmetic difference between
the two models is that all speeds are measured in absolute (wall-clock) units in [20], in
contrast to the relative work units in [2]. More substantively, the communication model
of [20] can be obtained from the HHHCoHP model via the following simplifications.

e There is no cost assessed for setting up a communication (the HHHCoHP cost o).
Importantly, the absence of this cost removes any disincentive to replacing a single
long message by a sequence of shorter ones.

e Certain costs in the HHHCoHP model are deemed negligible, hence, ignorable:

— the per-packet transit rate (7) in a pipelined network,

— the per-packet packaging (the 7;) and unpackaging (the 7;) costs.

28

These assumptions implicitly assert that the tasks in one’s bag are very coarse,
especially if message-(un)packaging includes en/decoding.

These simplifications imply that, within the model of [20]:

e The heterogeneity of the HNOW N is manifest only in the differing computation
rates of N'’s workstations.

e In a pipelined network, the distribution of work to and the collection of results from
each of N’s workstation take fixed constant time. Specifically, P, sends work at a
cost of t("™%) time units per transmission and receives results at a cost of ¢{results)

time units per transmission.

Within this model, [20] derives efficient optimal or near-optimal schedules for the four
variants of the HNOW-Exploitation Problem that correspond to the four paired answers
to the questions: “Do tasks produce nontrivial-size results?” “Is A’s network pipelined?”
For those variants that are NP-Hard, near-optimality is the most that one can expect to
achieve efficiently—and this is what [20] achieves.

The Pipelined HNOW-Exploitation Problem—which is the only version we discuss—is
formulated in [20] as an integer optimization problem. (Tasks are atomic, in contrast to
[2].) One allocates an integral number—call it a;—of tasks to each workstation P; via a
protocol that has the essential structure depicted in Fig. 5, altered to accommodate the
simplified communication model. One then solves the following optimization problem.

Find: A startup indexing: Y =(s1, $2,---, Sn)
A finishing indexing: S =(f1, fo,.-, fn)
An allocation of tasks: Each P; gets a; tasks

n
That maximizes: Y a; (the number of tasks computed)
=1

Subject to the constraint: All work gets done within the lifespan; formally:

(V]. S 1 S ’I'L) [Si . t(work) + a; - tz + fz . t(results) S L] (38)

com com
Not surprisingly, the (decision version of the) preceding optimization problem is NP-

Complete, hence, likely computationally intractable. This fact is proved in [20] via reduc-
tion from a variant of the Numerical 3-D Matching Problem. Stated formally:

e Finding an optimal solution to the HNOW-Ezploitation Problem within the model of

[20] is NP-complete in the strong sense®.

6The strong form of NP-completeness measures the sizes of integers by their magnitudes rather than
the lengths of their numerals.

29

Those familiar with discrete optimization problems would tend to expect a Hardness
result here because this formulation of the HNOW-Exploitation Problem requires finding a
maximum “paired-matching” in an edge-weighted version of the tripartite graph depicted
in Fig. 6: A “paired-matching” is one that uses both of the permutations ¥ and & in

Startup Finishing
Order Wkstations Order

¢ ¢ ¢

1 P, 1

2 F, 2

n P n
n

Weighted with work allocations
Figure 6: An abstraction of the HNOW-Ezploitation Problem within the model of [20].

a coordinated fashion in order to determine the a;. The matching gives us the startup
and finishing orders of N’s workstations. Specifically, the edge connecting the lefthand
instance of node 7 with node P; (resp., the edge connecting the righthand instance of node
k with node P;) is in the matching when s; = i (resp., f; = k). In order to ensure that
an optimal solution to the HNOW-Exploitation Problem is within our search space, we
have to accommodate the possibility that s; = ¢ and f; = k, for every distinct triple of
integers, i,j,k € {1,2,...,n}. In order to ensure that a maximum matching in the graph
of Fig. 6 yields this optimal solution, we weight the edges of the graph in accordance with
constraint (3.8), which contains both s; and f;. If we let w(u,v) denote the weight on the
edge from node u to node v in the graph, then, for each 1 <4 < n, the optimal weighting
must end up with

I — S; - 7f(work) o fz . 7f(results)

com com
t;

w(si, P;) +w(P;, fi) =

While the desired weighting would lead to an optimal solution, it also leads to NP-
Hardness. We avoid this complexity by relinquishing our demand for an optimal solution.
A simple approach to ensuring reasonable complexity is to decouple the matchings derived

30

for the lefthand and righthand sides of the graph of Fig. 6, which is tantamount to ignoring
the interactions between ¥ and ® when seeking work-allocations. We achieve the desired
decoupling via the following edge-weighting

L/2 —1q- t(WOTk) L/2 —k- t(results)
(.L)(Z, P) — / 1 com and (U(P, k) — / com .
J J

We then find independent lefthand and righthand maximum matchings, each within time
O(n®/?). Tt is shown in [20] that the solution produced by this decoupled matching problem
deviates from the true optimal solution by only an additive discrepancy of < n.

o There is an O(n®?)-time work-allocation algorithm whose solution (within the model
of [20]) to the HNOW-Ezploitation Problem in an n-workstation HNOW is (addi-
tively) within n of optimal.

C. Case study: [17] The framework of this study is quite different from that of [2, 20],
since it focuses on the HNOW-Utilization Problem rather than the HNOW-Exploitation
Problem. In common with the latter sources, a master workstation enlists the computa-
tional resources of an HNOW N in computing a bag of tasks that are equal in both size
and complexity. Here, however, the master workstation is a member—call it P,,—of the
HNOW N. Moreover, here the bag of tasks is massive, and there is no a prior: limit to the
duration of the worksharing enterprise. Additionally, the form of worksharing considered
is different from and, in some ways, more ambitious than in [2, 20]. Now, P, allocates
one task at a time, and workstations may redistribute these work allocations (one task
at a time) at will, along direct communication links between selected pairs of worksta-
tions. Finally, in contrast to the HNOW-Exploitation Problem, one wants here to have
the worksharing regimen reach an optimal “steady state,” in which the average aggregate
number of tasks computed per time-step is maximized. We describe here only the most
general of the scheduling results in [17], which places no a priori restriction on which pairs
of workstations can communicate directly with each other.

