
Changing Challenges for Collaborative Algorithmi
sArnold L. RosenbergDepartment of Computer S
ien
eUniversity of Massa
husetts at AmherstAmherst, MA 01003, USArsnbrg�
s.umass.eduO
tober 6, 2004Abstra
tTe
hnologi
al advan
es and e
onomi

onsiderations have led to a wide variety ofmodalities of
ollaborative
omputing: the use of multiple
omputing agents to solveindividual
omputational problems. Ea
h new modality
reates new
hallenges forthe algorithm designer. Older \parallel" algorithmi
 devi
es no longer work on thenewer
omputing platforms (at least in their original forms) and/or do not address
riti
al problems engendered by the new platforms'
hara
teristi
s. In this
hapter,the �eld of \
ollaborative algorithmi
s" is divided into four epo
hs, representing (oneview of) the major evolutionary eras of
ollaborative
omputing platforms. The
hanging
hallenges en
ountered in devising algorithms for ea
h epo
h are dis
ussed,and some notable sophisti
ated responses to the
hallenges are des
ribed.1 Introdu
tionCollaborative
omputing is a regime of
omputation in whi
h multiple agents are enlistedin the solution of a single
omputational problem. Until roughly one de
ade ago, it wasfair to refer to
ollaborative
omputing as parallel
omputing. Developments engenderedby both e
onomi

onsiderations and te
hnologi
al advan
es make the older rubri
 bothina

urate and misleading, as themultipro
essors of the past have been joined by
lusters|independent
omputers inter
onne
ted by a lo
al-area network (LAN)|and by variousmodalities of Internet
omputing|loose
onfederations of
omputing agents of di�eringlevels of
ommitment to the
ommon
omputing enterprise. The agents in the newer1

ollaborative
omputing milieux often do their
omputing at their own times and in theirown lo
ales|de�nitely not \in parallel."Every major te
hnologi
al advan
e in all areas of
omputing
reates signi�
ant news
heduling
hallenges even while enabling new levels of
omputational eÆ
ien
y (measuredin time and/or spa
e and/or
ost). This
hapter presents one algorithmi
ist's view of theparadigm-
hallenges milestones in the evolution of
ollaborative
omputing platforms andof the algorithmi

hallenges ea
h
hange in paradigm has engendered. The
hapter isorganized around a somewhat e

entri
 view of the evolution of
ollaborative
omputingte
hnology through four \epo
hs," ea
h distinguished by the
hallenges one fa
ed whendevising algorithms for the asso
iated
omputing platforms.1. In the epo
h of shared-memory multipro
essors:� One had to
ope with partitioning one's
omputational job into disjoint subjobsthat
ould pro
eed in parallel on an assemblage of identi
al pro
essors. Onehad to try to keep all pro
essors fruitfully busy as mu
h of the time as possible.(The quali�er \fruitfully" indi
ates that the pro
essors are a
tually workingon the problem to be solved, rather than on, say, bookkeeping that
ould beavoided with a bit more
leverness.)� Communi
ation between pro
essors was e�e
ted through shared variables, soone had to
oordinate a

ess to these variables. In parti
ular, one had to avoidthe potential ra
es when two (or more) pro
essors simultaneously vied for a

essto a single memory module, espe
ially when some a

ess was for the purpose ofwriting to the same shared variable.� Sin
e all pro
essors were identi
al, one had, in many situations, to
raft proto-
ols that gave pro
essors separate identities|the pro
ess of so-
alled symmetrybreaking or leader ele
tion. (This was typi
ally ne
essary when one pro
essorhad to take a
oordinating role in an algorithm.)2. The epo
h of message-passing multipro
essors added to the te
hnology of the pre-
eding epo
h a user-a

essible inter
onne
tion network|of known stru
ture|a
rosswhi
h the identi
al pro
essors of one's parallel
omputer
ommuni
ated. On the onehand, one
ould now build mu
h larger aggregations of pro
essors than one
ouldbefore. On the other hand:� One now had to worry about
oordinating the routing and transmission ofmessages a
ross the network, in order to sele
t short paths for messages, whileavoiding
ongestion in the network.� One had to organize one's
omputation to tolerate the often-
onsiderable delays
aused by the point-to-point laten
y of the network and the e�e
ts of networkbandwidth and
ongestion. 2

� Sin
e many of the popular inter
onne
tion networks were highly symmetri
,the problem of symmetry breaking persisted in this epo
h. Sin
e
ommuni
a-tion was now over a network, new algorithmi
 avenues were needed to a
hievesymmetry breaking.� Sin
e the stru
ture of the inter
onne
tion network underlying one's multipro-
essor was known, one
ould|and was well advised to|allo
ate substantial at-tention to network-spe
i�
 optimizations when designing algorithms that strovefor (near) optimality. (Typi
ally, for instan
e, one would strive to exploit lo-
ality: the fa
t that a pro
essor was
loser to some pro
essors than to others.)A
orollary of this fa
t is that one often needed quite disparate algorithmi
strategies for di�erent
lasses of inter
onne
tion networks.3. The epo
h of
lusters|also known as networks of workstations (NOWs, for short)|introdu
ed two new variables into the mix, even while rendering many sophisti
atedmultipro
essor-based algorithmi
 tools obsolete. In Se
tion 3, we outline some algo-rithmi
 approa
hes to the following new
hallenges.� The
omputing agents in a
luster|be they p
's, or multipro
essors, or theeponymous workstations|are now independent
omputers that
ommuni
atewith ea
h other over a lo
al-area network (LAN). This means that
ommuni-
ation times are larger and that
ommuni
ation proto
ols are more ponderous,often requiring tasks su
h as: breaking long messages into pa
kets, en
oding,
omputing
he
ksums, expli
itly setting up
ommuni
ations (say, via a hand-shake). Consequently, tasks must now be
oarser-grained than with multipro-
essors, in order to amortize the
osts of
ommuni
ation. Moreover, the re-spe
tive
omputations of the various
omputing agents
an no longer be tightly
oupled, as they
ould be in a multipro
essor. Further, in general, networklaten
y
an no longer be \hidden" via the sophisti
ated te
hniques developedfor multipro
essors. Finally, one
an usually no longer translate knowledge ofnetwork topology into network-spe
i�
 optimizations.� The
omputing agents in the
luster, either by design or
han
e (su
h as beingpur
hased at di�erent times), are now often heterogeneous, di�ering in speeds ofpro
essors and/or memory systems. This means that a whole range of algorith-mi
 te
hniques developed for the earlier epo
hs of
ollaborative
omputing nolonger work|at least in their original forms [127℄. On the positive side, hetero-geneity obviates symmetry breaking, as pro
essors are now often distinguishableby their unique
ombinations of
omputational resour
es and speeds.4. The epo
h of Internet
omputing, in its several guises, has taken the algorithmi
sof
ollaborative
omputing pre
ious near to|but never quite rea
hing|that of dis-tributed
omputing. While Internet
omputing is still evolving in often-unpredi
table3

dire
tions, we detail two of its
ir
a-2003 guises in Se
tion 4. Certain
hara
teristi
sof present-day Internet
omputing seem
ertain to persist.� One now loses several types of predi
tability that played a signi�
ant ba
kgroundrole in the algorithmi
s of prior epo
hs.{ Interpro
essor
ommuni
ation now takes pla
e over the Internet. In thisenvironment:� a message shares the \airwaves" with an unpredi
table number andassemblage of other messages; it may be dropped and resent; it may berouted over any of myriad paths. All of these fa
tors make it impossibleto predi
t a message's transit time.� a message may be a

essible to unknown (and untrusted) sites, enhan
-ing the need for se
urity-enhan
ing measures.{ The predi
tability of intera
tions among
ollaborating
omputing agentsthat an
hored algorithm development in all prior epo
hs no longer obtains,due to the fa
t that remote agents are typi
ally not dedi
ated to the
ol-laborative task. Even in modalities of Internet
omputing in whi
h remote
omputing agents promise to
omplete
omputational tasks that are as-signed to them, they typi
ally do not guarantee when. Moreover, even theguarantee of eventual
omputation is not present in all modalities of In-ternet
omputing: in some modalities remote agents
annot be relied uponever to
omplete assigned tasks.� In several modalities of Internet
omputing,
omputation is now unreliable intwo senses.{ The
omputing agent assigned a task may, without announ
ement, \resignfrom" the aggregation, abandoning the task. (This is the extreme form oftemporal unpredi
tability just alluded to.){ Sin
e remote agents are unknown and anonymous in some modalities, the
omputing agent assigned a task may mali
iously return falla
ious results.This latter threat introdu
es the need for
omputation-related se
urity mea-sures (e.g., result-
he
king and agent monitoring) for the �rst time to
ol-laborative
omputing. This problem is dis
ussed in a news arti
le athhttp://www.wired.
om/news/te
hnology/0,1282,41838,00.htmli.In su

eeding se
tions, we expand on the pre
eding dis
ussion, de�ning the
ollabora-tive
omputing platforms more
arefully and dis
ussing the resulting
hallenges in moredetail. Due to a number of ex
ellent widely a

essible sour
es that dis
uss and analyzethe epo
hs of multipro
essors, both shared-memory and message-passing, our dis
ussion ofthe �rst two of our epo
hs, in Se
tion 2, will be rather brief. Our dis
ussion of the epo
hs4

of
luster
omputing (in Se
tion 3) and Internet
omputing (in Se
tion 4) will be bothbroader and deeper. In ea
h
ase, we des
ribe the subje
t
omputing platforms in somedetail and des
ribe a variety of sophisti
ated responses to the algorithmi

hallenges ofthat epo
h. Our goal is to highlight studies that attempt to develop algorithmi
 strategiesthat respond in novel ways to the
hallenges of an epo
h. Even with this goal in mind,the reader should be forewarned that:� her guide has an e

entri
 view of the �eld, whi
h may di�er from the views of manyother
ollaborative algorithmi
ists;� some of the still-evolving
ollaborative
omputing platforms we des
ribe will soondisappear, or at least morph into possibly unre
ognizable forms;� some of the \sophisti
ated responses" we dis
uss will never �nd appli
ation beyondthe spe
i�
 studies they o

ur in.This said, I hope that this survey, with all of its limitations, will
onvin
e the reader ofthe wonderful resear
h opportunities that await her \just on the other side" of the systemsand appli
ations literature devoted to emerging
ollaborative
omputing te
hnologies.2 The Epo
hs of Multipro
essorsThe qui
k tour of the world of multipro
essors in this se
tion is intended to
onvey asense of what stimulated mu
h of the algorithmi
 work on
ollaborative
omputing onthis
omputing platform. The following books and surveys provide an ex
ellent detailedtreatment of many subje
ts that we only tou
h upon and even more topi
s that are beyondthe s
ope of this
hapter: [5, 45, 50, 80, 93, 97, 134℄.2.1 Multipro
essor PlatformsAs te
hnology allowed
ir
uits to shrink, starting in the 1970's, it be
ame feasible to designand fabri
ate
omputers that had many pro
essors. Indeed, a few theorists had anti
ipatedthese advan
es in the 1960's [79℄. The �rst attempts at designing su
h multipro
essors en-visioned them as straightforward extensions of the familiar von Neumann ar
hite
ture, inwhi
h a pro
essor box|now populated with many pro
essors|intera
ted with a singlememory box; pro
essors would
oordinate and
ommuni
ate with ea
h other via sharedvariables. The resulting shared-memory multipro
essors were easy to think about, bothfor
omputer ar
hite
ts and
omputer theorists [61℄. Yet, using su
h multipro
essors ef-fe
tively turned out to present numerous
hallenges, exempli�ed by the following.5

� Where/how does one identify the parallelism in one's
omputational problem? Thisquestion persists to this day, feasible answers
hanging with evolving te
hnology.Sin
e there are approa
hes to this question that often to not appear in the standardreferen
es, we shall dis
uss the problem brie
y in Se
tion 2.2.� How does one keep all available pro
essors fruitfully o

upied|the problem of loadbalan
ing? One �nds sophisti
ated multipro
essor-based approa
hes to this problemin primary sour
es su
h as [58, 111, 123, 138℄.� How does one
oordinate a

ess to shared data by the several pro
essors of (espe-
ially, a shared-memory) multipro
essor? The diÆ
ulty of this problem in
reaseswith the number of pro
essors. One signi�
ant approa
h to sharing data requiresestablishing order among a multipro
essor's indistinguishable pro
essors, by sele
t-ing \leaders" and \subleaders," et
. How does one eÆ
iently pi
k a \leader" amongindistinguishable pro
essors|the problem of symmetry breaking? One �nds sophis-ti
ated solutions to this problem in primary sour
es su
h as [8, 46, 107, 108℄.A variety of te
hnologi
al fa
tors suggest that shared memory is likely a better idea as anabstra
tion than as a physi
al a
tuality. This fa
t led to the development of distributedshared memory multipro
essors, in whi
h ea
h pro
essor had its own memory module,and a

esses to remote data was through an inter
onne
tion network. On
e one had pro-
essors
ommuni
ating over an an inter
onne
tion network, it was a small step from thedistributed shared memory abstra
tion to expli
it message-passing, i.e., to having pro
es-sors
ommuni
ate with ea
h other dire
tly rather than through shared variables. In onesense, the introdu
tion of inter
onne
tion networks to parallel ar
hite
tures was liberat-ing: one
ould now (at least in prin
iple) envision multipro
essors with many thousandsof pro
essors. On the other hand, the expli
it algorithmi
 use of networks gave rise to anew set of
hallenges.� How
an one route large numbers of messages within a network without engendering
ongestion (\hot spots") that renders
ommuni
ation insu�erably slow? This is oneof the few algorithmi

hallenges in parallel
omputing that has an a
knowledged
hampion. The two-phase randomized routing strategy developed in [150, 154℄ prov-ably works well in a large range of inter
onne
tion networks (in
luding the popularbutter
y and hyper
ube networks) and empiri
ally works well in many others.� Can one exploit the new phenomenon|lo
ality|that allows
ertain pairs of pro
es-sors to inter
ommuni
ate faster than others? The fa
t that lo
ality
an be exploitedto algorithmi
 advantage is illustrated in [1, 101℄. The phenomenon of lo
ality inparallel algorithmi
s is dis
ussed in [124, 156℄.� How
an one
ope with the situation in whi
h the stru
ture of one's
omputationalproblem|as exposed by the graph of data dependen
ies|is in
ompatible with the6

stru
ture of the inter
onne
tion network underlying the multipro
essor that one hasa

ess to? This is another topi
 that is not treated fully in the referen
es, so wedis
uss it brie
y in Se
tion 2.2.� How
an one organize one's
omputation so that one a

omplishes valuable workwhile awaiting responses from messages, either from the memory subsystem (memorya