As in the HiIHCoHP model, each workstation P; of [17] has a computation rate p;
(cf. Table 2) which indicates the amount of time P; takes to compute one task—but the
indices here do not reflect relative speeds. Every pair of workstations, F; and P;, has
an associated cost ¢;; of transmitting a single task (with all material necessary for its
computation) between P; and P;, in either direction. To simplify the development, the
cost associated with a task is “double-ended,” in the sense that it includes the cost of
transmitting both that task and (at a later time) the results from that task. If P; and P;
can communicate directly with one another—for short, are neighbors—then c¢;; is finite;
if they cannot, then, by convention, ¢;; = co. The communication model in [17] is thus
closer to that of [131] than to that of [2], for in the latter, the possible differences between

31

packaging and unpackaging times may render communication costs asymmetric. Several
regimens are considered in [17] concerning what processes may occur in parallel. We focus
here only on their “base model,” in which a workstation can simultaneously receive a
task (or a result) from one neighbor, send a task (or a result) to one (possibly different)
neighbor, and process some task (that it already has). In summation, if workstation P,
sends a task to workstation P; at time-step ¢, then, until time ¢ + ¢;;:

e P; cannot start executing this task nor initiate another receive operation;

e P; cannot initiate another send operation.

Within the preceding model, the goal of the study—optimal steady-state performance—
is formalized as follows. For each 1 < ¢ < n, let n(i) be the set of indices of workstation
P;’s neighbors. During a snapshot depicting one unit of activity by the HNOW N/:

e x; is the fraction of time during which P; is computing;
e s;; is the fraction of time during which P; is sending to neighbor P;;

e 7;; is the fraction of time during which P; is receiving from neighbor P;.

The quantity k;/p; is the throughput of workstation P; during the isolated time unit. To
wit, P; is capable of computing 1/p; tasks in one time unit; in the snapshot, only the
fraction k; of that time unit is spent computing. The goal is to maximize the quantity

n
def R

Throughput-rate = : (3.9)
i—=1 Pi

subject to the following seven sets of constraints imposed by the model.

1. for all 2 0<k; <1
forall i, j € n(i): 0<s; <1
foralli, jen(i): 0<r; <1
These reflect the fact that &;, s;;, and r;; are proper fractions.

2. foralli, jen(i): si;=rj
Each P; receives whatever each neighbor P; sends it.

3. for all 4 Yjen) Sij <1
forall i: >,y miy <1
These reflect the single-port communication regimen.

4. forall i, j € n(z) Sij + 1 < 1
Even though a link is bidirectional, its bandwidth can never be exceeded.
(Multiply the inequality by the bandwidth 1/¢;; to clarify the constraint.)

32

5. for all i # m: Zrﬁ:ﬂ—l— Zsﬁ
jen(i) Ci Pi jen(i) Cid
A conservation law: For every P; except the master P,,—which starts out with
“infinitely many” tasks—the number of tasks that P; receives should equal the

number that it computes, plus the number that it relays to other P;.

6. forall j €n(m): rp;=0
Since P,, is saturated with tasks ab initio, there can be no advantage to
sending it additional tasks.

7. Kp=1
The model allows P,, to compute without interruption.

The preceding formulation of the goal affords one an efficient alogorithm for optimally
solving the HNOW-Utilization Problem on the HNOW N [17].

e The optimization problem (8.9), augmented with the seven sets of constraints, com-
prises a linear program whose solution yields the optimal solution for the HNOW-
Utilization Problem on the HNOW N .

e This linear program finds this schedule in time polynomial in the size of N, as mea-
sured by the number of workstations and the number of direct interworkstation links.

Significant related studies. One finds in [3] a model that captures the same features
as does HHHCoHP, but without allowing for workstation heterogeneity. Using this model,
it is proved that the FIFO Protocol provides optimal solutions for the HNOW-Exploitation
Problem in homogeneous NOWs.

We remarked earlier that one finds in [20] four variants of the HNOW-Exploitation
Problem, not just the one variant we have described. In all four variants, the master
workstation sends an allocation of equal-size, equal-complexity tasks to all workstations
of the “exploited” HNOW N and receives the results of those tasks; all tasks are assumed
to produce the same amount of data as results; all communication is single-ported. Two
families of worksharing protocols are considered, one of which has work distributed and
results collected in the staggered manner depicted in Fig. 5; the other of which has work
distributed via a scatter operation and results collected via a gather operation.

The HNOW-Rental Problem is studied in [163], under a model in which tasks produce
no output and communication can overlap with computation, even on the same worksta-
tion. Worksharing proceeds by having the master workstation transmit equal-size chunks
of work to the rented HNOW’s workstations at a frequency determined by an analysis of
the workstations’ powers. A near-optimal algorithm is derived within this setting.

33

One finds in [22, 23, 42] and sources cited therein a model that is simpler than those
discussed thus far. These sources employ a very abstract model that suppresses many of
the costs accounted for in the other cited studies.

Employing a rather different approach to worksharing, the study in [15] considers how
to allocate a single compute-intensive task within an HNOW N. The decision about which
workstation(s) will receive the task is made based on an “auction.” The master workstation
determines which aggregation of N’s workstations will—according to the source’s cost
model—yield the best performance on the auctioned task.

Finally, one finds in [56] a largely experimental study of worksharing in HNOWSs whose
workstations share resources in a nondedicated manner. As in a Computational Grid (see
Section 4.1), the workstations of [56] timeshare their cycles with partners’ work, rather
than dedicating cycles to that work. As in [15], work is allocated among the HNOW’s
workstations based on anticipated performance on that work; in contrast to [15]: “antic-
ipated performance” is explicitly determined empirically; all workstations simultaneously
and continuously monitor the “anticipated performance” of their fellow HNOW members.

4 Internet Computing

Advancing technology has rendered the Internet a viable medium for collaborative com-
puting, via mechanisms such as Grid computing (GC, for short) and Web-based computing
(WC, for short). Our interest in these modalities of Internet computing resides in their
(not-uncommon) use for computing a massive collection of (usually compute-intensive)
tasks that reside at a “master” computing site. When so used, the “master” site views
its “collaborators” as remotely situated “volunteers” who must be supplied with work in
a manner that enhances the completion of the massive job.

4.1 The Platform(s)

Computational Grids. A GC project presupposes the formation of a Computational
Grid—a consortium of computing sites that contract to share resources [62, 63]. From
time to time, a Grid computing site will send a task to a companion Grid site that has
agreed to share its computing cycles. When this companion site returns the result of its
current task, it becomes eligible for further worksharing.

Web-based computing. In a WC project, a volunteer registers with the “master” site
and receives a task to compute. When a volunteer completes its current task, it revisits
the “master” site to return the results of that task and to receive a new task. Interesting
WC projects include: [85, 159], which perform astronomical calculations; [137], which

34

performs security-motivated number-theoretic calculations; [76, 116, 160], which perform
medical and biological computations. Such sites benefit from Internet computing either
because of the sheer volume of their workloads or because of the computational complexity
of their individual tasks.

4.2 Some Challenges

The endeavor of using the Internet for collaborative computing gives rise to two algorithmic
challenges that are not encountered in environments in which the computing agents are
more tightly coupled. We term these challenges temporal and factual unpredictability.

Temporal unpredictability. Remote computing agents in an Internet computing project—
be it a WC or GC project—typically tender no guarantee of when the results from an
allocated task will be returned to the “master” site. Indeed, in a WC project, that site
typically has no guarantee that a “volunteer” will ever return results. This lack of a time
guarantee is an annoyance when the tasks comprising the collaborative workload are mu-
tually independent—i.e., form a bag of tasks—but at least one never runs out of tasks
that are eligible for allocation. (Of course, if all tasks must eventually be executed—which
is not the case with several WC projects—then this annoyance must trigger some action,
such as reallocation, by the “master” site.) However, when the tasks in the workload have
interdependencies that constrain their order of execution, this temporal unpredictability
can lead to a form of gridlock wherein no new tasks can be allocated for an indeterminate
period, pending the execution of already allocated tasks. Although “safety devices” such
as deadline-triggered reallocation of tasks address this danger, they do not eliminate it,
since the “backup” remote participant assigned a given task may be as dilatory as the
primary one. A major challenge is how to orchestrate the allocation of tasks in a way that
minimizes the likelihood of this form of gridlock.

Factual unpredictability. The volunteers who participate in a WC project typically
need not authenticate their alleged identities. In many such projects, the sheer number of
participants would render the use of costly trusted authentication mechanisms impracti-
cable. This fact renders all interchanges with—and information from—volunteers totally
insecure. As noted in Section 1, this situation apparently creates an irresistible temp-
tation for hackers, who plague many WC projects, greatly increasing the overhead for
these projects. For this reason, one might suggest using WC only for security-insensitive
applications (relating, say, to processing astronomical data [85, 159]) where erroneous or
even mischievously or maliciously false results are not likely to have dire consequences.
However, many of the most important applications of WC involve very sensitive appli-
cations, such as security-related [137] or health-related [76, 116] ones. Indeed, for many
applications that generate truly massive numbers of identical tasks, Web-based computing
is one of the only imaginable ways to assemble massive computing power at manageable

35

cost. The challenge is to coordinate the volunteers in a WC project in a way that mini-
mizes potential disruptions by hackers, while not excessively slowing down the progress of
legitimate participants.

4.3 Some Sophisticated Responses

There have thus far been few rigorously analyzed algorithmic studies of computing on the
Internet, via either WC or GC. One significant such study is [17], which studies worksharing
in Grids. By rescaling model parameters, this study applies also to worksharing in HNOWs,
which is the context in which we discuss it (Section 3.3.3.C). We have opted to reserve
this section for studies that address problems unique to Internet computing.

4.3.1 Scheduling to cope with temporal unreliability

A. Case study: [133, 136] These sources craft and study a model that abstracts the
process of scheduling computation-dags for either GC or WC. The goal of the model is to
allow one to avoid the gridlock encountered when a computation stalls because all tasks
that are eligible for execution have been allocated but not yet returned. The model is
inspired by the many pebble games on dags that have been shown, over several decades,
to yield elegant formal analogues of a variety of problems related to scheduling the task-
nodes of computation-dags [47, 73, 118]. Such games use tokens called pebbles to model
the progress of a computation on a dag: the placement or removal of the various available
types of pebbles—which is constrained by the dependencies modeled by the dag’s arcs—
represents the changing (computational) status of the dag’s task-nodes. The Internet-
Computing (IC, for short) Pebble Game on a computation-dag G involves one player S,
the Server, and an indeterminate number of players C, Cs, . . ., the Clients. The Server has
access to unlimited supplies of three types of pebbles: ELIGIBLE-BUT-UNALLOCATED (EBU,
for short) pebbles, ELIGIBLE-AND-ALLOCATED (EAA, for short) pebbles, and EXECUTED
(XEQ, for short) pebbles. The Game’s moves reflect the successive stages in the “life-cycle”
of a node in a computation-dag, from eligibility for execution through actual execution.
Fig. 7 presents the rules of the IC Pebble Game. The reader should note how the moves
of the Game expose the danger of a play’s being stalled indefinitely by dilatory Clients.

There is little that one can do to forestall the chances of gridlock when playing the
IC Pebble Game, absent some constraint on the actions of the Clients. Without some
constraint, a malicious adversary (read: unfortunate behavior by Clients) could confute any
attempt to guarantee the availability of a node containing an EBU pebble—by imposing a
pessimal order on the execution of allocated tasks. The constraint imposed by the study in
[133, 136] is the assumption that tasks are ezecuted in the same order as they are allocated.
(Since many GC and WC “master” sites monitor the state of remote participants, this

36

e At any step of the game, S may place an EBU pebble on any unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents whose prior
execution they depend on.*/

e Say that Client C; approaches S requesting a task. If C; has previously been allocated a task
that it has not completed, then C;’s request is ignored; otherwise, the following occurs.

— If at least one node of G contains an EBU pebble, then S gives C; the task corresponding
to one such node and replaces that node’s pebble by an EAA pebble.

— If no node of G contains an EBU pebble, then C; is told to withdraw its request, and this
move is a no-op.

e When a Client returns (the results from) a task-node, S replaces that task-node’s EAA pebble
by an XEQ pebble. S then places an EBU pebble on each unpebbled node of G all of whose
parents contain XEQ pebbles.

e S’s goal is to allocate nodes in such a way that every node v of G eventually contains an XEQ
pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

Figure 7: The rules of the IC' Pebble Game

assumption is not totally fanciful.) With this assumption in place, these studies attempt
to optimize the quality of a play of the IC Pebble Game on a dag G by maximizing, at all
steps t, the aggregate number of EBU pebbles on G’s nodes, as a function of the number of
EAA and XEQ pebbles on G’s nodes.

The computation-dags studied in [133, 136] are the four depicted in Fig. 8: the (infinite)
evolving mesh-dag, reduction-oriented versions of mesh-dags and tree-dags, and the FFT-
dag [48]. It is shown in [133] (for evolving 2-dimensional mesh-dags) and in [136] (for the
other dags in Fig. 8) that a schedule for the dags in Fig. 8 is optimal if, and only if, it
allocates nodes in a parent-oriented fashion—i.e., it executes all parents of each node in
consecutive steps. This general result translates to the following dag-specific instances.

e The strateqy of executing nodes of evolving mesh-dags along successive levels of the
dag—Ilevel k comprises all nodes (x,y) such that © +y = k—is optimal for 2-
dimensional mesh-dags. (It is shown in [133] that this strategy is within a constant
factor of optimal for mesh-dags of higher (fixred) dimensionalities.)