esses) or from other pro
essors. A number of innovative and e�e
tive responsesto variants of this problem appear in the literature; see , e.g., [10, 36, 66℄.In addition to the pre
eding
hallenges, one now also fa
ed the largely unanti
ipated insu-perable problem that one's inter
onne
tion network may not \s
ale." Beginning in 1986,a series of papers demonstrated that the physi
al realizations of large instan
es of themost popular inter
onne
tion networks
ould not a�ord one performan
e
onsistent withidealized analyses of those networks [31, 155, 156, 157℄. A word about this problem isin order, sin
e the phenomenon it represents in
uen
es so mu
h of the development ofparallel ar
hite
tures. We live in a three-dimensional world: areas and volumes in spa
egrow polynomially fast when distan
es are measured in units of length. This physi
alpolynomial growth notwithstanding, for many of the algorithmi
ally attra
tive inter
on-ne
tion networks|hyper
ubes, butter
y networks, and de Bruijn networks, to name justthree|the number of nodes (read: \pro
essors") grows exponentially when distan
es aremeasured in number of interpro
essor links. This means, in short, that the interpro
essorlinks of these networks must grow in length as the networks grow in number of pro
essors.Analyses that predi
t performan
e in number of traversed links do not re
e
t the e�e
t oflink-length on a
tual performan
e. Indeed, the anaysis in [31℄ suggests|on the pre
edinggrounds|that only the polynomially growing mesh-like networks
an supply in pra
ti
eeÆ
ien
y
ommensurate with idealized theoreti
al analyses.1We now dis
uss brie
y a few of the
hallenges that
onfronted algorithmi
ists duringthe epo
hs of multipro
essors. We
on
entrate on topi
s that are not treated extensivelyin books and surveys as well as on topi
s that retain their relevan
e beyond these epo
hs.2.2 Algorithmi
 Challenges and ResponsesFinding Parallelism. The seminal study [37℄ was the �rst to systemati
ally distinguishbetween the inherently sequential portion of a
omputation and the parallelizable portion.The analysis in that sour
e led to \Brent's S
heduling Prin
iple," whi
h states, in simplestform, that the time for a
omputation on a p-pro
essor
omputer need be no greater thant + n=p where t is the time for the inherently sequential portion of the
omputation, andn is the total number of operations that must be performed. While the study illustrates1Fig. 1 depi
ts the four mentioned networks. See [93, 134℄ for de�nitions and dis
ussions of these andrelated networks. Additional sour
es su
h as [4, 21, 90℄ illustrate the algorithmi
 use of su
h networks.7

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,0 0,3

1,3

2,3

3,0 3,1 3,2 3,3

000

001

100

010 101

011

110

111

0001

0101

0011

0111

0010

0110

1011

1111

1001

1101

0100

0000 1010

1110

1000

1100

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

0

1

2

0Figure 1: Four inter
onne
tion networks. Row 1: the 4 � 4 mesh, the 3-dimensional deBruijn network; row 2: the 4-dimensional boolean hyper
ube, the 3-level butter
y network(note the two
opies of level 0)how to a
hieve the bound of the Prin
iple for a
lass of arithmeti

omputations, it leavesopen the
hallenge of dis
overing the parallelism in general
omputations. Two majorapproa
hes to this
hallenge appear in the literature and are dis
ussed here.Parallelizing
omputations via
lustering/partitioning. Two related major ap-proa
hes have been developed for s
heduling
omputations on parallel
omputing plat-forms, when the
omputation's intertask dependen
ies are represented by a
omputation-dag|a dire
ted a
y
li
 graph, ea
h of whose ar
s (x ! y) betokens the dependen
e oftask y on task x; sour
es never appear on the righthand side of an ar
; sinks never appearon the lefthand side.The �rst su
h approa
h is to
luster a
omputation-dag's tasks into \blo
ks" whosetasks are so tightly
oupled that one would want to allo
ate ea
h blo
k to a single pro
essorto obviate any
ommuni
ation when exe
uting these tasks. A number of eÆ
ient heuristi
shave been developed to e�e
t su
h
lustering for general
omputation-dags [67, 83, 103,139℄. Su
h heuristi
s typi
ally base their
lustering on some easily
omputed
hara
teristi
of the dag, su
h as its
riti
al path|the most resour
e-
onsuming sour
e to-sink path,in
luding both
omputation time and volume of intertask data|or its dominant sequen
e|a sour
e-to-sink path, possibly augmented with dummy ar
s, that a

ounts for the entiremakespan of the
omputation. Several experimental studies
ompare these heuristi
s ina variety of settings [54, 68℄, and systems have been developed to exploit su
h
lusteringin devising s
hedules [43, 140, 162℄. Numerous algorithmi
 studies have demonstrated8

analyti
ally the provable e�e
tiveness of this approa
h for spe
ial s
heduling
lasses of
omputation-dags [65, 117℄.Dual to the pre
eding
lustering heuristi
s is the pro
ess of
lustering by graph separa-tion. Here one seeks to partition a
omputation-dag into subdags by \
utting" ar
s thatinter
onne
t loosely
oupled blo
ks of tasks. When the tasks in ea
h blo
k are mapped to asingle pro
essor, the small numbers of ar
s inter
onne
ting pairs of blo
ks lead to relativelysmall|hen
e, inexpensive|interpro
essor
ommuni
ations. This approa
h has been stud-ied extensively in the parallel-algorithms literature, with regard to myriad appli
ations,ranging from
ir
uit layout to numeri
al
omputations to nonserial dynami
 programming.A small sampler of the literature on spe
i�
 appli
ations appears in [28, 55, 64, 99, 106℄;heuristi
s for a

omplishing eÆ
ient graph partitioning (espe
ially into roughly equal-sizesubdags) appear in [40, 60, 82℄; further sample appli
ations, together with a survey of theliterature on algorithms for �nding graph separators appears in [134℄.Parallelizing using data
ow te
hniques. A quite di�erent approa
h to �ndingparallelism in
omputations builds on the
ow of data in the
omputation. This approa
horiginated with the VLSI revolution fomented by Mead and Conway [105℄, whi
h en
our-aged
omputer s
ientists to apply their tools and insights to the problem of designing
omputers. Notable among the novel ideas emerging from this in
ux was the notion ofsystoli
 array|a data
ow-driven spe
ial-purpose parallel (
o)pro
essor [86, 87℄. A majorimpetus for the development of this area was the dis
overy, in [109, 120℄, that for
ertain
lasses of
omputations|in
luding, e.g., those spe
i�able via nested for-loops|su
h ma-
hines
ould be designed \automati
ally." This area soon developed a life of its own asa te
hnique for �nding parallelism in
omputations, as well as designing spe
ial-purposeparallel ma
hines. There is now an extensive literature on the use of systoli
 design prin-
iples for a broad range of spe
i�

omputations [38, 39, 89, 91, 122℄, as well as for largegeneral
lasses of
omputations that are delimited by the stru
ture of their
ow of data[49, 75, 109, 112, 120, 121℄.Mismat
hes between network and job stru
ture. Parallel eÆ
ien
y in multipro-
essors often demands using algorithms that a

ommodate the stru
ture of one's
ompu-tation to that of the host multipro
essor's network. This was noti
ed by systems builders[71℄ as well as algorithms designers [93, 149℄. The reader
an appre
iate the importan
eof so tuning one's algorithm by perusing the following studies of the operation of sorting:[30, 52, 52, 74, 77, 92, 125, 141, 148℄. The overall groundrules in these studies are
onstant:one is striving to minimize the worst-
ase number of
omparisons when sorting n numbers;only the underlying inter
onne
tion network
hanges. We now brie
y des
ribe two broadlyappli
able approa
hes to addressing potential mismat
hes with the host network.Network emulations. The theory of network emulations fo
uses on the problem ofmaking one
omputation-graph|the host|\a
t like" or \look like" another|the guest.9

In both of the s
enarios that motivate this endeavor, the host H represents an existinginter
onne
tion network. In one s
enario, the guest G is a dire
ted graph that representsthe intertask dependen
ies of a
omputation. In the other s
enario, the guest G is an undi-re
ted graph that represents an ideal inter
onne
tion network that would be a
ongenialhost for one's
omputation. In both s
enarios,
omputational eÆ
ien
y would
learly beenhan
ed if H's inter
onne
tion stru
ture mat
hed G's|or
ould be made to appear to.Almost all approa
hes to network emulation build on the theory of graph embeddings,whi
h was �rst proposed as a general
omputational tool in [126℄. An embedding h�; �iof the graph G = (VG; EG) into the graph H = (VH; EH)
onsists of a one-to-one map� : VG ! VH, together with a mapping of EG into paths in H su
h that: for ea
h edge(u; v) 2 EG, the path �(u; v)
onne
ts nodes �(u) and �(v) in H. The two main measuresof the quality of the embedding h�; �i are: the dilation, whi
h is the length of the longestpath of H that is the image, under �, of some edge of G; the
ongestion, whi
h is themaximum, over all edges e of H, of the number of �-paths that edge e o

urs in; in otherwords, it is the maximum number of edges of G that are routed a
ross e by the embedding.It is easy to use an embedding of a network G into a networkH to translate an algorithmdesigned for G into a
omputationally equivalent algorithm for H. Basi
ally: the mapping� identi�es whi
h node of H is to emulate whi
h node of G; the mapping � identi�es theroutes inH that are used to simulate internode message-passing in G. This sket
h suggestswhy the quantitative side of network-emulations-via-embeddings fo
uses on dilation and
ongestion as the main measures of the quality of an embedding. A moment's re
e
tionsuggests that, when one uses an embedding h�; �i of a graph G into a graph H as thebasis for an emulation of G by H, any algorithm that is designed for G is slowed down bya fa
tor O(
ongestion � dilation) when run on H. One
an sometimes easily or
hestrate
ommuni
ations to improve this fa
tor to O(
ongestion + dilation);
f. [13℄. Remarkably,one
an always improve the slowdown to O(
ongestion + dilation); a non
onstru
tive proofof this fa
t appears in [94℄; and, even more remarkably, a
onstru
tive proof and eÆ
ientalgorithm appear in [95℄.There are myriad studies of embedding-based emulations with spe
i�
 guest and hostgraphs. An extensive literature follows up one of the earliest studies, [6℄, whi
h embedsre
tangular meshes into square ones, a problem having nonobvious algorithmi

onse-quen
es [18℄. The algorithmi
 attra
tiveness of the boolean hyper
ube mentioned in Se
-tion 2.1 is attested to by
ountless spe
i�
 algorithms [93℄, but also by several studies thatshow the hyper
ube to be a
ongenial host for a wide variety of graph families that arethemselves algorithmi
ally attra
tive. Citing just two examples: (1) One �nds in [24, 161℄two quite distin
t eÆ
ient embeddings of
omplete trees|hen
e, of the rami�ed
omputa-tions they represent|into hyper
ubes. Surprisingly, su
h embeddings exist also for treesthat are not
omplete [98, 158℄ and/or that grow dynami
ally [27, 96℄. (2) One �nds in [70℄eÆ
ient embeddings of butter
y-like networks|hen
e, of the
onvolutional
omputationsthey represent|into hyper
ubes. A number of related algorithm-motivated embeddings10

into hyper
ubes appear in [72℄. [57℄ embeds the mesh-of-trees network, whi
h is shown in[93℄ to be an eÆ
ient host for many parallel
omputations, into hyper
ubes; [142℄ embedsthis network into the de Bruijn network. The emulations in [11, 12℄ attempt to exploitthe algorithmi
 attra
tiveness of the hyper
ube, despite its earlier-mentioned physi
al in-tra
tability. The study in [13℄, unusual for its algebrai
 underpinnings, was motivatedby the (then-)unexplained fa
t|observed, e.g., in [149℄|that algorithms designed for thebutter
y network run equally fast on the de Bruijn network. An intimate algebrai

on-ne
tion dis
overed in [13℄ between these networks|the de Bruijn network is a quotient ofthe butter
y|led to an embedding of the de Bruijn network into the hyper
ube that hadexponentially smaller dilation than any
ompetitors known at that time.The embeddings dis
ussed thus far exploit stru
tural properties that are pe
uliar tothe target guest and host graphs. When su
h enabling properties are hard to �nd, astrategy pioneered in [25℄
an sometimes produ
e eÆ
ient embeddings. This sour
e
raftseÆ
ient embeddings based on the ease of re
ursively de
omposing a guest graph G intosubgraphs. The insight underlying this embedding-via-de
omposition strategy is that re-
ursive bise
tion|the repeated de
omposition of a graph into like-sized subgraphs by\
utting" edges|a�ords one a representation of G as a binary-tree-like stru
ture.2 Theroot of this stru
ture is the graph G; the root's two
hildren are the two subgraphs ofG|
all them G0 and G1|that the �rst bise
tion partitions G into. Re
ursively, the two
hildren of node Gx of the tree-like stru
ture (where x is a binary string) are the two sub-graphs of Gx|
all them Gx0 and Gx1|that the bise
tion partitions Gx into. The te
hniqueof [25℄ transforms an (eÆ
ient) embedding of this \de
omposition tree" into a host graphH into an (eÆ
ient) embedding of G into H, whose dilation (and, often,
ongestion)
anbe bounded using a standard measure of the ease of re
ursively bise
ting G. A very fewstudies extend and/or improve the te
hnique of [25℄; see, e.g., [78, 114℄.When networks G and H are in
ompatible|i.e., there is no eÆ
ient embedding ofG into H|graph embeddings
annot lead dire
tly to eÆ
ient emulations. A te
hniquedeveloped in [84℄
an sometimes over
ome this short
oming and produ
e eÆ
ient networkemulations. The te
hnique has H emulate G by alternating the following two phases:Computation phase. Use an embedding-based approa
h to emulate G pie
ewise for shortperiods of time (whose durations are determined via analysis).Coordination phase. Periodi
ally (frequen
y is determined via analysis)
oordinate thepie
ewise embedding-based emulations to ensure that all pie
es have fresh informa-tion about the state of the emulated
omputation.This strategy will produ
e eÆ
ient emulations if one makes enough progress during the
omputation phase to amortize the
ost of the
oordination phase. Several examples in2See [134℄ for a
omprehensive treatment of the theory of graph de
omposition, as well as of thisembedding te
hnique. 11