The proof for 2-dimensional mesh-dags is immediate from the following observation. No
two eligible nodes can reside in the same row or the same column of the mesh-dag at any

37

Figure 8: Clockwise from upper left: the evolving (2-dimensional) mesh-dag, a (binary)
reduction-tree dag, the 5-level (2-dimensional) reduction-mesh dag, the 4-level FFT-dag

step of the IC Pebble Game; moreover, all “ancestors” of each EBU node must contain XEQ
n
pebbles. Hence, when there are n EBU nodes on the dag, there must be at least (2 XEQ

nodes “supporting” them. The argument for higher dimensionalities is similar in strategy
but significantly more complex.

e For reduction-oriented mesh-dags, a schedule is optimal if it executes nodes along
successive levels of the dag.

e For reduction-oriented tree-dags and for the FFT-dag, a schedule is optimal if “sib-
ling” nodes—mnodes that share a parent—are always executed in consecutive steps.

For reduction-mesh dags, the optimality condition follows from the fact that the aggregate
number of EBU nodes on the dag at any step of the IC Pebble Game is bounded above by
(one plus) the smallest index of a level of the dag that contains a pebble at step ¢; one
therefore wants this index to shrink as slowly as possible. For the other dags, the aggregate
number of EBU nodes on the dag at a step of the IC Pebble Game is bounded above by
a quantity depending on the structure of the dag and the number of XEQ nodes at that
step, minus the number of nodes that contain XEQ pebbles while their siblings don’t.

Significant progress is made in [102] toward developing techniques for crafting optimal
schedules for a broad range of computation-dags, by abstracting and generalizing the
scheduling principles underlying the case studies in [133, 136].

38

4.3.2 Scheduling to cope with factual unreliability

There is substantial work going on in the secure-computing community that is aimed at
identifying attempts to compromise collaborative computing projects; see, e.g., [144] and
sources cited therein. We know, however, of only one study aimed at possibly eliminating
hackers from a WC project once they are identified.

A. Case study: [132] This source studies an unusual facet of the security problem in
WC. It develops a computationally lightweight scheme for keeping track of which volunteers
in a WC project computed which tasks. Much of the scheme employs familiar algorithmic
techniques involving search trees for point- and range-queries. The unique aspect of the
scheme is a strategy that assigns positive-integer indices to:

1. the set of all tasks at the master site,
2. all volunteers (who are allowed to arrive and depart dynamically),

3. the set of tasks reserved for each volunteer v

and that interrelates the resulting three sets of indices. The interrelation mechanism is a
task-allocation function (TAF, for short), i.e., a pairing function ¢ that maps the set N x N
of pairs of positive integers one-to-one, onto the set N of positive integers; symbolically,
¢ : Nx N < N. Each copy of the set N plays the role of one of the indicated sets of
indices. The potential practicality of such a scheme demands that the functions ¢, ¢ 1,
and ¢(v,t+ 1) — ¢(v,t) all be easily computed; to wit, the “master” site must compute:

e ©(v,t) to determine the index in the overall workload of the ¢th task in volunteer v’s
workload;

e ¢ (t) to determine which volunteer, v, was assigned task ¢, and what index task ¢
has in v’s workload;

e p(v,t+1)— ¢(v,t) to determine which task to allocate to volunteer v when s/he
returns the results of his/her task t.

In a quest for computational ease, the primary focus in [132] is on TAFs that are additive
(are ATAFs, for short). An ATAF assigns each volunteer v a base task-index B, and a
stride S,; it then uses the formula

Qo(v’t) = Bv + (t o 1)Sv

39

to determine the workload task-index of the tth task assigned to volunteer v. From a
system perspective, ATAFs have the benefit that a volunteer’s stride need be computed
only when s/he first registers at the website and can be stored for subsequent appearances.

The main results of [132] determine how to assign base task-indices and strides to
volunteers efficiently, both in terms of computing these indices and in terms of having the
indices grow as slowly as possible, as functions of the volunteer-index v. The slow growth
of B, and S, is argued in [132] to facilitate management of the memory in which the tasks
are stored. Toward this end, a procedure for contructing ATAFs is presented, based on
the following well-known property of the set @ of positive odd integers; see [113].

e For any positive integer c, every odd integer can be written in precisely one of the
2¢7t forms: 2°n 4+ 1, 2°n+ 3, 2°n +5,..., 2°n + (2¢ — 1), for some nonnegative
integer n.

Procedure ATAF-Constructor(y) (see Fig. 9) builds on the preceding result to construct
ATAFs efficiently.

Step 1. Partition the set of volunteer-task-indices into groups whose sizes are powers of 2 (with any
desired mix of equal-size and distinct-size groups). Order the groups linearly in some (arbitrary)
way.

/*We can now talk unambiguously about group 0 (whose members share group-index g = 0),
group 1 (whose members share group-index g = 1), and so on.*/

Step 2. Assign each group a distinct copy of the set @, via a copy-indez x(g) expressed as a function
of the group-index g.
/*We can now talk unambiguously about group g's copy @,4) of the odd integers.*/

Step 3. Allocate group g's copy @, to its members via the (c = k(g)) instance of the cited

property of the odd integers, using the multiplier 29 as a signature to distinguish group g’s
copy of the set @ from all other groups’ copies.

Figure 9: Procedure ATAF-Constructor(yp), which constructs an ATAF ¢
An explicit expression for the ATAFs of Procedure ATAF-Constructor. If we denote
the 2%(9) rows of group g as z,1, 2,9, . ., T, on(), then for all i € {1,2,...,k(g)},
o(rg:,y) = 29 [21+"‘(9)(y — 1)+ (224, + 1 mod 21+”(g))]

Fig. 10 illustrates the construction via a sampler of argument-result values from three sam-
ple ATAFs. The first two exemplified ATAFs, o<'> and ¢<3>, stress ease of computation;
the third, p#(z,y), stresses slowly growing strides.

40

<> (z,y) < 27 12(y — 1) + (22 — 1 mod 2)]

(z,9) o<1 (z,y)
(14,13) || 8192 | 24576 | 40060 | 57344 | 73728

(15,14) || 16384 | 49152 | 81920 | 114688 | 147456
<3 (z,y) = 2@ D/A8(y — 1) + (22 — 1 mod 8)]

(z,9) G
(14, 3) 24 83 | 152 216 280

(15, 3) 40 104 168 232 296

(28,6) 448 960 | 1472 1984 2496

(29,7) 128 1152 2176 3200 4224

(p#(x’ y) def 2Llog z| (21+[10g z| (y _ 1) + (250 + 1 mod 21+[10g z]))
(z,9) o7 (z,y)

(28,4) 400 912 1424 1936 2448

(20,4) || 432 | 944 | 1456 | 1968 | 2480

Figure 10: Sample values by three ATAFs

Acknowledgments. The research of the author was supported in part by NSF Grant
CCR-00-73401. Thanks are due many colleagues who helped in varied ways: by comment-
ing on the text, by pointing out references, and by giving permission to have their work
summarized here. I hesitate to enumerate them for fear of inadvertently forgetting some.
Let me, therefore, merely assure them of my sincere gratitude.

References

[1] U. Acar, G.E. Blelloch, R.D. Blumofe (2002): The data locality of work stealing. Theory
of Computing Systs. 35, 321-347.

[2] M. Adler, Y. Gong, A.L. Rosenberg (2003): Optimal sharing of bags of tasks in het-
erogeneous clusters. 15th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA’03), 1-10.

[3] J. Agrawal and H.V. Jagadish (1988): Partitioning techniques for large-grained parallelism.
IEEE Trans. Computers 37, 1627-1634.

[4] W. Ajello, S.N. Bhatt, F.R.K. Chung, A.L. Rosenberg, R.K. Sitaraman (2001): Augmented
ring networks. IEEE Trans. Parallel and Distr. Systs. 12, 598-609.

41

[5]

S. Akl (1989): The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood
Cliffs, NJ.

R. Aleliunas and A.L. Rosenberg (1982): On embedding rectangular grids in square grids.
IEEE Trans. Comp., C-81, 907-913.

A. Alexandrov, M.I. Ionescu, K.E. Schauser, C. Scheiman (1997): LogGP: incorporating
long messages into the LogP model for parallel computation. J. Parallel Distr. Comput. 44,
71-79.

R.J. Anderson and G.L. Miller (1990): A simple randomized parallel algorithm for list-
ranking. Inform. Proc. Let. 10.

T.E. Anderson, D.E. Culler, D.A. Patterson, and the HNOW Team (1995): A case for
NOW (networks of workstations). IEEE Micro 15, 54-64.

M. Andrews, F.T. Leighton, P.T. Metaxas, L. Zhang (1996): Improved methods for hiding
latency in high bandwidth networks. 8th ACM Symp. on Parallel Algorithms and Archi-
tectures, 52—61.

F.S. Annexstein (1991): SIMD-emulations of hypercubes and related networks by linear
and ring-connected processor arrays. 3rd IEEE Symp. on Parallel and Distr. Processing,
656-659.

F.S. Annexstein (1994): Embedding hypercubes and related networks into mesh-connected
processor arrays. J. Parallel Distr. Comput. 23, 72-79.

F.S. Annexstein, M. Baumslag, A.L. Rosenberg (1990): Group action graphs and parallel
architectures. STAM J. Comput. 19, 544-569.

N.S. Arora, R.D. Blumofe, C.G. Plaxton (2001): Thread scheduling for multiprogrammed
multiprocessors. Theory of Computing Systs. 34, 115-144.

M.J. Atallah, C.L. Black, D.C. Marinescu, H.J. Siegel, T.L. Casavant (1992): Models
and algorithms for coscheduling compute-intensive tasks on a network of workstations.
J. Parallel Distr. Comput. 16, 319-327.

B. Awerbuch, Y. Azar, A. Fiat, F.T. Leighton (1996): Making commitments in the face
of uncertainty: how to pick a winner almost every time. 28th ACM Symp. on Theory of
Computing, 519-530.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2003): Scheduling
strategies for master-slave tasking on heterogeneous processor grids. Typescript, ENS-Lyon.

A. Bar-Noy and D. Peleg (1991): Square meshes are not always optimal. IEEE
Trans. Comp. 40, 196-204.

42

[19]

[20]

[21]

[29]

[30]

[31]

[32]

[33]

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2002): Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. Intl. Parallel and Distr. Pro-
cessing Symp. (IPDPS’02).

O. Beaumont, A. Legrand, Y. Robert (2003): The master-slave paradigm with heteroge-
neous processors. IEEE Trans. Parallel and Distr. Systs. 14, 897-908.

J.-C. Bermond and C. Peyrat (1989): The de Bruijn and Kautz networks: a competitor
for the hypercube? In Hypercube and Distributed Computers (F. Andre and J.P. Verjus,
eds.) North-Holland, Amsterdam, 279-293.

V. Bharadwaj, D. Ghose, V. Mani (1994): Optimal sequencing and arrangement in dis-
tributed single-level tree networks. IEEE Trans. Parallel and Distr. Systs. 5, 968-976.

V. Bharadwaj, D. Ghose, V. Mani (1995): Multi-installment load distribution in tree
networks with delays. IEEE Trans. Aerospace and Electron. Systs. 31, 555-567.

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1992): Efficient embeddings of
trees in hypercubes. SIAM J. Comput. 21, 151-162.

S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obrenié¢, A.L. Rosenberg,
E.J. Schwabe (1996): Optimal emulations by butterfly-like networks. J. ACM 43, 293-
330.

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1997): On optimal strategies
for cycle-stealing in networks of workstations. IEEE Trans. Comp. 46, 545-557.

S.N. Bhatt, D.S. Greenberg, F.T. Leighton, P. Liu (1999): Tight bounds for on-line tree
embeddings. STAM J. Comput. 29, 474-491.

S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph layout problems.
J. Comput. Syst. Scis. 28, 300-343.

G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, P. Spirakis (1998): BSP vs. LogP.
Algorithmica.

G. Bilardi and A. Nicolau (1989): Adaptive bitonic sorting: An optimal algorithm for
shared memory machines. SIAM J. Comput. 18, 216-228.

G. Bilardi and F.P. Preparata (1995): Horizons of parallel computation. J. Parallel
Distr. Comput. 27, 172-182.

R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, Y. Zhou (1995):
Cilk: an efficient multithreaded runtime system. 5th ACM SIGPLAN Symp. on Principles
and Practices of Parallel Programming (PPoPP’95).

R.D. Blumofe and C.E. Leiserson (1998): Space-efficient scheduling of multithreaded com-
putations. STAM J. Comput. 27, 202-229.

43

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[47]
[48]

[49]

[50]

R.D. Blumofe and C.E. Leiserson (1999): Scheduling multithreaded computations by work
stealing. J. ACM 46, 720-748.

R.D. Blumofe and D.S. Park (1994): Scheduling large-scale parallel computations on net-
works of workstations. 8rd Intl. Symp. on High-Performance Distr. Computing, 96-105.

B. Boothe and A.G. Ranade (1992): Improved multithreading techniques for hiding com-
munication latency in multiprocessors. 19th Intl. Symp. on Computer Architecture.

R.P. Brent (1974): The parallel evaluation of general arithmetic expressions. J. ACM 21,
201-206.

R.P. Brent and H.T. Kung (1984): Systolic VLSI arrays for polynomial gcd computation.
IEEE Trans. Comp., C-33, 731-737.