[84℄ demonstrate the value of this strategy; ea
h presents a phased emulation of a networkG by a network H, that in
urs only
onstant-fa
tor slowdown, while any embedding-basedemulation of G by H in
urs slowdown that depends on the sizes of G and H.We mention one �nal, unique use of embedding-based emulations. In [115℄, a suite ofembedding-based algorithms is developed, to endow a multipro
essor with a
apability thatwould be prohibitively expensive to supply in hardware. The gauge of a multipro
essoris the
ommon width of its CPU and memory bus. A multipro
essor
an be multigaugedif, under program
ontrol, it
an dynami
ally
hange its (apparent) gauge. (Prior studieshad determined the algorithmi
 value of multigauging, as well as its prohibitive expense[53, 143℄.) Using an embedding-based approa
h that is detailed in [114℄, the algorithms of[115℄ eÆ
iently endow a multipro
essor ar
hite
ture with a multigauging
apability.The use of parameterized models. A truly revolutionary approa
h to the prob-lem of mat
hing
omputation stru
ture to network stru
ture was proposed in [153℄, thebirthpla
e of the bulk-syn
hronous parallel (BSP) programming paradigm. The
entralthesis in [153℄ is that, by appropriately reorganizing one's
omputation, one
an obtain al-most all of the bene�ts of message-passing parallel
omputation while ignoring all aspe
tsof the underlying inter
onne
tion network's stru
ture, save its end-to-end laten
y. Theneeded reorganization is a form of task-
lustering: one organizes one's
omputation into asequen
e of
omputational \supersteps"|during whi
h pro
essors
ompute lo
ally, withno inter
ommuni
ation|pun
tuated by
ommuni
ation \supersteps"|during whi
h pro-
essors syn
hronize with one another (when
e the term \bulk-syn
hronous") and performa stylized inter
ommuni
ation in whi
h ea
h pro
essor sends h messages to h others. (The
hoi
e of h depends on the network's laten
y.) It is shown that a
ombination of artful mes-sage routing|say, using the
ongestion-avoiding te
hnique of [154℄|and laten
y-hidingte
hniques|notably, the method of parallel sla
k that has the host parallel
omputer em-ulate a
omputer with more pro
essors|allows this algorithmi
 paradigm to a
hieve withina
onstant fa
tor of the parallel speedup available via network-sensitive algorithm design.A number of studies, su
h as [69, 104℄, have demonstrated the viability of this approa
hfor a variety of
lasses of
omputations.The fo
us on network laten
y and number of pro
essors as the sole ar
hite
tural param-eters that are relevant to eÆ
ient parallel
omputation limits the range of ar
hite
turalplatforms that
an enjoy the full bene�ts of the BSP model. In response, the authorsof [51℄ have
rafted a model that
arries on the spirit of BSP but that in
orporates twofurther parameters related to interpro
essor
ommuni
ation. The resulting LogP modela

ounts for laten
y (the \L" in \LogP), overhead (the \o") [the
ost of setting up a
om-muni
ation℄, gap (the \g") [the minimum interval between su

essive
ommuni
ations bya pro
essor℄, and pro
essor number (the \P"). Experiments des
ribed in [51℄ validate thepredi
tive value of the LogP model in multipro
essors, at least for
omputations involv-ing only short interpro
essor messages. The model is extended in [7℄, to allow long, butequal-length, messages. One �nds in [29℄ an interesting study of the eÆ
ien
y of parallel12

algorithms developed under the BSP and LogP models.3 Clusters/Networks of Workstations3.1 The PlatformMany sour
es eloquently argue the te
hnologi
al and e
onomi
 inevitability of an in
reas-ingly
ommon modality of
ollaborative
omputing|the use of a
luster (or, equally
om-monly, a network) of
omputers to
ooperate in the solution of a
omputational problem;see [9, 119℄. Note that while one typi
ally talks about a network of workstations (a NOW,for short), the
onstituent
omputers in a NOW may well be p
's or multipro
essors; thealgorithmi

hallenges
hange quantitatively but not qualitatively depending on the ar
hi-te
tural sophisti
ation of the \workstations." The
omputers in a NOW inter
ommuni
atevia a LAN|lo
al area network|whose detailed stru
ture is typi
ally neither known tonor a

essible by the programmer.3.2 Some ChallengesSome of the
hallenges en
ountered when devising algorithms for (H)NOWs di�er onlyquantitatively from those en
ountered with multipro
essors. For instan
e:� The typi
ally high laten
ies of LANs (
ompared to inter
onne
tion networks),
ou-pled with the relatively heavyweight proto
ols needed for robust
ommuni
ation,demand
oarse-grained tasks, in order to amortize the
osts of
ommuni
ation.Some new
hallenges arise from the ine�e
tiveness in NOWs of
ertain multipro
essor-based algorithmi
 strategies. For instan
e:� The algorithm designer typi
ally
annot exploit the stru
ture of the LAN underlyinga NOW.� The higher
osts of
ommuni
ation,
oupled with the loose
oordination of a NOW'sworkstations, render the (relatively) simple laten
y-hiding te
hniques of multipro-
essors ine�e
tive in
lusters.Finally, some algorithmi

hallenges arise in the world of
ollaborative
omputing for the�rst time in
lusters. For instan
e: 13

� The
onstituent workstations of a NOW may di�er in pro
essor and/or memoryspeeds; i.e., the NOW may be heterogeneous (be an HNOW).All of the issues raised here make parameterized models su
h as those dis
ussed at theend of Se
tion 2.2 an indispensable tool to the designers of algorithms for (H)NOWs.The
hallenge is to
raft models that are at on
e faithful enough to ensure algorithmi
eÆ
ien
y on real NOWs and simple enough to be analyti
ally tra
table. The latter goal isparti
ularly elusive in the presen
e of heterogeneity. Consequently, mu
h of the fo
us inthis se
tion is on models that have been used su

essfully to study several approa
hes to
omputing in (H)NOWs.3.3 Some Sophisti
ated ResponsesSin
e the
onstituent workstations of a NOW are at best loosely
oupled, and sin
e in-terworkstation
ommuni
ation is typi
ally rather
ostly in a NOW, the major strategiesfor using NOWs in
ollaborative
omputations
enter around three loosely
oordinateds
heduling me
hanisms|workstealing,
y
le-stealing, and worksharing|that, respe
tively,form the fo
i of the following three subse
tions.3.3.1 Cluster
omputing via workstealingWorkstealing is a modality of
luster
omputing wherein an idle workstation seeks workfrom a busy one. This allo
ation of responsibility for �nding work has the bene�t thatidle workstations, not busy ones, do the unprodu
tive
hore of sear
hing for work. Themost
omprehensive study of workstealing is the series of papers [32℄{[35℄, whi
h s
hedule
omputations in a multipro
essor or in a (homogeneous) NOW. These sour
es develop theirapproa
h to workstealing from the level of programming abstra
tion through algorithmdesign and analysis through implementation as a working system (
alled Cilk [32℄). As willbe detailed imminently, these sour
es use a stri
t form of multithreading as a me
hanismfor subdividing a
omputation into
hunks (spe
i�
ally, threads of unit-time tasks) that aresuitable for sharing among
ollaborating workstations. The strength and elegan
e of theresults in these sour
es has led to a number of other noteworthy studies of multithreaded
omputations, in
luding [1, 14, 59℄. A very abstra
t study of workstealing, whi
h allowsone to assess the impa
t of
hanges in algorithmi
 strategy easily, appears in [110℄, whi
hwe des
ribe a bit later.A. Case study: [34℄ From an algorithmi
 perpse
tive, the main paper in the seriesabout Cilk and its algorithmi
 underpinnings is [34℄, whi
h presents and analyzes a (ran-domized) me
hanism for s
heduling \well-stru
tured" multithreaded
omputations, a
hiev-ing both time and spa
e
omplexity that are within
onstant fa
tors of optimal.14

Within the model of [34℄, a thread is a
olle
tion of unit-time tasks, linearly orderedby dependen
ies; graph-theoreti
ally, a thread is, thus, a linear
omputation-dag. A mul-tithreaded
omputation is a set of threads that are inter
onne
ted in a stylized way. Thereis a root thread. Re
ursively, any task of any thread T may have k � 0 spawn-ar
s to theinitial tasks of k threads that are
hildren of T . If thread T 0 is a
hild of thread T via aspawn-ar
 from task t of T , then the last task of T 0 has a
ontinue-ar
 to some task t0 of Tthat is a su

essor of task t. Both the spawn-ar
s and
ontinue-ar
s individually thus givethe
omputation the stru
ture of a tree-dag. See Fig. 2. All of the ar
s of a multithreaded
t

t’
T’

T

s’

s

T"
u’ v’

uv

Figure 2: An exemplary multithreaded
omputation. Thread T 0 (resp., T 00) is a
hild ofthread T , via the spawn-ar
 from task t to task t0 (resp., from task s to task s0) and the
ontinue-ar
 from task u0 to task u (resp., from task v0 to task v).
omputation represent data dependen
ies that must be honored when exe
uting the
om-putation. A multithreaded
omputation is stri
t if all data-dependen
ies for the tasks of athread T go to an an
estor of thread T in the thread-tree; the
omputation is fully stri
t ifall dependen
ies in fa
t go to T 's parent in the tree. Easily, any multithreaded
omputa-tion
an be made fully stri
t by altering the dependen
y stru
ture; this restru
turing maya�e
t the available parallelism in the
omputation but will not
ompromise its
orre
tness.The study in [34℄ fo
uses on s
heduling fully stri
t multithreaded
omputations.In the
omputing platform envisioned in [34℄, a multithreaded
omputation is storedin shared memory. Ea
h individual thread T has a blo
k of memory (
alled an a
tivationframe) within the lo
al memory of the workstation that \owns" T , that is dedi
ated tothe
omputation of T 's tasks. Spa
e is measured in terms of a
tivation frames.Time is measured in [34℄ as a fun
tion of the number of workstations that are
ollabo-rating in the target
omputation. Tp is the minimum
omputation time when there are p
ollaborating workstations; therefore, T1 is the total amount of work in the
omputation.T1 is dag-depth of the
omputation, i.e., the length of the longest sour
e-to-sink path inthe asso
iated
omputation-dag; this is the \inherently sequential" part of the
omputa-tion. Analogously, Sp is the minimum spa
e requirement for the target
omputation, S1being the \a
tivation depth" of the
omputation.Within the pre
eding model, the main
ontribution of [34℄ is a provably eÆ
ient ran-15

domized workstealing algorithm, Pro
edure Worksteal (see Fig. 3), whi
h exe
utes thefully stri
t multithreaded
omputation rooted at thread T . In the Pro
edure, ea
h work-Normal exe
ution. A workstation P seeking work removes (pops) the thread at the bottom of itsready deque|
all it thread T|and begins exe
uting T 's tasks seriatim.A stalled thread is enabled. If exe
uting one of T 's tasks enables a stalled thread T 0, then thenow-ready thread T 0 is pushed onto the bottom of P 's ready deque. (A thread stalls when thenext task to be exe
uted must await data from a task that belongs to another thread.)/*Be
ause of full stri
tness: thread T 0 must be thread T 's parent; thread T 's deque must beempty when T 0 is inserted.*/A new thread is spawned. If the task of thread T that is
urrently being exe
uted spawns a
hild thread T 0, then thread T is pushed onto the bottom of P 's ready deque, and P beginsto work on thread T 0.A thread
ompletes or stalls. If thread T
ompletes or stalls, then P
he
ks its ready deque.Nonempty ready deque. If its deque is not empty, then P pops the bottommost threadand starts working on it.Empty ready deque. If its deque is empty, then P initiates workstealing. It
hooses aworkstation P 0 uniformly at random, \steals" the topmost thread in P 0's ready deque,and starts working on that thread. If P 0's ready deque is empty, then P
hooses anotherrandom \vi
tim."Figure 3: Pro
edure Worksteal(T) exe
utes the multithreaded
omputation rooted atthread Tstation maintains a ready deque of threads that are eligible for exe
ution; these dequesare a

essible by all workstations. Ea
h deque has a bottom and a top; threads
an beinserted at the bottom and removed from either end. A workstation uses its ready dequeas a pro
edure sta
k, pushing and popping from the bottom. Threads that are \stolen"by other workstations are removed from the top of the deque. It is shown in [34℄ thatPro
edure Worksteal is
lose to optimal in both time and spa
e
omplexity.� For any fully stri
t multithreaded
omputation, Pro
edure Worksteal, when run ona p-workstation NOW, uses spa
e � S1p.� Let Pro
edure Worksteal exe
ute a multithreaded
omputation on a p-workstationNOW. If the
omputation has dag-depth T1 and work T1, then the expe
ted run-ning time, in
luding s
heduling overhead, is O(T1=p+ T1). This is
learly within a
onstant fa
tor of optimal. 16

B. Case study: [110℄ The study in [34℄ follows the traditional algorithmi
 paradigm.An algorithm is des
ribed in
omplete detail, down to the design of its underlying datastru
tures. The performan
e/behavior of the algorithm is then analyzed in a setting ap-propriate to the genre of the algorithm. For instan
e, sin
e Pro
edure Worksteal is arandomized algorithm, its performan
e is analyzed in [34℄ under the assumption that itsinput multithreaded
omputation is sele
ted uniformly at random from the ensemble ofsu
h
omputations. In
ontrast to the pre
eding approa
h, the study in [110℄ des
ribesan algorithm abstra
tly, via its state spa
e and state-transition fun
tion. The perfor-man
e/behavior of the algorithm is then analyzed by positing a pro
ess for generating theinputs that trigger state
hanges. We illustrate this
hange of worldview by des
ribingPro
edure Worksteal and its analysis in the framework of [110℄ in some detail. We thenbrie
y summarize some of the other notable results in that sour
e.In the setting of [110℄, when a
omputer (su
h as a homogeneous NOW) is used asa workstealing system, its workstations exe
ute tasks that are generated dynami
ally viaa Poisson pro
ess of rate � < 1. Tasks require
omputation time that is distributedexponentially with mean 1; these times are not known to workstations. Tasks are s
heduledin a First-Come-First-Served fashion, with tasks awaiting exe
ution residing in a FIFOqueue. The load of a workstation P at time t is the number of tasks in P 's queue at thattime. At
ertain times (
hara
terized by the algorithm being analyzed), a workstationP 0
an steal a task from another workstation P . When that happens, a task at theoutput end of P 's queue (if there is one) instantaneously migrates to the input end of P 0'squeue. Formally, a workstealing system is represented by a sequen
e of variables that yieldsnapshots of the state of the system as a fun
tion of the time t. Say that the NOW beinganalyzed has n
onstituent workstations.� nl(t) is the number of workstations that have load l.� ml(t) def= lXi=0 ni(t) is the number of workstations that have load � l.� pl(t) def= nl(t)=n is the fra
tion of workstations of load l.� sl(t) def= 1Xi=l pi(t) = ml(t)=n is the fra
tion of workstations of load � l.The state of a workstealing system at time t is the in�nite-dimensional ve
tor ~s(t) def=hs0(t); s1(t); s2(t); : : :i.The goal in [110℄ is to analyze the limiting behavior, as n ! 1, of n-workstationworkstealing systems under a variety of randomized workstealing algorithms. The mathe-mati
al tools that
hara
terize the study are enabled by two features of the model we have17

des
ribed thus far. (1) Under the assumption of Poisson arrivals and exponential servi
etimes, the entire workstealing system is Markovian: its next state, ~s(t+ 1), depends onlyon its present state, ~s(t), not on any earlier history. (2) The fa
t that a workstealingsystem
hanges state instantaneously allows one to view time as a
ontinuous variable,thereby enabling the use of di�erentials rather than di�eren
es when analyzing
hanges inthe variables that
hara
terize a system's state.We enhan
e legibility hen
eforth by omitting the time variable t when it is
lear from
ontext. Note that s0 � 1 and that the sl are nonin
reasing, sin
e sl�1 � sl = pl. Thesystems analyzed in [110℄ also have liml!1 sl = 0.We introdu
e the general pro
ess of
hara
terizing a system's (limiting) performan
e byfo
using momentarily on a system in whi
h no workstealing takes pla
e. Let us representby dt a small interval of time, in whi
h only one event (a task arrival or departure) takespla
e at a workstation. The model of task arrivals (via a Poisson pro
ess with rate �)means that the expe
ted
hange in the variable ml due to task arrivals is �(ml�1 �ml)dt.By similar reasoning, the expe
ted
hange in ml due to task departures|re
all that thereis no stealing going on|is just (ml �ml+1)dt. It follows that the expe
ted net behaviorof the system over short intervals is:dmldt = �(ml�1 �ml)� (ml �ml+1);or, equivalently, (by eliminating the ubiquitous fa
tor of n, the size of the NOW),dsldt = �(sl�1 � sl)� (sl � sl+1): (3.1)This last
hara
terization of state
hanges illustrates the
hanges' independen
e from theaggregate number of workstations, depending instead only on the densities of workstationswith various loads. The te
hni
al impli
ations of this fa
t is dis
ussed in some details in[110℄, with appropriate pointers to the underlying mathemati
al texts.In order to analyze the performan
e of Pro
edureWorksteal within the
urrent model,one must
onsider how the Pro
edure's various a
tions are per
eived by the workstationsof the subje
t workstealing system. First, under the Pro
edure, a workstation P that
ompletes its last task seeks to steal a task from a randomly
hosen fellow workstation,P 0, su

eeding with probability s2 (the probability that P 0 has at least two tasks). Hen
e,P now per
eives
ompletion of its �nal task as emptying its queue only with probability1� s2. Mathemati
ally, we thus have the following modi�ed �rst equation of system (3.1):ds1dt = �(s0 � s1)� (s1 � s2)(1� s2): (3.2)For l > 1, sl now de
reases whenever a workstation with load l either
ompletes a task orhas a task stolen from it. The rate at whi
h workstations steal tasks is just s1�s2, i.e., the18

rate at whi
h workstation
omplete their �nal tasks. We thus
omplete our modi�
ationof system (3.1) as follows.For l > 1; dsldt = �(sl�1 � sl)� (sl � sl+1)(1 + s1 � s2): (3.3)The limiting behavior of the workstealing system is
hara
terized by seeking the �xedpoint of system (3.2, 3.3), i.e., the state ~s for whi
h every dsl=dt = 0.Denoting the sought �xed point by ~� = h�0; �1; �2; : : :i, we have:� �0 = 1, be
ause s0 = 1 for all t;� �1 = �, be
ause:{ tasks
omplete at rate s1n, the number of busy workstations;{ tasks arrive at rate �n;{ at the �xed point, tasks arrive and
omplete at the same rate;� from (3.2) and the fa
t that ds1=dt = 0 at the �xed point, we have�2 = 1 + ��p1 + 2�� 3�22 ;� from (3.3) and the fa
t that dsl=dt = 0 at the �xed point, we have, by indu
tion,For l > 2; �l = �1 + �� �2!l�2 �2:The message of the pre
eding analysis be
omes
lear only when one performs the sameexer
ise with the system (3.1), whi
h
hara
terizes a \workstealing system" in whi
h thereis no workstealing. For that system, one �nds that �l = �l, indi
ating that, in the limitingstate, tasks are being
ompleted at rate �. Under the workstealing regimen of Pro
edureWorksteal, we still have the �l, for l > 2, de
reasing geometri
ally, but now the dampingratio is �1 + �� �2 < �. In other words, workstealing under the Pro
edure has the samee�e
t as in
reasing the servi
e rate of tasks in the workstealing system!Simulation experiments in [110℄ help one evaluate the paper's abstra
t treatment. Theexperiments indi
ate that, even with n = 128 workstations, the model's predi
tions arequite a

urate, at least for smaller arrival rates. Moreover, the quality of these predi
tionsimprove with larger n and smaller arrival rates.The study in [110℄ goes on to
onsider several variations on the basi
 theme of work-stealing, in
luding pre
luding: � stealing work from workstations whose queues are almostempty; � stealing work when load gets below a (positive) threshold. Additionally, one�nds in [110℄ re�ned analyses and more
omplex models for workstealing systems.19

3.3.2 Cluster
omputing via
y
le-stealingCy
le-stealing, the use by one workstation of idle
omputing
y
les of another, views theworld through the other end of the
omputing teles
ope from workstealing. The basi
observation that motivates
y
le-stealing is that the workstations in
lusters tend to beidle mu
h of the time|due, say, to a user's pausing for deliberation or for a telephone
all,et
.|and that the resulting idle
y
les
an fruitfully be \stolen" by busy workstations [100,145℄. Although
y
le-stealing ostensibly puts the burden of �nding available
omputing
y
les on the busy workstations (the
riti
isms leveled against
y
le-stealing by advo
atesof workstealing), the just-
ited sour
es indi
ate that this burden
an often be o�oadedonto a
entral resour
e, or at least onto a workstation's operating system (rather than itsappli
ation program).The literature
ontains relatively few rigorously analyzed s
heduling algorithms for
y
le-stealing in (H)NOWs. Among the few su
h studies, [16℄ and the series [26, 128, 129,131℄ view
y
le-stealing as an adversarial enterprise, in whi
h the
y
le-stealer attemptsto a

omplish as mu
h work as possible on the \borrowed" workstation before its ownerreturns|whi
h event results in the
y
le-stealer's job being killed!A. Case study: [16℄ One �nds in this sour
e a randomized
y
le-stealing strategywhi
h, with high probability, a

omplishes within a logarithmi
 fa
tor of optimal workprodu
tion. The underlying formal setting is as follows.� All of the n workstations that are
andidates as
y
le donors are equally powerful
omputationally; i.e., the subje
t NOW is homogeneous.� The
y
le-stealer has a job that requires d steps of
omputation an any of these
andidate donors.� At least one of the
andidate donors will be idle for a period of D � 3d logn timeunits (= steps).Within this setting, the following simple randomized strategy provably steals
y
les su
-
essfully, with high probability.Phase 1. At ea
h step, the
y
le-stealer
he
ks the availability of all n workstations in turn:�rst P1, then P2, and so on.Phase 2. If, when
he
king workstation Pi, the
y
le-stealer �nds that it was idle at the lasttime unit, s/he
ips a
oin and assigns the job to Pi with probability (1=d)n3x=D�2, wherex is the number of time units for whi
h Pi has been idle.20

The provable su

ess of this strategy is expressed as follows.� With probability � 1� O((d logn)=D + 1=n), the pre
eding randomized strategy willallow the
y
le-stealer to get his/her job done.It is
laimed in [16℄ that same basi
 strategy will a
tually allow the
y
le-stealer to getlogn d-step jobs done with the same probability.B. Case study: [131℄ In [26, 128, 129, 131℄,
y
le-stealing is viewed as a game againsta mali
ious adversary who seeks to interrupt the borrowed workstation in order to killall work in progress and thereby minimize the work amount of produ
ed during a
y
le-stealing opportunity. (In these studies,
y
les are stolen from one workstation at a time,so the enterprise is una�e
ted by the presen
e or absen
e of heterogeneity.) Clearly,
y
le-stealing within the des
ribed adversarial model
an a

omplish produ
tive work only if themetaphori
al \mali
ious adversary" is somehow restrained from just interrupting everyperiod when the
y
le-donor is doing work for the
y
le-stealer, thereby killing all workdone by the donor. The restraint studied in the Known-Risk model of [26, 128, 131℄ residesin two assumptions: (1) we know the instantaneous probability that the
y
le-donor hasnot been re
laimed by its owner; (2) the life fun
tion P that exposes this probabilisti
information|P(t) is the probability that the donor has not been re
laimed by its ownerby time t|is \smooth." The formal setting is as follows.� The
y
le-stealer, A, has a large bag of mutually independent tasks of equal sizes(whi
h measures the
ost of des
ribing ea
h task) and
omplexities (whi
h measuresthe
ost of
omputing ea
h task).� Ea
h pair of
ommuni
ations|in whi
h A sends work to the donor, B, and B returnsthe results of that work to A|in
urs a �xed
ost
. This
ost is kept independentof the marginal per-task
ost of
ommuni
ating between A and B by in
orporatingthe latter
ost into the time for
omputing a task.� B is dedi
ated to A's work during the
y
le-stealing opportunity, so its
omputationtime is known exa
tly.� Time is measured in work-units (rather than wall-
lo
k time); one unit of work isthe time it takes for:{ workstation A to transmit a single task to workstation B. (This is the marginaltransmission time for the task: the (�xed) setup time for ea
h
ommuni
ation|during whi
h many tasks will typi
ally be transmitted|is a

ounted for by theparameter
.) 21

{ workstation B to exe
ute that task;{ workstation B to return its results for that task to workstation A.Within this setting, a
y
le-stealing opportunity is a sequen
e of episodes during whi
hworkstation A has a

ess to workstation B, pun
tuated by interrupts
aused by the returnof B's owner. When s
heduling an opportunity, the vulnerability of A to interrupts, withtheir attendant loss of work in progress on B, is de
reased by partitioning ea
h episodeinto periods, ea
h beginning with A sending work to B and ending either with an interruptor with B returning the results of that work. A's dis
retionary power thus resides solelyin de
iding how mu
h work to send in ea
h period, so an (episode-)s
hedule is simplya sequen
e of positive period-lengths: S = t0; t1; : : :. A length-t period in an episodea

omplishes t 	
 def= max(0; t �
) units of work if it is not interrupted and 0 units ofwork if it is interrupted. Thus, the episode s
heduled by S a

omplishes k�1Xi=1(ti 	
) unitsof work when it is interrupted during period k.Fo
us on a
y
le-stealing episode whose lifespan (def= its maximum possible duration)is L time units. As noted earlier, we are assuming that we know the risk of B's beingre
laimed, via a de
reasing life fun
tion,P(t) def= Pr(B has not been interrupted by time t);whi
h satis�es: � P(0) = 1 (to indi
ate B's availability at the start of the episode); �P(L) = 0 (to indi
ate that the interrupt will have o

urred by time L). The earlierassertion that life fun
tions must be \smooth" is embodied in the formal requirementthat P be di�erentiable in the interval (0; L). The goal is to maximize the expe
ted workprodu
tion from an episode governed by the life fun
tion P, i.e., to �nd a s
hedule S whoseexpe
ted work produ
tion,Exp-Work(S;P) def= LXi=0(ti 	
)P(Ti); (3.4)is maximum, over all s
hedules for P . In summation (3.4): ea
h Ti is the partial sumTi def= t0 + t2 + � � �+ ti:The presen
e of positive subtra
tion, 	, in (3.4) makes analyses of life fun
tions diÆ
ultte
hni
ally. Fortunately, one
an avoid this diÆ
ulty for all but the last term of thesummation. Say that a s
hedule is produ
tive if ea
h period|save possibly the last|haslength >
. The following is proved in [26℄ and, in the following stri
t form, in [128℄.22

� One
an e�e
tively3 repla
e any s
hedule S for life fun
tion P by a produ
tive s
hed-ule bS su
h that Exp-Work(bS;P) � Exp-Work(S;P).One �nds in [131℄ a proof that the following
hara
terization of optimal s
hedules allowsone to
ompute su
h s
hedules e�e
tively.� The produ
tive s
hedule S = t0; t1; : : : ; tm�1 is optimal for the di�erentiable life fun
-tion P if, and only if, for ea
h period-index k � 0, save the last, period-length tk isgiven by4 P(Tk) = max (0; P(Tk�1) + (tk�1 �
)P 0(Tk�1)) : (3.5)Sin
e the expli
it
omputation of s
hedules from system (3.5)
an be
omputationallyineÆ
ient, relying on general fun
tion optimization te
hniques, the following simplifyinginitial
onditions are presented in [131℄ for
ertain simple life fun
tions.� When P is
onvex (resp.,
on
ave),5 the initial period-length t0 is bounded above andbelow as follows, with the parameter = 1 (resp., = 1=2).vuut
24 �
P(t0)P 0(t0) +
2 � t0 � 2vuut
24 �
P(t0)P 0(t0) +
:3.3.3 Cluster
omputing via worksharingWhereas workstealing and
y
le-stealing involve a transa
tion between two workstationsin an (H)NOW, worksharing typi
ally involves many workstations working
ooperatively.The quali�er \
ooperatively" distinguishes the enterprise of worksharing from the passive
ooperation of the work donor in workstealing and the grudging
ooperation of the
y
ledonor in
y
le-stealing.In this se
tion, we des
ribe three studies of worksharing: the study in [2℄, one of fourproblems studied in [20℄, and the most general HNOW model of [17℄. (We deal with thesesour
es in the indi
ated order to emphasize relevant similarities and di�eren
es.) Thesesour
es di�er markedly in their models of the HNOW in whi
h worksharing o

urs, the
hara
teristi
s of the work that is being shared, and the way in whi
h worksharing is or-
hestrated. Indeed, part of our motivation in highlighting these three studies is to illustratehow apparently minor
hanges in model|of the
omputing platform or the workload|
an lead to major
hanges in the algorithmi
s required to solve the worksharing problem3The quali�er \e�e
tively" means that the proof is
onstru
tive.4As usual, f 0 denotes the �rst derivative of the univariate fun
tion f .5The life fun
tion P is
on
ave (resp.,
onvex) if its derivative P 0: � never vanishes at a point x whereP(x) > 0; � is everywhere nonin
reasing (resp., everywhere nonde
reasing).23