R.P. Brent, H.T. Kung, F.T. Luk (1983): Some linear-time algorithms for systolic arrays.
In Information Processing 83 (R.E.A. Mason, ed.), North-Holland, Amsterdam, 865-876.

T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser (1987): Graph bisection algorithms with
good average case behavior. Combinatorica 7, 171-191.

F. Cappello, P. Fraigniaud, B. Mans, A.L. Rosenberg (2001): HiHCoHP—Toward a re-
alistic communication model for hierarchical hyperclusters of heterogeneous processors.
Intl. Parallel and Distr. Processing Symp. (IPDPS’01).

Y.C. Cheng and T.G. Robertazzi (1990): Distributed computation for tree networks with
communication delays. IEEE Trans. Aerospace and Electron. Systs. 26, 511-516.

S. Chingchit, M. Kumar, L.N. Bhuyan (1999): A flexible clustering and scheduling scheme
for efficient parallel computation. 15th IEEE Intl. Parallel Processing Symp., 500-505.

W. Cirne and K. Marzullo (1999): The Computational Co-op: gathering clusters into a
metacomputer. 13th Intl. Parallel Processing Symp., 160-166.

M. Cole (1989): Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, Mass.

R. Cole and U. Vishkin (1986): Deterministic coin tossing with applications to optimal
parallel list ranking. Inform. Contr. 70, 32-53.

S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9, 308-316.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to Algorithms
(2nd Edition). MIT Press, Cambridge, Mass.

M. Cosnard and M. Tchuente (1988): Designing systolic algorithms by top-down analysis.
3rd Intl. Conf. on Supercomputing.

M. Cosnard and D. Trystram (1995): Parallel Algorithms and Architectures. International
Thompson Computer Press.

44

[51]

[52]

[53]

[54]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subra-
monian, T. von Eicken (1996): LogP: towards a realistic model of parallel computation.

C. ACM 39, 78-85.

R. Cypher and C.G. Plaxton (1993): Deterministic sorting in nearly logarithmic time on
the hypercube and related computers. J. Comput. Syst. Scis. 47, 501-548.

T.D. deRose, L. Snyder, C. Yang (1987): Near-optimal speedup of graphics algorithms
using multigauge parallel computers. Intl. Conf. on Parallel Processing, 289-294.

M.D. Dikaiakos, K. Steiglitz, A. Rogers (1994): A comparison of techniques for mapping
parallel algorithms to message-passing multiprocessors. 6th IEEE Symp. on Parallel and
Distr. Processing, 434-442.

K. Diks, H.N. Djidjev, O. Sykora, I. Vrto (1993): Edge separators of planar and outerplanar
graphs with applications. J. Algorithms 14, 258-279.

X. Du and X. Zhang (1997): Coordinating parallel processes on networks of workstations.
J. Parallel Distr. Comput. 46, 125-135.

K. Efe (1991): Embedding mesh of trees into the hypercube. J. Parallel Distr. Comput. 11,
222-230.

R. Elsasser, B. Monien, R. Preis (2002): Diffusion schemes for load balancing on heteroge-
neous networks. Theory of Computing Systs. 35, 305-320.

P. Fatourou and P. Spirakis (2000): Efficient scheduling of strict multithreaded computa-
tions. Theory of Computing Systs. 33, 173-232.

C.M. Fiduccia and R.M. Mattheyses (1982): A linear-time heuristic for improving network
partitions. 19th ACM-IEEE Design Automation Conf., 175-181.

S. Fortune and J. Wyllie (1978): Parallelism in random access machines. 10th ACM
Symp. on Theory of Computing, 114-118.

I. Foster and C. Kesselman [eds.] (1999): The Grid: Blueprint for a New Computing
Infrastructure, Morgan-Kaufmann.

I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable
virtual organizations. Intl. J. Supercomputer Applications.

D. Gannon (1980): A note on pipelining a mesh-connected multiprocessor for finite element
problems by nested dissection. Intl. Conf. on Parallel Processing, 197-204.

L.-X. Gao, A.L. Rosenberg, R.K. Sitaraman (1999): Optimal clustering of tree-sweep com-
putations for high-latency parallel environments. IEEE Trans. Parallel and Distr. Systs. 10,
813-824.

45

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

V. Garg and D.E. Schimmel (1998): Hiding communication latency in data parallel appli-
cations. 12th IEEE Intl. Parallel Processing Symp., 18-25.

A. Gerasoulis, S. Venugopal, T. Yang (1990): Clustering task graphs for message passing
architectures. ACM Intl. Conf. on Supercomputing, 447-456.

A. Gerasoulis and T. Yang (1992): A comparison of clustering heuristics for scheduling
dags on multiprocessors. J. Parallel Distr. Comput. 16, 276-291.

M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, T. Tsantilas (1999): Portable and efficient
parallel computing using the BSP model. IEEE Trans. Comp. 48, 670-689.

D.S. Greenberg, L.S. Heath and A.L. Rosenberg (1990): Optimal embeddings of butterfly-
like graphs in the hypercube. Math. Syst. Th. 23, 61-77.

V.C. Hamacher and H. Jiang (1994): Comparison of mesh and hierarchical networks for
multiprocessors. Intl. Conf. on Parallel Processing, 1:67-71.

C.-T. Ho and S.L. Johnsson (1986): Graph embeddings for maximum bandwidth utilization
in hypercubes. Intl. Conf. Vector and Parallel Computing.

J.-W. Hong and H.T. Kung (1981): I/O complexity: the red-blue pebble game. 18th ACM
Symp. on Theory of Computing, 326—333.

Y. Hong and T. Payne (1989): Parallel sorting in a ring network of processors. IEEE
Trans. Comp. 38, 458—464.

O.H. Ibarra and S.T. Sohn (1990): On mapping systolic algorithms onto the hyercube.
IEEE Trans. Parallel Distr. Systs. 1, 238-249.

The Intel Philanthropic Peer-to-Peer program. (www.intel.com/cure).

C. Kaklamanis and D. Krizanc (1992): Optimal sorting on mesh-connected processor ar-
rays. 4th ACM Symp. on Parallel Algorithms and Architectures, 50-59.

C. Kaklamanis, D. Krizanc, S.B. Rao (1997): New graph decompositions with applications
to emulations. Theory of Computing Systs. 30, 39—49.

R.M. Karp and R.E. Miller (1966): Properties of a model for parallel computations: de-
terminacy, termination, queueing. SIAM J. Appl. Math. 14, 1390-1411.

R.M. Karp and V. Ramachandran (1990): A survey of parallel algorithms for shared-
memory machines. In Handbook of Theoretical Computer Science, vol. A (J. van Leeuwen,
ed.) Elsevier Science, Amsterdam, 869-941.