(nearly) optimally. (Sin
e the model of [20℄ is des
ribed at a high level in that paper, wehave spe
ulatively interpreted the ar
hite
tural ante
edents of the model's features for thepurposes of enabling the
omparison in this se
tion.)All three of these studies fo
us on some variant of the following s
enario. A masterworkstation P0 has a large bag of mutually independent tasks of equal sizes and
omplex-ities. P0 has the opportunity to employ the
omputing power of an HNOW N
omprisingworkstations P1, P2, . . . , Pn. P0 transmits work to ea
h of N 's workstations, and ea
hworkstation (eventually) sends results ba
k to P0. Throughout the worksharing pro
ess,N 's workstations are dedi
ated to P0's workload. Some of the major di�eren
es amongthe models of the three sour
es are highlighted in Table 1. The \N/A" (\Not Appli
able")entries in the table re
e
t the fa
t that only short messages (single tasks) are transmittedin [17℄. The goal of all three sour
es is to allo
ate and s
hedule work optimally, within theModel Feature [2℄ [20℄ [17℄Does ea
h
ommuni
ation in
ur a substantial \setup" overhead? Yes No NoIs
omplex message (un)pa
kaging allowed/a

ounted for? Yes No N/ACan a workstation send and re
eive messages simultaneously? No No YesIs the HNOW N 's network pipelineable? Yes Yes N/A(A \Yes" allows savings by transmitting several tasks orresults at a time, with only one \setup.")Does P0 allo
ate multiple tasks at a time? Yes Yes NoAre N 's workstations allowed to redistribute tasks? No No YesAre tasks \partitionable?" Yes No No(A \Yes" allows the allo
ation of fra
tional tasks.)Table 1: Comparing the models of [2℄, [20℄, and [17℄.
ontext of the following problems.The HNOW-Utilization Problem. P0 seeks to rea
h a \steady-state", inwhi
h the average amount of work a

omplished per time unit is maximized.The HNOW-Exploitation Problem. P0 has a

ess to N for a prespe
i�ed�xed period of time (the lifespan) and seeks to a

omplish as mu
h work aspossible during this period.The HNOW-Rental Problem. P0 seeks to
omplete a prespe
i�ed �xedamount of work on N during as short a period as possible.The study in [17℄
on
entrates on the HNOW-Utilization Problem. Those of [2, 20℄
on
entrate on the HNOW-Exploitation Problem; this
on
entration is just for expository24

onvenien
e, sin
e the HNOW-Exploitation and -Rental Problems are
omputationallyequivalent within the models of [2, 20℄; i.e., an optimal solution to either
an be
onvertedto an optimal solution to the other.A. Case study: [2℄ This study employs a rather detailed ar
hite
tural model for theHNOW N , the HiHCoHP model of [41℄, whi
h
hara
terizes ea
h workstation Pi of N viathe parameters in Table 2. A word about message pa
kaging and unpa
kaging is in order.Computation-related parameters for N 's workstationsComputation Ea
h Pi needs �i work units to
ompute a task.By
onvention: �1 � �2 � � � � � �n � 1.Message-(un)pa
kaging Ea
h Pi needs:�i def= �i�n time units per pa
ket to pa
kage a messagefor transmission(e.g., break into pa
kets,
ompute
he
ksums, en
ode);�i def= �i�n time units per pa
ket to unpa
kage a re
eivedmessage.Communi
ation-related parameters for N 's networkCommuni
ation setup Two workstations require � time units to set up a
ommuni
ation (say, via a handshake).Network laten
y The �rst pa
ket of a message traverses N 's network in� time units.Network transit time Subsequent pa
kets traverse N 's network in � time units.Table 2: A summary of the HiHCoHP model.� In many a
tual HNOW ar
hite
tures, the pa
kaging (�) and unpa
kaging (�) ratesare (roughly) equal. One would lose little a

ura
y, then, by equating them.� Sin
e (un)pa
kaging a message requires a �xed, known
omputation, the (
ommon)ratio �i=�i is a measure of the granularity of the tasks in the workload.� When message en
oding/de
oding is not needed (e.g., in an HNOW of trustedworkstations), message (un)pa
kaging is likely a lightweight operation; when en-
oding/de
oding is needed, the time for message (un)pa
kaging
an be signi�
ant.In summary, within the HiHCoHP model, a p-pa
ket message from workstation Pi toworkstation Pj takes an aggregate of (� + �� �) + (�i + �j + �)p time units.25

The
omputational proto
ols
onsidered in [2℄ for solving the HNOW-ExploitationProblem build on single paired intera
tions between P0 and ea
h workstation Pi of N : P0sends work to Pi; Pi does the work; Pi sends results to P0. The total intera
tion betweenP0 the single workstation Pi is or
hestrated as shown in Fig. 4. This intera
tion is extrapo-
λ (− 1) λ (− 1)σ σ

P
0

transmits

work

P
i

work

unpacks P
i

does

work

w
ii

ρw
ii

πw
i

τ

in

network

P
0

results for

P
i

prepares

π
i

w
i

δ

P
i

in

P
i

transmits

results

P
0

unpacks

results

w
i

δτ w
i

δ
0

π

in

network 0
Pin

P
i

P
0

setup

P
0

P
i

P
0

P
i

prepares

work for

0
Pin

w
i

P
i

P
0

setup

P
0

P
i

in

and
network

,
in

and
network

,

π
0

Figure 4: The timeline for P0's use of a single \rented" workstation Pi (not to s
ale)lated into a full-blown worksharing proto
ol via a pair of ordinal-indexing s
hemes for N 'sworkstations, to supplement the model's power-related indexing des
ribed in the \Com-putation" entry of Table 2. The startup indexing spe
i�es the order in whi
h P0 transmitswork to N 's workstations; for this purpose, we label the workstations Ps1; Ps2; : : : ; Psn,to indi
ate that Psi re
eives work|hen
e, begins working|before Psi+1 does. The �n-ishing indexing spe
i�es the order in whi
h N 's workstations return their work-resultsto P0; for this purpose, we label the workstations Pf1 ; Pf2; : : : ; Pfn, to indi
ate that Pfi
eases working|hen
e, transmits its results|before Pfi+1 does. Fig. 5 depi
ts a multi-workstation proto
ol. If we let wi denote the amount of work allo
ated to workstation Pi,for i = 1; 2; : : : ; n, then the goal is to �nd a proto
ol (of the type des
ribed) that maximizesthe overall work produ
tion, W = w1 + w2 + � � �+ wn.Abbrev. Quantity Meaninge� �(1 + Æ) Two-way transmission ratee�i �i + �iÆ Two-way message-pa
kaging rate for PiFC (� + �� �) Fixed overhead for an interworkstation
ommuni
ationVCi �0 + e� + e�i Variable
ommuni
ation overhead rate for PiTable 3: Some useful abbreviationsImportantly, when one allows work-allo
ations to be fra
tional, the work produ
tionof a proto
ol of the form we have been dis
ussing
an be spe
i�ed in a
omputationallytra
table, perspi
uous way. Enhan
ing legibility via the abbreviations of Table 3, the26

Receive

Receive

Receive

PreparePrepare Prepare

Transmit

s
1

s
1

s
3

s
3

s
3

s
3

s
2

s
2

s
2

s
2

f
1

f
1

λ − τ + λ − τ + λ − τ +
s
1

s
2

s
3

s
1

s
2

s
3

s
1

s
1

λ − τ +
f

3

Transmit

Transmit

Transmit

f
1

λ − τ +

f
2

λ − τ +

f
1

f
1

f
2

f
2f

2
f
2

f
3

f
3

f
3

f
3 f

3

f
2

f
1

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��

��
��
��
��
��

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������

Transmit

ComputeCompute

Compute

Compute

Compute

Compute

Transmit

s

s

s
1

2

3

(Total compute time)

Prepare

Prepare

Prepare

σ σ σ

σ

σ

σ

Lifespan L

w
0

w
0P

0 wτ wτ wτ
wπ

0
π

0
w π

0
w

wδτ

wδτ

wδτ

δ wπ

δ wπ

wρ δ wπ P

P

P

wρwπ

wρ

wρwπ wρ

wπ

P

P

P

wρ

Figure 5: The timeline (not to s
ale) for 3 \rented" workstations, indi
ating ea
h work-station's lifespan. Note that ea
h Pi's lifespan is partitioned in the �gure between its in-
arnations as some Psa and some Pfb.work produ
tion of the proto
ol P(�;�) that is spe
i�ed by the startup indexing � =hs1; s2; : : : ; sni and �nishing indexing � = hf1; f2; : : : ; fni over a lifespan of duration L isgiven by the following system of linear equations.0BBBBBB� VC1 + �1 B1;2 � � � B1;nB2;1 VC2 + �2 � � � B2;n... ... � � � ...Bn�1;1 Bn�1;2 � � � Bn�1;nBn;1 Bn;2 � � � VCn + �n
1CCCCCCA �0BBBBBB� w1w2...wn�1wn

1CCCCCCA = 0BBBBBB� L� (
1 + 2)FCL� (
2 + 2)FC...L� (
n�1 + 2)FCL� (
n + 2)FC
1CCCCCCA ; (3.6)where� SBi is the set of startup indi
es of workstations that start before Pi;� FAi is the set of �nishing indi
es of workstations that �nish after Pi;�
i def= jSBij+ jFAij;� Bi;j = 8>>><>>>: �0 + � + �Æ if j 2 SBi and j 2 FAi�0 + � if j 2 SBi and j 62 FAi�Æ if j 62 SBi and j 2 FAi0 otherwise. 27

The nonsingularity of the
oeÆ
ient matrix in (3.6) indi
ates that the work produ
tion ofproto
ol P(�;�) is, indeed, spe
i�ed
ompletely by the indexings � and �.Of parti
ular signi�
an
e in [2℄ are the FIFO worksharing proto
ols, whi
h are de�nedby the relation � = �. For su
h proto
ols, system (3.6) simpli�es to:0BBBBBBB� VCs1 + �s1 �Æ � � � �Æ�0 + � VCs2 + �s2 � � � �Æ... ... � � � ...�0 + � �0 + � � � � �Æ�0 + � �0 + � � � � VCsn + �sn
1CCCCCCCA � 0BBBBBBB� ws1ws2...wsn�1wsn

1CCCCCCCA = 0BBBBBBB� L� (n + 1)FCL� (n + 1)FC...L� (n + 1)FCL� (n + 1)FC
1CCCCCCCA (3.7)It is proved in [2℄ that, surprisingly:� All FIFO proto
ols produ
e the same amount of work in L time units, no matter whattheir startup indexing. This work produ
tion is obtained by solving system (3.7).FIFO proto
ols solve the HNOW-Exploitation Problem asymptoti
ally optimally [2℄:� For all suÆ
iently long lifespans L, a FIFO proto
ol produ
es at least as mu
h workin L time units as any proto
ol P(�;�).It is worth noting that having to s
hedule the transmission of results, in addition to inputs,is the sour
e of mu
h of the
ompli
ation en
ountered in proving the pre
eding result.B. Case study: [20℄ As noted earlier, the
ommuni
ation model in [20℄ is spe
i�ed at ahigh level of abstra
tion. In an e�ort to
ompare that model with the HiHCoHP model, wehave
ast the former model within the framework of the latter, in a way that is
onsistentwith the algorithmi
 setting and results of [20℄. One largely
osmeti
 di�eren
e betweenthe two models is that all speeds are measured in absolute (wall-
lo
k) units in [20℄, in
ontrast to the relative work units in [2℄. More substantively, the
ommuni
ation modelof [20℄
an be obtained from the HiHCoHP model via the following simpli�
ations.� There is no
ost assessed for setting up a
ommuni
ation (the HiHCoHP
ost �).Importantly, the absen
e of this
ost removes any disin
entive to repla
ing a singlelong message by a sequen
e of shorter ones.� Certain
osts in the HiHCoHP model are deemed negligible, hen
e, ignorable:{ the per-pa
ket transit rate (�) in a pipelined network,{ the per-pa
ket pa
kaging (the �i) and unpa
kaging (the �i)
osts.28

These assumptions impli
itly assert that the tasks in one's bag are very
oarse,espe
ially if message-(un)pa
kaging in
ludes en/de
oding.These simpli�
ations imply that, within the model of [20℄:� The heterogeneity of the HNOW N is manifest only in the di�ering
omputationrates of N 's workstations.� In a pipelined network, the distribution of work to and the
olle
tion of results fromea
h of N 's workstation take �xed
onstant time. Spe
i�
ally, P0 sends work at a
ost of t(work)
om time units per transmission and re
eives results at a
ost of t(results)
omtime units per transmission.Within this model, [20℄ derives eÆ
ient optimal or near-optimal s
hedules for the fourvariants of the HNOW-Exploitation Problem that
orrespond to the four paired answersto the questions: \Do tasks produ
e nontrivial-size results?" \Is N 's network pipelined?"For those variants that are NP-Hard, near-optimality is the most that one
an expe
t toa
hieve eÆ
iently|and this is what [20℄ a
hieves.The Pipelined HNOW-Exploitation Problem|whi
h is the only version we dis
uss|isformulated in [20℄ as an integer optimization problem. (Tasks are atomi
, in
ontrast to[2℄.) One allo
ates an integral number|
all it ai|of tasks to ea
h workstation Pi via aproto
ol that has the essential stru
ture depi
ted in Fig. 5, altered to a

ommodate thesimpli�ed
ommuni
ation model. One then solves the following optimization problem.Find: A startup indexing: � = hs1; s2; : : : ; sniA �nishing indexing: � = hf1; f2; : : : ; fniAn allo
ation of tasks: Ea
h Pi gets ai tasksThat maximizes: nXi=1 ai (the number of tasks
omputed)Subje
t to the
onstraint: All work gets done within the lifespan; formally:(81 � i � n) [si � t(work)
om + ai � ti + fi � t(results)
om � L℄ (3.8)Not surprisingly, the (de
ision version of the) pre
eding optimization problem is NP-Complete, hen
e, likely
omputationally intra
table. This fa
t is proved in [20℄ via redu
-tion from a variant of the Numeri
al 3-D Mat
hing Problem. Stated formally:� Finding an optimal solution to the HNOW-Exploitation Problem within the model of[20℄ is NP-
omplete in the strong sense6.6The strong form of NP-
ompleteness measures the sizes of integers by their magnitudes rather thanthe lengths of their numerals. 29

Those familiar with dis
rete optimization problems would tend to expe
t a Hardnessresult here be
ause this formulation of the HNOW-Exploitation Problem requires �nding amaximum \paired-mat
hing" in an edge-weighted version of the tripartite graph depi
tedin Fig. 6: A \paired-mat
hing" is one that uses both of the permutations � and � in
Startup
Order

Finishing
Order

P

P

P

1

2

n

.
 .

.

.
 .

.

.
 .