R.M. Karp, A. Sahay, E. Santos, K.E. Schauser (1993): Optimal broadcast and summation
in the logP model. 5th ACM Symp. on Parallel Algorithms and Architectures, 142—153.

B.W. Kernighan and S. Lin (1970): An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49, 291-307.

46

[83]

[84]

[85]

S.J. Kim and J.C. Browne (1988): A general approach to mapping of parallel computations
upon multiprocessor architectures. Intl. Conf. on Parallel Processing, 111:1-8.

R. Koch, F.T. Leighton, B.M. Maggs, S.B. Rao, A.L. Rosenberg, E.J. Schwabe (1997):
Work-preserving emulations of fixed-connection networks. J. ACM 44, 104-147.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETIQhome:
massively distributed computing for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press, Los Alamitos, CA.

H.T. Kung (1985): Systolic arrays. In McGraw-Hill 1985 Yearbook of Science and Tech-
nology.

H.T. Kung and C.E. Leiserson (1980): Systolic arrays (for VLSI). In Chapter 8 of [105].

H.T. Kung and W.T. Lin (1983): An algebra for VLSI algorithm design. Conf. on Elliptic
Problem Solvers, Monterey, CA.

H.T. Kung and R.L. Picard (1984): One-dimensional systolic arrays for multidimen-
sional convolution and resampling. In VLSI for Pattern Recognition and Image Processing,
Springer-Verlag, Berlin, 9-24.

C. Lam, H. Jiang, V.C. Hamacher (1995): Design and analysis of hierarchical ring networks
for shared-memory multiprocessors. Intl. Conf. on Parallel Processing, 1:46-50.

H.W. Lang, M. Schimmler, H. Schmeck, H. Schroeder (1985): Systolic sorting on a mesh-
connected network. IEEE Trans. Comp., C-34, 652—658.

F.T. Leighton (1985): Tight bounds on the complexity of parallel sorting. IEEE
Trans. Comp., C-34, 344-354.

F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann, San Mateo, Cal.

F.T. Leighton, B.M. Maggs, S.B. Rao (1994): Packet routing and job-shop scheduling in
O(congestion + dilation) steps. Combinatorica 14, 167-186.

F.T. Leighton, B.M. Maggs, A.W. Richa (1998): Fast algorithms for finding O(congestion
+ dilation) packet routing schedules. Combinatorica 18.

F.T. Leighton, M.J. Newman, A.G. Ranade, E.J. Schwabe (1992): Dynamic tree embed-
dings in butterflies and hypercubes. SIAM J. Comput. 21, 639-654.

G. Lerman and L. Rudolph (1993): Parallel Evolution of Parallel Processors. Plenum Press,
New York.

K. Li and J. Dorband (1999): Asymptotically optimal probabilistic embedding algorithms
for supporting tree structured computations in hypercubes. 7th Symp. on Frontiers of
Massively Parallel Computation.

47

[99]

[100]

[101]

[102]

103]

104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

114]

R.J. Lipton and R.E. Tarjan (1980): Applications of a planar separator theorem. STAM
J. Comput. 9, 615-627.

M. Litzkow, M. Livny, M.W. Mutka (1988): Condor — A hunter of idle workstations. 8th
Intl. Conf. on Distr. Computing Systs., 104-111.

B.M. Maggs, F. Meyer auf der Heide, B. Vocking, M. Westermann (1997): Exploiting
locality for data management in systems of limited bandwidth. 38th IEEE Symp. on Foun-
dations of Computer Science, 284-293.

G. Malewicz, A.L. Rosenberg M. Yurkewych (2004): On scheduling complex dags for
Internet-based computing. Typescript, Univ. Massachusetts. Submitted for publication.

D.W. Matula and L.L. Beck (1983): Smallest-last ordering and clustering and graph col-
oring algorithms. J. ACM 30, 417-427.

W.F. McColl and A. Tiskin (1998): Memory-efficient matrix computations in the BSP
model. Algorithmica.

C. Mead and L. Conway (1980): Introduction to VLSI Systems. Addison-Wesley, Reading,
Mass.

G.L. Miller, V. Ramachandran, E. Kaltofen (1988): Efficient parallel evaluation of straight-
line code and arithmetic circuits. SIAM J. Comput. 17, 687-695.

G.L. Miller and J.H. Reif (1989): Parallel tree contraction, Part 1: fundamentals. In
Randomness and Computation, vol. 5 (S. Micali, ed.), JAI Press, Greenwich, Ct., 47-72.

G.L. Miller and J.H. Reif (1991): Parallel tree contraction, Part 2: further applications.
SIAM J. Comput. 20, 1128-1147.

W.L. Miranker and A. Winkler (1984): Spacetime representations of computational struc-
tures. Computing 32, 93-114.

M. Mitzenmacher (1998): Analyses of load stealing models based on differential equations.
10th ACM Symp. on Parallel Algorithms and Architectures, 212—221.

M. Mitzenmacher (1999): On the analysis of randomized load balancing schemes. Theory
of Computing Systs. 32, 361-386.

J. F. Myoupo (1992): Synthesizing linear systolic arrays for dynamic programming prob-
lems. Parallel Proc. Let. 2, 97-110.

I. Niven and H.S. Zuckerman (1980): An Introduction to the Theory of Numbers. (4th Ed.)
J. Wiley & Sons, New York.

B. Obreni¢ (1994): An approach to emulating separable graphs. Math. Syst. Th. 27, 41-63.

48

[115]

[116]

[117]

[118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

B. Obrenié¢, M.C. Herbordt, A.L. Rosenberg, C.C. Weems (1999): Using emulations to en-
hance the performance of parallel architectures. IEEE Trans. Parallel and Distr. Systs. 10,
1067-1081.

The Olson Laboratory Fight AIDS@Home project. (www.fightaidsathome.org).

C.H. Papadimitriou and M. Yannakakis (1990): Towards an architecture-independent anal-
ysis of parallel algorithms. SIAM J. Comput. 19, 322-328.

M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project MAC Conf. on
Concurrent Systems and Parallel Computation, ACM Press, 119-127.

G.F. Pfister (1995): In Search of Clusters. Prentice-Hall.

P. Quinton (1984): Automatic synthesis of systolic arrays from uniform recurrence equa-
tions. 11th IEEE Intl. Symp. on Computer Architecture, 208-214.

P. Quinton (1988): Mapping recurrences on parallel architectures. 8rd Intl. Conf. on Su-
percomputing.

P. Quinton, B. Joinnault, P. Gachet (1986): A new matrix multiplication systolic array.
Parallel Algorithms and Architectures (M. Cosnard et al., eds.) North-Holland, Amsterdam,
259-268.

M.O. Rabin (1989): Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM 36, 335-348.