.

n

2

1

n

2

1

Wkstations

with work allocationsWeightedFigure 6: An abstra
tion of the HNOW-Exploitation Problem within the model of [20℄.a
oordinated fashion in order to determine the ai. The mat
hing gives us the startupand �nishing orders of N 's workstations. Spe
i�
ally, the edge
onne
ting the lefthandinstan
e of node i with node Pj (resp., the edge
onne
ting the righthand instan
e of nodek with node Pj) is in the mat
hing when sj = i (resp., fj = k). In order to ensure thatan optimal solution to the HNOW-Exploitation Problem is within our sear
h spa
e, wehave to a

ommodate the possibility that sj = i and fj = k, for every distin
t triple ofintegers, i; j; k 2 f1; 2; : : : ; ng. In order to ensure that a maximum mat
hing in the graphof Fig. 6 yields this optimal solution, we weight the edges of the graph in a

ordan
e with
onstraint (3.8), whi
h
ontains both si and fi. If we let !(u; v) denote the weight on theedge from node u to node v in the graph, then, for ea
h 1 � i � n, the optimal weightingmust end up with!(si; Pi) + !(Pi; fi) = $L� si � t(work)
om � fi � t(results)
omti % :While the desired weighting would lead to an optimal solution, it also leads to NP-Hardness. We avoid this
omplexity by relinquishing our demand for an optimal solution.A simple approa
h to ensuring reasonable
omplexity is to de
ouple the mat
hings derived30

for the lefthand and righthand sides of the graph of Fig. 6, whi
h is tantamount to ignoringthe intera
tions between � and � when seeking work-allo
ations. We a
hieve the desiredde
oupling via the following edge-weighting!(i; Pj) = $L=2� i � t(work)
omtj % and !(Pj; k) = $L=2� k � t(results)
omtj % :We then �nd independent lefthand and righthand maximum mat
hings, ea
h within timeO(n5=2). It is shown in [20℄ that the solution produ
ed by this de
oupled mat
hing problemdeviates from the true optimal solution by only an additive dis
repan
y of � n.� There is an O(n5=2)-time work-allo
ation algorithm whose solution (within the modelof [20℄) to the HNOW-Exploitation Problem in an n-workstation HNOW is (addi-tively) within n of optimal.C. Case study: [17℄ The framework of this study is quite di�erent from that of [2, 20℄,sin
e it fo
uses on the HNOW-Utilization Problem rather than the HNOW-ExploitationProblem. In
ommon with the latter sour
es, a master workstation enlists the
omputa-tional resour
es of an HNOW N in
omputing a bag of tasks that are equal in both sizeand
omplexity. Here, however, the master workstation is a member|
all it Pm|of theHNOW N . Moreover, here the bag of tasks is massive, and there is no a priori limit to theduration of the worksharing enterprise. Additionally, the form of worksharing
onsideredis di�erent from and, in some ways, more ambitious than in [2, 20℄. Now, Pm allo
atesone task at a time, and workstations may redistribute these work allo
ations (one taskat a time) at will, along dire
t
ommuni
ation links between sele
ted pairs of worksta-tions. Finally, in
ontrast to the HNOW-Exploitation Problem, one wants here to havethe worksharing regimen rea
h an optimal \steady state," in whi
h the average aggregatenumber of tasks
omputed per time-step is maximized. We des
ribe here only the mostgeneral of the s
heduling results in [17℄, whi
h pla
es no a priori restri
tion on whi
h pairsof workstations
an
ommuni
ate dire
tly with ea
h other.As in the HiHCoHP model, ea
h workstation Pi of [17℄ has a
omputation rate �i(
f. Table 2) whi
h indi
ates the amount of time Pi takes to
ompute one task|but theindi
es here do not re
e
t relative speeds. Every pair of workstations, Pi and Pj, hasan asso
iated
ost
ij of transmitting a single task (with all material ne
essary for its
omputation) between Pi and Pj, in either dire
tion. To simplify the development, the
ost asso
iated with a task is \double-ended," in the sense that it in
ludes the
ost oftransmitting both that task and (at a later time) the results from that task. If Pi and Pj
an
ommuni
ate dire
tly with one another|for short, are neighbors|then
ij is �nite;if they
annot, then, by
onvention,
ij = 1. The
ommuni
ation model in [17℄ is thus
loser to that of [131℄ than to that of [2℄, for in the latter, the possible di�eren
es between31

pa
kaging and unpa
kaging times may render
ommuni
ation
osts asymmetri
. Severalregimens are
onsidered in [17℄
on
erning what pro
esses may o

ur in parallel. We fo
ushere only on their \base model," in whi
h a workstation
an simultaneously re
eive atask (or a result) from one neighbor, send a task (or a result) to one (possibly di�erent)neighbor, and pro
ess some task (that it already has). In summation, if workstation Pisends a task to workstation Pj at time-step t, then, until time t+
ij:� Pj
annot start exe
uting this task nor initiate another re
eive operation;� Pi
annot initiate another send operation.Within the pre
eding model, the goal of the study|optimal steady-state performan
e|is formalized as follows. For ea
h 1 � i � n, let n(i) be the set of indi
es of workstationPi's neighbors. During a snapshot depi
ting one unit of a
tivity by the HNOW N :� �i is the fra
tion of time during whi
h Pi is
omputing;� sij is the fra
tion of time during whi
h Pi is sending to neighbor Pj;� rij is the fra
tion of time during whi
h Pi is re
eiving from neighbor Pj.The quantity �i=�i is the throughput of workstation Pi during the isolated time unit. Towit, Pi is
apable of
omputing 1=�i tasks in one time unit; in the snapshot, only thefra
tion �i of that time unit is spent
omputing. The goal is to maximize the quantityThroughput-rate def= nXi=1 �i�i : (3.9)subje
t to the following seven sets of
onstraints imposed by the model.1: for all i: 0 � �i � 1for all i, j 2 n(i): 0 � sij � 1for all i, j 2 n(i): 0 � rij � 1These re
e
t the fa
t that �i, sij, and rij are proper fra
tions.2: for all i, j 2 n(i): sij = rjiEa
h Pj re
eives whatever ea
h neighbor Pi sends it.3: for all i: Pj2n(i) sij � 1for all i: Pj2n(i) rij � 1These re
e
t the single-port
ommuni
ation regimen.4: for all i, j 2 n(i): sij + rji � 1Even though a link is bidire
tional, its bandwidth
an never be ex
eeded.(Multiply the inequality by the bandwidth 1=
ij to
larify the
onstraint.)32

5: for all i 6= m: Xj2n(i) rij
ij = �i�i + Xj2n(i) sij
ijA
onservation law: For every Pi ex
ept the master Pm|whi
h starts out with\in�nitely many" tasks|the number of tasks that Pi re
eives should equal thenumber that it
omputes, plus the number that it relays to other Pj.6: for all j 2 n(m): rmj = 0Sin
e Pm is saturated with tasks ab initio, there
an be no advantage tosending it additional tasks.7: �m � 1The model allows Pm to
ompute without interruption.The pre
eding formulation of the goal a�ords one an eÆ
ient alogorithm for optimallysolving the HNOW-Utilization Problem on the HNOW N [17℄.� The optimization problem (3.9), augmented with the seven sets of
onstraints,
om-prises a linear program whose solution yields the optimal solution for the HNOW-Utilization Problem on the HNOW N .� This linear program �nds this s
hedule in time polynomial in the size of N , as mea-sured by the number of workstations and the number of dire
t interworkstation links.Signi�
ant related studies. One �nds in [3℄ a model that
aptures the same featuresas does HiHCoHP, but without allowing for workstation heterogeneity. Using this model,it is proved that the FIFO Proto
ol provides optimal solutions for the HNOW-ExploitationProblem in homogeneous NOWs.We remarked earlier that one �nds in [20℄ four variants of the HNOW-ExploitationProblem, not just the one variant we have des
ribed. In all four variants, the masterworkstation sends an allo
ation of equal-size, equal-
omplexity tasks to all workstationsof the \exploited" HNOW N and re
eives the results of those tasks; all tasks are assumedto produ
e the same amount of data as results; all
ommuni
ation is single-ported. Twofamilies of worksharing proto
ols are
onsidered, one of whi
h has work distributed andresults
olle
ted in the staggered manner depi
ted in Fig. 5; the other of whi
h has workdistributed via a s
atter operation and results
olle
ted via a gather operation.The HNOW-Rental Problem is studied in [163℄, under a model in whi
h tasks produ
eno output and
ommuni
ation
an overlap with
omputation, even on the same worksta-tion. Worksharing pro
eeds by having the master workstation transmit equal-size
hunksof work to the rented HNOW's workstations at a frequen
y determined by an analysis ofthe workstations' powers. A near-optimal algorithm is derived within this setting.33

One �nds in [22, 23, 42℄ and sour
es
ited therein a model that is simpler than thosedis
ussed thus far. These sour
es employ a very abstra
t model that suppresses many ofthe
osts a

ounted for in the other
ited studies.Employing a rather di�erent approa
h to worksharing, the study in [15℄
onsiders howto allo
ate a single
ompute-intensive task within an HNOW N . The de
ision about whi
hworkstation(s) will re
eive the task is made based on an \au
tion." The master workstationdetermines whi
h aggregation of N 's workstations will|a

ording to the sour
e's
ostmodel|yield the best performan
e on the au
tioned task.Finally, one �nds in [56℄ a largely experimental study of worksharing in HNOWs whoseworkstations share resour
es in a nondedi
ated manner. As in a Computational Grid (seeSe
tion 4.1), the workstations of [56℄ timeshare their
y
les with partners' work, ratherthan dedi
ating
y
les to that work. As in [15℄, work is allo
ated among the HNOW'sworkstations based on anti
ipated performan
e on that work; in
ontrast to [15℄: \anti
-ipated performan
e" is expli
itly determined empiri
ally; all workstations simultaneouslyand
ontinuously monitor the \anti
ipated performan
e" of their fellow HNOW members.4 Internet ComputingAdvan
ing te
hnology has rendered the Internet a viable medium for
ollaborative
om-puting, via me
hanisms su
h as Grid
omputing (GC, for short) and Web-based
omputing(WC, for short). Our interest in these modalities of Internet
omputing resides in their(not-un
ommon) use for
omputing a massive
olle
tion of (usually
ompute-intensive)tasks that reside at a \master"
omputing site. When so used, the \master" site viewsits \
ollaborators" as remotely situated \volunteers" who must be supplied with work ina manner that enhan
es the
ompletion of the massive job.4.1 The Platform(s)Computational Grids. A GC proje
t presupposes the formation of a ComputationalGrid|a
onsortium of
omputing sites that
ontra
t to share resour
es [62, 63℄. Fromtime to time, a Grid
omputing site will send a task to a
ompanion Grid site that hasagreed to share its
omputing
y
les. When this
ompanion site returns the result of its
urrent task, it be
omes eligible for further worksharing.Web-based
omputing. In a WC proje
t, a volunteer registers with the \master" siteand re
eives a task to
ompute. When a volunteer
ompletes its
urrent task, it revisitsthe \master" site to return the results of that task and to re
eive a new task. InterestingWC proje
ts in
lude: [85, 159℄, whi
h perform astronomi
al
al
ulations; [137℄, whi
h34

performs se
urity-motivated number-theoreti

al
ulations; [76, 116, 160℄, whi
h performmedi
al and biologi
al
omputations. Su
h sites bene�t from Internet
omputing eitherbe
ause of the sheer volume of their workloads or be
ause of the
omputational
omplexityof their individual tasks.4.2 Some ChallengesThe endeavor of using the Internet for
ollaborative
omputing gives rise to two algorithmi

hallenges that are not en
ountered in environments in whi
h the
omputing agents aremore tightly
oupled. We term these
hallenges temporal and fa
tual unpredi
tability.Temporal unpredi
tability. Remote
omputing agents in an Internet
omputing proje
t|be it a WC or GC proje
t|typi
ally tender no guarantee of when the results from anallo
ated task will be returned to the \master" site. Indeed, in a WC proje
t, that sitetypi
ally has no guarantee that a \volunteer" will ever return results. This la
k of a timeguarantee is an annoyan
e when the tasks
omprising the
ollaborative workload are mu-tually independent|i.e., form a bag of tasks|but at least one never runs out of tasksthat are eligible for allo
ation. (Of
ourse, if all tasks must eventually be exe
uted|whi
his not the
ase with several WC proje
ts|then this annoyan
e must trigger some a
tion,su
h as reallo
ation, by the \master" site.) However, when the tasks in the workload haveinterdependen
ies that
onstrain their order of exe
ution, this temporal unpredi
tability
an lead to a form of gridlo
k wherein no new tasks
an be allo
ated for an indeterminateperiod, pending the exe
ution of already allo
ated tasks. Although \safety devi
es" su
has deadline-triggered reallo
ation of tasks address this danger, they do not eliminate it,sin
e the \ba
kup" remote parti
ipant assigned a given task may be as dilatory as theprimary one. A major
hallenge is how to or
hestrate the allo
ation of tasks in a way thatminimizes the likelihood of this form of gridlo
k.Fa
tual unpredi
tability. The volunteers who parti
ipate in a WC proje
t typi
allyneed not authenti
ate their alleged identities. In many su
h proje
ts, the sheer number ofparti
ipants would render the use of
ostly trusted authenti
ation me
hanisms impra
ti-
able. This fa
t renders all inter
hanges with|and information from|volunteers totallyinse
ure. As noted in Se
tion 1, this situation apparently
reates an irresistible temp-tation for ha
kers, who plague many WC proje
ts, greatly in
reasing the overhead forthese proje
ts. For this reason, one might suggest using WC only for se
urity-insensitiveappli
ations (relating, say, to pro
essing astronomi
al data [85, 159℄) where erroneous oreven mis
hievously or mali
iously false results are not likely to have dire
onsequen
es.However, many of the most important appli
ations of WC involve very sensitive appli-
ations, su
h as se
urity-related [137℄ or health-related [76, 116℄ ones. Indeed, for manyappli
ations that generate truly massive numbers of identi
al tasks, Web-based
omputingis one of the only imaginable ways to assemble massive
omputing power at manageable35

ost. The
hallenge is to
oordinate the volunteers in a WC proje
t in a way that mini-mizes potential disruptions by ha
kers, while not ex
essively slowing down the progress oflegitimate parti
ipants.4.3 Some Sophisti
ated ResponsesThere have thus far been few rigorously analyzed algorithmi
 studies of
omputing on theInternet, via either WC or GC. One signi�
ant su
h study is [17℄, whi
h studies worksharingin Grids. By res
aling model parameters, this study applies also to worksharing in HNOWs,whi
h is the
ontext in whi
h we dis
uss it (Se
tion 3.3.3.C). We have opted to reservethis se
tion for studies that address problems unique to Internet
omputing.4.3.1 S
heduling to
ope with temporal unreliabilityA. Case study: [133, 136℄ These sour
es
raft and study a model that abstra
ts thepro
ess of s
heduling
omputation-dags for either GC or WC. The goal of the model is toallow one to avoid the gridlo
k en
ountered when a
omputation stalls be
ause all tasksthat are eligible for exe
ution have been allo
ated but not yet returned. The model isinspired by the many pebble games on dags that have been shown, over several de
ades,to yield elegant formal analogues of a variety of problems related to s
heduling the task-nodes of
omputation-dags [47, 73, 118℄. Su
h games use tokens
alled pebbles to modelthe progress of a
omputation on a dag: the pla
ement or removal of the various availabletypes of pebbles|whi
h is
onstrained by the dependen
ies modeled by the dag's ar
s|represents the
hanging (
omputational) status of the dag's task-nodes. The Internet-Computing (IC, for short) Pebble Game on a
omputation-dag G involves one player S,the Server, and an indeterminate number of players C1; C2; : : :, the Clients. The Server hasa

ess to unlimited supplies of three types of pebbles: eligible-but-unallo
ated (ebu,for short) pebbles, eligible-and-allo
ated (eaa, for short) pebbles, and exe
uted(xeq, for short) pebbles. The Game's moves re
e
t the su

essive stages in the \life-
y
le"of a node in a
omputation-dag, from eligibility for exe
ution through a
tual exe
ution.Fig. 7 presents the rules of the IC Pebble Game. The reader should note how the movesof the Game expose the danger of a play's being stalled inde�nitely by dilatory Clients.There is little that one
an do to forestall the
han
es of gridlo
k when playing theIC Pebble Game, absent some
onstraint on the a
tions of the Clients. Without some
onstraint, a mali
ious adversary (read: unfortunate behavior by Clients)
ould
onfute anyattempt to guarantee the availability of a node
ontaining an ebu pebble|by imposing apessimal order on the exe
ution of allo
ated tasks. The
onstraint imposed by the study in[133, 136℄ is the assumption that tasks are exe
uted in the same order as they are allo
ated.(Sin
e many GC and WC \master" sites monitor the state of remote parti
ipants, this36

� At any step of the game, S may pla
e an ebu pebble on any unpebbled sour
e node of G./*Unexe
uted sour
e nodes are always eligible for exe
ution, having no parents whose priorexe
ution they depend on.*/� Say that Client Ci approa
hes S requesting a task. If Ci has previously been allo
ated a taskthat it has not
ompleted, then Ci's request is ignored; otherwise, the following o

urs.{ If at least one node of G
ontains an ebu pebble, then S gives Ci the task
orrespondingto one su
h node and repla
es that node's pebble by an eaa pebble.{ If no node of G
ontains an ebu pebble, then Ci is told to withdraw its request, and thismove is a no-op.� When a Client returns (the results from) a task-node, S repla
es that task-node's eaa pebbleby an xeq pebble. S then pla
es an ebu pebble on ea
h unpebbled node of G all of whoseparents
ontain xeq pebbles.� S's goal is to allo
ate nodes in su
h a way that every node v of G eventually
ontains an xeqpebble./*This modest goal is ne
essitated by the possibility that G is in�nite.*/Figure 7: The rules of the IC Pebble Gameassumption is not totally fan
iful.) With this assumption in pla
e, these studies attemptto optimize the quality of a play of the IC Pebble Game on a dag G by maximizing, at allsteps t, the aggregate number of ebu pebbles on G's nodes, as a fun
tion of the number ofeaa and xeq pebbles on G's nodes.The
omputation-dags studied in [133, 136℄ are the four depi
ted in Fig. 8: the (in�nite)evolving mesh-dag, redu
tion-oriented versions of mesh-dags and tree-dags, and the FFT-dag [48℄. It is shown in [133℄ (for evolving 2-dimensional mesh-dags) and in [136℄ (for theother dags in Fig. 8) that a s
hedule for the dags in Fig. 8 is optimal if, and only if, itallo
ates nodes in a parent-oriented fashion|i.e., it exe
utes all parents of ea
h node in
onse
utive steps. This general result translates to the following dag-spe
i�
 instan
es.� The strategy of exe
uting nodes of evolving mesh-dags along su

essive levels of thedag|level k
omprises all nodes hx; yi su
h that x + y = k|is optimal for 2-dimensional mesh-dags. (It is shown in [133℄ that this strategy is within a
onstantfa
tor of optimal for mesh-dags of higher (�xed) dimensionalities.)The proof for 2-dimensional mesh-dags is immediate from the following observation. Notwo eligible nodes
an reside in the same row or the same
olumn of the mesh-dag at any37

1,0

2,0

3,0 2,1

0,0

1,1

0,1

1,2

0,2

0,3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

0

1

2

3

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4Figure 8: Clo
kwise from upper left: the evolving (2-dimensional) mesh-dag, a (binary)redu
tion-tree dag, the 5-level (2-dimensional) redu
tion-mesh dag, the 4-level FFT-dagstep of the IC Pebble Game; moreover, all \an
estors" of ea
h ebu node must
ontain xeqpebbles. Hen
e, when there are n ebu nodes on the dag, there must be at least n2! xeqnodes \supporting" them. The argument for higher dimensionalities is similar in strategybut signi�
antly more
omplex.� For redu
tion-oriented mesh-dags, a s
hedule is optimal if it exe
utes nodes alongsu

essive levels of the dag.� For redu
tion-oriented tree-dags and for the FFT-dag, a s
hedule is optimal if \sib-ling" nodes|nodes that share a parent|are always exe
uted in
onse
utive steps.For redu
tion-mesh dags, the optimality
ondition follows from the fa
t that the aggregatenumber of ebu nodes on the dag at any step of the IC Pebble Game is bounded above by(one plus) the smallest index of a level of the dag that
ontains a pebble at step t; onetherefore wants this index to shrink as slowly as possible. For the other dags, the aggregatenumber of ebu nodes on the dag at a step of the IC Pebble Game is bounded above bya quantity depending on the stru
ture of the dag and the number of xeq nodes at thatstep, minus the number of nodes that
ontain xeq pebbles while their siblings don't.Signi�
ant progress is made in [102℄ toward developing te
hniques for
rafting optimals
hedules for a broad range of
omputation-dags, by abstra
ting and generalizing thes
heduling prin
iples underlying the
ase studies in [133, 136℄.38

4.3.2 S
heduling to
ope with fa
tual unreliabilityThere is substantial work going on in the se
ure-
omputing
ommunity that is aimed atidentifying attempts to
ompromise
ollaborative
omputing proje
ts; see, e.g., [144℄ andsour
es
ited therein. We know, however, of only one study aimed at possibly eliminatingha
kers from a WC proje
t on
e they are identi�ed.A. Case study: [132℄ This sour
e studies an unusual fa
et of the se
urity problem inWC. It develops a
omputationally lightweight s
heme for keeping tra
k of whi
h volunteersin a WC proje
t
omputed whi
h tasks. Mu
h of the s
heme employs familiar algorithmi
te
hniques involving sear
h trees for point- and range-queries. The unique aspe
t of thes
heme is a strategy that assigns positive-integer indi
es to:1. the set of all tasks at the master site,2. all volunteers (who are allowed to arrive and depart dynami
ally),3. the set of tasks reserved for ea
h volunteer vand that interrelates the resulting three sets of indi
es. The interrelation me
hanism is atask-allo
ation fun
tion (TAF, for short), i.e., a pairing fun
tion ' that maps the set N�Nof pairs of positive integers one-to-one, onto the set N of positive integers; symboli
ally,' : N � N $ N. Ea
h
opy of the set N plays the role of one of the indi
ated sets ofindi
es. The potential pra
ti
ality of su
h a s
heme demands that the fun
tions ', '�1,and '(v; t+ 1)� '(v; t) all be easily
omputed; to wit, the \master" site must
ompute:� '(v; t) to determine the index in the overall workload of the tth task in volunteer v'sworkload;� '�1(t) to determine whi
h volunteer, v, was assigned task t, and what index task thas in v's workload;� '(v; t + 1) � '(v; t) to determine whi
h task to allo
ate to volunteer v when s/hereturns the results of his/her task t.In a quest for
omputational ease, the primary fo
us in [132℄ is on TAFs that are additive(are ATAFs, for short). An ATAF assigns ea
h volunteer v a base task-index Bv and astride Sv; it then uses the formula'(v; t) = Bv + (t� 1)Sv39

to determine the workload task-index of the tth task assigned to volunteer v. From asystem perspe
tive, ATAFs have the bene�t that a volunteer's stride need be
omputedonly when s/he �rst registers at the website and
an be stored for subsequent appearan
es.The main results of [132℄ determine how to assign base task-indi
es and strides tovolunteers eÆ
iently, both in terms of
omputing these indi
es and in terms of having theindi
es grow as slowly as possible, as fun
tions of the volunteer-index v. The slow growthof Bv and Sv is argued in [132℄ to fa
ilitate management of the memory in whi
h the tasksare stored. Toward this end, a pro
edure for
ontru
ting ATAFs is presented, based onthe following well-known property of the set � of positive odd integers; see [113℄.� For any positive integer
, every odd integer
an be written in pre
isely one of the2
�1 forms: 2
n + 1; 2
n + 3; 2
n + 5; : : : ; 2
n + (2
 � 1), for some nonnegativeinteger n.Pro
edure ATAF-Constru
tor(') (see Fig. 9) builds on the pre
eding result to
onstru
tATAFs eÆ
iently.Step 1. Partition the set of volunteer-task-indi
es into groups whose sizes are powers of 2 (with anydesired mix of equal-size and distin
t-size groups). Order the groups linearly in some (arbitrary)way./*We
an now talk unambiguously about group 0 (whose members share group-index g = 0),group 1 (whose members share group-index g = 1), and so on.*/Step 2. Assign ea
h group a distin
t
opy of the set �, via a
opy-index �(g) expressed as a fun
tionof the group-index g./*We
an now talk unambiguously about group g's
opy ��(g) of the odd integers.*/Step 3. Allo
ate group g's
opy ��(g) to its members via the (
 = �(g)) instan
e of the
itedproperty of the odd integers, using the multiplier 2g as a signature to distinguish group g's
opy of the set � from all other groups'
opies.Figure 9: Pro
edure ATAF-Constru
tor('), whi
h
onstru
ts an ATAF 'An expli
it expression for the ATAFs of Pro
edure ATAF-Constru
tor. If we denotethe 2�(g) rows of group g as xg;1; xg;2; : : : ; xg;2�(g), then for all i 2 f1; 2; : : : ; �(g)g,'(xg;i; y) def= 2g h21+�(g)(y � 1) + (2xg;i + 1 mod 21+�(g))iFig. 10 illustrates the
onstru
tion via a sampler of argument-result values from three sam-ple ATAFs. The �rst two exempli�ed ATAFs, '<1> and '<3>, stress ease of
omputation;the third, '#(x; y), stresses slowly growing strides.40

'<1>(x; y) def= 2x�1 [2(y � 1) + (2x� 1 mod 2)℄hx; gi '<1>(x; y)h14; 13i 8192 24576 40960 57344 73728 � � �h15; 14i 16384 49152 81920 114688 147456 � � �'<3>(x; y) def= 2b(x�1)=4
 [8(y � 1) + (2x� 1 mod 8)℄hx; gi '<3>(x; y)h14; 3i 24 88 152 216 280 � � �h15; 3i 40 104 168 232 296 � � �...h28; 6i 448 960 1472 1984 2496 � � �h29; 7i 128 1152 2176 3200 4224 � � �'#(x; y) def= 2blog x
 �21+blog x
(y � 1) + (2x+ 1 mod 21+blog x
)�hx; gi '#(x; y)h28; 4i 400 912 1424 1936 2448 � � �h29; 4i 432 944 1456 1968 2480 � � �Figure 10: Sample values by three ATAFsA
knowledgments. The resear
h of the author was supported in part by NSF GrantCCR-00-73401. Thanks are due many
olleagues who helped in varied ways: by
omment-ing on the text, by pointing out referen
es, and by giving permission to have their worksummarized here. I hesitate to enumerate them for fear of inadvertently forgetting some.Let me, therefore, merely assure them of my sin
ere gratitude.Referen
es[1℄ U. A
ar, G.E. Blello
h, R.D. Blumofe (2002): The data lo
ality of work stealing. Theoryof Computing Systs. 35, 321{347.[2℄ M. Adler, Y. Gong, A.L. Rosenberg (2003): Optimal sharing of bags of tasks in het-erogeneous
lusters. 15th ACM Symp. on Parallelism in Algorithms and Ar
hite
tures(SPAA'03), 1{10.[3℄ J. Agrawal and H.V. Jagadish (1988): Partitioning te
hniques for large-grained parallelism.IEEE Trans. Computers 37, 1627{1634.[4℄ W. Aiello, S.N. Bhatt, F.R.K. Chung, A.L. Rosenberg, R.K. Sitaraman (2001): Augmentedring networks. IEEE Trans. Parallel and Distr. Systs. 12, 598{609.41

[5℄ S. Akl (1989): The Design and Analysis of Parallel Algorithms. Prenti
e-Hall, EnglewoodCli�s, NJ.[6℄ R. Aleliunas and A.L. Rosenberg (1982): On embedding re
tangular grids in square grids.IEEE Trans. Comp., C-31, 907{913.[7℄ A. Alexandrov, M.I. Iones
u, K.E. S
hauser, C. S
heiman (1997): LogGP: in
orporatinglong messages into the LogP model for parallel
omputation. J. Parallel Distr. Comput. 44,71{79.[8℄ R.J. Anderson and G.L. Miller (1990): A simple randomized parallel algorithm for list-ranking. Inform. Pro
. Let. 10.[9℄ T.E. Anderson, D.E. Culler, D.A. Patterson, and the HNOW Team (1995): A
ase forNOW (networks of workstations). IEEE Mi
ro 15, 54{64.[10℄ M. Andrews, F.T. Leighton, P.T. Metaxas, L. Zhang (1996): Improved methods for hidinglaten
y in high bandwidth networks. 8th ACM Symp. on Parallel Algorithms and Ar
hi-te
tures, 52{61.[11℄ F.S. Annexstein (1991): SIMD-emulations of hyper
ubes and related networks by linearand ring-
onne
ted pro
essor arrays. 3rd IEEE Symp. on Parallel and Distr. Pro
essing,656{659.[12℄ F.S. Annexstein (1994): Embedding hyper
ubes and related networks into mesh-
onne
tedpro
essor arrays. J. Parallel Distr. Comput. 23, 72{79.[13℄ F.S. Annexstein, M. Baumslag, A.L. Rosenberg (1990): Group a
tion graphs and parallelar
hite
tures. SIAM J. Comput. 19, 544{569.[14℄ N.S. Arora, R.D. Blumofe, C.G. Plaxton (2001): Thread s
heduling for multiprogrammedmultipro
essors. Theory of Computing Systs. 34, 115{144.[15℄ M.J. Atallah, C.L. Bla
k, D.C. Marines
u, H.J. Siegel, T.L. Casavant (1992): Modelsand algorithms for
os
heduling
ompute-intensive tasks on a network of workstations.J. Parallel Distr. Comput. 16, 319{327.[16℄ B. Awerbu
h, Y. Azar, A. Fiat, F.T. Leighton (1996): Making
ommitments in the fa
eof un
ertainty: how to pi
k a winner almost every time. 28th ACM Symp. on Theory ofComputing, 519{530.[17℄ C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2003): S
hedulingstrategies for master-slave tasking on heterogeneous pro
essor grids. Types
ript, ENS-Lyon.[18℄ A. Bar-Noy and D. Peleg (1991): Square meshes are not always optimal. IEEETrans. Comp. 40, 196{204.
42