A.G. Ranade (1993): A framework for analyzing locality and portability issues in paral-
lel computing. In Parallel Architectures and Their Efficient Use: The 1st Heinz-Nizdorf
Symp., Paderborn, Germany (F. Meyer auf der Heide, B. Monien, A.L. Rosenberg, eds.)
Lecture Notes in Computer Science 678, Springer-Verlag, Berlin, 185-194.

J.H. Reif and L.G. Valiant (1987): A logarithmic time sort for linear networks. J. ACM
34, 60-76.

A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph- Theoretic Con-
cepts in Computer Science: Proceedings of the Intl. Wkshp. WG80 (H. Noltemeier, ed.)
Lecture Notes in Computer Science 100, Springer-Verlag, Berlin, 150-176.

A L. Rosenberg (1994): Needed: a theoretical basis for heterogeneous parallel computing.
In Developing a Computer Science Agenda for High-Performance Computing (U. Vishkin,
ed.) ACM Press, New York, 137-142.

A.L. Rosenberg (1999): Guidelines for data-parallel cycle-stealing in networks of worksta-
tions, I: on maximizing expected output. J. Parallel Distr. Comput. 59, 31-53.

A.L. Rosenberg (2000): Guidelines for data-parallel cycle-stealing in networks of worksta-
tions, II: on maximizing guaranteed output. Intl. J. Foundations of Computer Science 11,
183-204.

49

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

A.L. Rosenberg (2001): On sharing bags of tasks in heterogeneous networks of workstations:
greedier is not better. 8rd IEEE Intl. Conf. on Cluster Computing (Cluster’01), 124-131.

A L. Rosenberg (2002): Optimal schedules for cycle-stealing in a network of workstations
with a bag-of-tasks workload. IEEE Trans. Parallel and Distr. Systs. 13, 179-191.

A.L. Rosenberg (2003): Accountable Web-computing. IEEE Trans. Parallel and
Distr. Systs. 14, 97-106.

A.L. Rosenberg (2004): On scheduling mesh-structured computations on the Internet.
IEEE Trans. Comput., 1176-1186.

A.L. Rosenberg and L.S. Heath (2001): Graph Separators, with Applications. Kluwer Aca-
demic/Plenum Publishers, New York.

A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing 31,
115-139.

A.L. Rosenberg and M. Yurkewych (2004): Guidelines for scheduling some common
computation-dags for Internet-based computing.” IEEE Trans. Comput., to appear.

The RSA Factoring by Web Project. (http://www.npac.syr.edu/factoring) (with Fore-
word by A. Lenstra). Northeast Parallel Architecture Center.

L. Rudolph, M. Slivkin, E. Upfal (1991): A simple load balancing scheme for task allocation
in parallel machines. 3rd ACM Symp. on Parallel Algorithms and Architectures, 237-244.

V. Sarkar (1989): Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT
Press, Cambridge, Mass.

V. Sarkar and J. Hennessy (1986): Compile-time partitioning and scheduling of parallel
programs. SIGPLAN Notices 21 (7) 17-26.

C.P. Schnorr and A. Shamir (1986): An optimal sorting algorithm for mesh connected
computers. 18th ACM Symp. on Theory of Computing, 255—263.

E.J. Schwabe (1992): Embedding meshes of trees into de Bruijn graphs. In-
form. Proc. Let. 43, 237-240.

L. Snyder (1985): An inquiry into the benefits of multigauge parallel computation.
Intl. Conf. on Parallel Processing, 488—492.

D. Szada, B. Lawson, J. Owen (2003): Hardening functions for large-scale distributed
computing. IEEE Security and Privacy Conf.

M.M. Theimer and K.A. Lantz (1989): Finding idle machines in a workstation-based dis-
tributed environment. IEEE Trans. Software Eng’q. 15, 1444-1458.

C.D. Thompson (1979): Area-time complexity for VLSI. 11th ACM Symp. on Theory of
Computing, 81-88.

50

[147]
[148]

[149]

[150]

[151]

[152]

[153]
[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

C.D. Thompson (1980): A Complexity Theory for VLSI. Ph.D. Thesis, CMU.

C.D. Thompson and H.T. Kung (1977): Sorting on a mesh-connected parallel computer.
C. ACM 20.

J.D. Ullman (1984): Computational Aspects of VLSI. Computer Science Press, Rockville,
Md.

L.G. Valiant (1983): Optimality of a two-phase strategy for routing in interconnection
networks. IEEE Trans. Comp., C-32, 861-863.

L.G. Valiant (1989): Bulk-synchronous parallel computers. In Parallel Processing and Ar-
tificial Intelligence (M. Reeve and S.E. Zenith, eds.) J. Wiley and Sons, New York, 15-22.

L.G. Valiant (1990): General purpose parallel architectures. In Handbook of Theoretical
Computer Science (J. van Leeuwen, ed.) Elsevier Science, Amsterdam, 943-972.

L.G. Valiant (1990): A bridging model for parallel computation. C. ACM 33, 103-111.

L.G. Valiant and G.J. Brebner (1981): Universal schemes for parallel computation. 13th
ACM Symp. on Theory of Computing, 263-277.

P.M.B. Vitanyi (1986): Nonsequential computation and laws of nature. VLSI Algorithms
and Architectures (Aegean Wkshp. on Computing) Lecture Notes in Computer Science 227,
Springer-Verlag, Berlin, 108-120.

P.M.B. Vitanyi (1988): Locality, communication and interconnect length in multicomput-
ers. SIAM J. Comput. 17, 659—-672.

P.M.B. Vitanyi (1988): A modest proposal for communication costs in multicomputers.
In Concurrent Computations: Algorithms, Architecture, and Technology (S.K. Tewksbury,
B.W. Dickinson, S.C. Schwartz, eds.) Plenum Press, New York, 203-216.

A.S. Wagner (1989): Embedding arbitrary binary trees in a hypercube. J. Parallel
Distr. Comput. 7, 503-520.

C. Weth, U. Kraus, J. Freuer, M. Ruder, R. Dannecker, P. Schneider, M. Konold, H. Ruder
(2000): XPulsar@home — schools help scientists. Typescript, Univ. Tiibingen.

S.W. White and D.C. Torney (1993): Use of a workstation cluster for the physical mapping
of chromosomes. SIAM NEWS, March, 1993, 14-17.

AY. Wu (1985): Embedding of tree networks into hypercubes. J. Parallel Distr. Comput. 2,
238-249.

T. Yang and A. Gerasoulis (1992): PYRROS: static task scheduling and code generation
for message passing multiprocessors. 6th ACM Conf. on Supercomputing, 428-437.

Y. Yang and H. Casanova (2003): UMR: A multi-round algorithm for scheduling divisible
workloads. 17th Intl. Parallel and Distributed Processing Symp. (IPDPS’03).

o1