[19℄ O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2002): Bandwidth-
entri
allo
ation of independent tasks on heterogeneous platforms. Intl. Parallel and Distr. Pro-
essing Symp. (IPDPS'02).[20℄ O. Beaumont, A. Legrand, Y. Robert (2003): The master-slave paradigm with heteroge-neous pro
essors. IEEE Trans. Parallel and Distr. Systs. 14, 897{908.[21℄ J.-C. Bermond and C. Peyrat (1989): The de Bruijn and Kautz networks: a
ompetitorfor the hyper
ube? In Hyper
ube and Distributed Computers (F. Andre and J.P. Verjus,eds.) North-Holland, Amsterdam, 279{293.[22℄ V. Bharadwaj, D. Ghose, V. Mani (1994): Optimal sequen
ing and arrangement in dis-tributed single-level tree networks. IEEE Trans. Parallel and Distr. Systs. 5, 968{976.[23℄ V. Bharadwaj, D. Ghose, V. Mani (1995): Multi-installment load distribution in treenetworks with delays. IEEE Trans. Aerospa
e and Ele
tron. Systs. 31, 555{567.[24℄ S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1992): EÆ
ient embeddings oftrees in hyper
ubes. SIAM J. Comput. 21, 151{162.[25℄ S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obreni�
, A.L. Rosenberg,E.J. S
hwabe (1996): Optimal emulations by butter
y-like networks. J. ACM 43, 293{330.[26℄ S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1997): On optimal strategiesfor
y
le-stealing in networks of workstations. IEEE Trans. Comp. 46, 545{557.[27℄ S.N. Bhatt, D.S. Greenberg, F.T. Leighton, P. Liu (1999): Tight bounds for on-line treeembeddings. SIAM J. Comput. 29, 474{491.[28℄ S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph layout problems.J. Comput. Syst. S
is. 28, 300{343.[29℄ G. Bilardi, K.T. Herley, A. Pietra
aprina, G. Pu

i, P. Spirakis (1998): BSP vs. LogP.Algorithmi
a.[30℄ G. Bilardi and A. Ni
olau (1989): Adaptive bitoni
 sorting: An optimal algorithm forshared memory ma
hines. SIAM J. Comput. 18, 216{228.[31℄ G. Bilardi and F.P. Preparata (1995): Horizons of parallel
omputation. J. ParallelDistr. Comput. 27, 172{182.[32℄ R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, Y. Zhou (1995):Cilk: an eÆ
ient multithreaded runtime system. 5th ACM SIGPLAN Symp. on Prin
iplesand Pra
ti
es of Parallel Programming (PPoPP'95).[33℄ R.D. Blumofe and C.E. Leiserson (1998): Spa
e-eÆ
ient s
heduling of multithreaded
om-putations. SIAM J. Comput. 27, 202{229.43

[34℄ R.D. Blumofe and C.E. Leiserson (1999): S
heduling multithreaded
omputations by workstealing. J. ACM 46, 720{748.[35℄ R.D. Blumofe and D.S. Park (1994): S
heduling large-s
ale parallel
omputations on net-works of workstations. 3rd Intl. Symp. on High-Performan
e Distr. Computing, 96{105.[36℄ B. Boothe and A.G. Ranade (1992): Improved multithreading te
hniques for hiding
om-muni
ation laten
y in multipro
essors. 19th Intl. Symp. on Computer Ar
hite
ture.[37℄ R.P. Brent (1974): The parallel evaluation of general arithmeti
 expressions. J. ACM 21,201{206.[38℄ R.P. Brent and H.T. Kung (1984): Systoli
 VLSI arrays for polynomial g
d
omputation.IEEE Trans. Comp., C-33, 731{737.[39℄ R.P. Brent, H.T. Kung, F.T. Luk (1983): Some linear-time algorithms for systoli
 arrays.In Information Pro
essing 83 (R.E.A. Mason, ed.), North-Holland, Amsterdam, 865{876.[40℄ T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser (1987): Graph bise
tion algorithms withgood average
ase behavior. Combinatori
a 7, 171{191.[41℄ F. Cappello, P. Fraigniaud, B. Mans, A.L. Rosenberg (2001): HiHCoHP|Toward a re-alisti

ommuni
ation model for hierar
hi
al hyper
lusters of heterogeneous pro
essors.Intl. Parallel and Distr. Pro
essing Symp. (IPDPS'01).[42℄ Y.C. Cheng and T.G. Robertazzi (1990): Distributed
omputation for tree networks with
ommuni
ation delays. IEEE Trans. Aerospa
e and Ele
tron. Systs. 26, 511{516.[43℄ S. Ching
hit, M. Kumar, L.N. Bhuyan (1999): A
exible
lustering and s
heduling s
hemefor eÆ
ient parallel
omputation. 13th IEEE Intl. Parallel Pro
essing Symp., 500{505.[44℄ W. Cirne and K. Marzullo (1999): The Computational Co-op: gathering
lusters into ameta
omputer. 13th Intl. Parallel Pro
essing Symp., 160{166.[45℄ M. Cole (1989): Algorithmi
 Skeletons: Stru
tured Management of Parallel Computation.MIT Press, Cambridge, Mass.[46℄ R. Cole and U. Vishkin (1986): Deterministi

oin tossing with appli
ations to optimalparallel list ranking. Inform. Contr. 70, 32{53.[47℄ S.A. Cook (1974): An observation on time-storage tradeo�. J. Comp. Syst. S
is. 9, 308{316.[48℄ T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introdu
tion to Algorithms(2nd Edition). MIT Press, Cambridge, Mass.[49℄ M. Cosnard and M. T
huente (1988): Designing systoli
 algorithms by top-down analysis.3rd Intl. Conf. on Super
omputing.[50℄ M. Cosnard and D. Trystram (1995): Parallel Algorithms and Ar
hite
tures. InternationalThompson Computer Press. 44

[51℄ D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, K.E. S
hauser, E. Santos, R. Subra-monian, T. von Ei
ken (1996): LogP: towards a realisti
 model of parallel
omputation.C. ACM 39, 78{85.[52℄ R. Cypher and C.G. Plaxton (1993): Deterministi
 sorting in nearly logarithmi
 time onthe hyper
ube and related
omputers. J. Comput. Syst. S
is. 47, 501{548.[53℄ T.D. deRose, L. Snyder, C. Yang (1987): Near-optimal speedup of graphi
s algorithmsusing multigauge parallel
omputers. Intl. Conf. on Parallel Pro
essing, 289{294.[54℄ M.D. Dikaiakos, K. Steiglitz, A. Rogers (1994): A
omparison of te
hniques for mappingparallel algorithms to message-passing multipro
essors. 6th IEEE Symp. on Parallel andDistr. Pro
essing, 434{442.[55℄ K. Diks, H.N. Djidjev, O. Sykora, I. Vr�to (1993): Edge separators of planar and outerplanargraphs with appli
ations. J. Algorithms 14, 258{279.[56℄ X. Du and X. Zhang (1997): Coordinating parallel pro
esses on networks of workstations.J. Parallel Distr. Comput. 46, 125{135.[57℄ K. Efe (1991): Embedding mesh of trees into the hyper
ube. J. Parallel Distr. Comput. 11,222{230.[58℄ R. Els�asser, B. Monien, R. Preis (2002): Di�usion s
hemes for load balan
ing on heteroge-neous networks. Theory of Computing Systs. 35, 305{320.[59℄ P. Fatourou and P. Spirakis (2000): EÆ
ient s
heduling of stri
t multithreaded
omputa-tions. Theory of Computing Systs. 33, 173{232.[60℄ C.M. Fidu

ia and R.M. Mattheyses (1982): A linear-time heuristi
 for improving networkpartitions. 19th ACM-IEEE Design Automation Conf., 175{181.[61℄ S. Fortune and J. Wyllie (1978): Parallelism in random a

ess ma
hines. 10th ACMSymp. on Theory of Computing, 114{118.[62℄ I. Foster and C. Kesselman [eds.℄ (1999): The Grid: Blueprint for a New ComputingInfrastru
ture, Morgan-Kaufmann.[63℄ I. Foster, C. Kesselman, S. Tue
ke (2001): The anatomy of the Grid: enabling s
alablevirtual organizations. Intl. J. Super
omputer Appli
ations.[64℄ D. Gannon (1980): A note on pipelining a mesh-
onne
ted multipro
essor for �nite elementproblems by nested disse
tion. Intl. Conf. on Parallel Pro
essing, 197{204.[65℄ L.-X. Gao, A.L. Rosenberg, R.K. Sitaraman (1999): Optimal
lustering of tree-sweep
om-putations for high-laten
y parallel environments. IEEE Trans. Parallel and Distr. Systs. 10,813{824. 45

[66℄ V. Garg and D.E. S
himmel (1998): Hiding
ommuni
ation laten
y in data parallel appli-
ations. 12th IEEE Intl. Parallel Pro
essing Symp., 18{25.[67℄ A. Gerasoulis, S. Venugopal, T. Yang (1990): Clustering task graphs for message passingar
hite
tures. ACM Intl. Conf. on Super
omputing, 447{456.[68℄ A. Gerasoulis and T. Yang (1992): A
omparison of
lustering heuristi
s for s
hedulingdags on multipro
essors. J. Parallel Distr. Comput. 16, 276{291.[69℄ M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, T. Tsantilas (1999): Portable and eÆ
ientparallel
omputing using the BSP model. IEEE Trans. Comp. 48, 670{689.[70℄ D.S. Greenberg, L.S. Heath and A.L. Rosenberg (1990): Optimal embeddings of butter
y-like graphs in the hyper
ube. Math. Syst. Th. 23, 61{77.[71℄ V.C. Hama
her and H. Jiang (1994): Comparison of mesh and hierar
hi
al networks formultipro
essors. Intl. Conf. on Parallel Pro
essing, I:67{71.[72℄ C.-T. Ho and S.L. Johnsson (1986): Graph embeddings for maximum bandwidth utilizationin hyper
ubes. Intl. Conf. Ve
tor and Parallel Computing.[73℄ J.-W. Hong and H.T. Kung (1981): I/O
omplexity: the red-blue pebble game. 13th ACMSymp. on Theory of Computing, 326{333.[74℄ Y. Hong and T. Payne (1989): Parallel sorting in a ring network of pro
essors. IEEETrans. Comp. 38, 458{464.[75℄ O.H. Ibarra and S.T. Sohn (1990): On mapping systoli
 algorithms onto the hyer
ube.IEEE Trans. Parallel Distr. Systs. 1, 238{249.[76℄ The Intel Philanthropi
 Peer-to-Peer program. hwww.intel.
om/
urei.[77℄ C. Kaklamanis and D. Krizan
 (1992): Optimal sorting on mesh-
onne
ted pro
essor ar-rays. 4th ACM Symp. on Parallel Algorithms and Ar
hite
tures, 50{59.[78℄ C. Kaklamanis, D. Krizan
, S.B. Rao (1997): New graph de
ompositions with appli
ationsto emulations. Theory of Computing Systs. 30, 39{49.[79℄ R.M. Karp and R.E. Miller (1966): Properties of a model for parallel
omputations: de-termina
y, termination, queueing. SIAM J. Appl. Math. 14, 1390{1411.[80℄ R.M. Karp and V. Rama
handran (1990): A survey of parallel algorithms for shared-memory ma
hines. In Handbook of Theoreti
al Computer S
ien
e, vol. A (J. van Leeuwen,ed.) Elsevier S
ien
e, Amsterdam, 869{941.[81℄ R.M. Karp, A. Sahay, E. Santos, K.E. S
hauser (1993): Optimal broad
ast and summationin the logP model. 5th ACM Symp. on Parallel Algorithms and Ar
hite
tures, 142{153.[82℄ B.W. Kernighan and S. Lin (1970): An eÆ
ient heuristi
 pro
edure for partitioning graphs.Bell Syst. Te
h. J. 49, 291{307. 46

[83℄ S.J. Kim and J.C. Browne (1988): A general approa
h to mapping of parallel
omputationsupon multipro
essor ar
hite
tures. Intl. Conf. on Parallel Pro
essing, III:1{8.[84℄ R. Ko
h, F.T. Leighton, B.M. Maggs, S.B. Rao, A.L. Rosenberg, E.J. S
hwabe (1997):Work-preserving emulations of �xed-
onne
tion networks. J. ACM 44, 104{147.[85℄ E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI�home:massively distributed
omputing for SETI. In Computing in S
ien
e and Engineering(P.F. Dubois, Ed.) IEEE Computer So
. Press, Los Alamitos, CA.[86℄ H.T. Kung (1985): Systoli
 arrays. In M
Graw-Hill 1985 Yearbook of S
ien
e and Te
h-nology.[87℄ H.T. Kung and C.E. Leiserson (1980): Systoli
 arrays (for VLSI). In Chapter 8 of [105℄.[88℄ H.T. Kung and W.T. Lin (1983): An algebra for VLSI algorithm design. Conf. on Ellipti
Problem Solvers, Monterey, CA.[89℄ H.T. Kung and R.L. Pi
ard (1984): One-dimensional systoli
 arrays for multidimen-sional
onvolution and resampling. In VLSI for Pattern Re
ognition and Image Pro
essing,Springer-Verlag, Berlin, 9{24.[90℄ C. Lam, H. Jiang, V.C. Hama
her (1995): Design and analysis of hierar
hi
al ring networksfor shared-memory multipro
essors. Intl. Conf. on Parallel Pro
essing, I:46{50.[91℄ H.W. Lang, M. S
himmler, H. S
hme
k, H. S
hroeder (1985): Systoli
 sorting on a mesh-
onne
ted network. IEEE Trans. Comp., C-34, 652{658.[92℄ F.T. Leighton (1985): Tight bounds on the
omplexity of parallel sorting. IEEETrans. Comp., C-34, 344{354.[93℄ F.T. Leighton (1992): Introdu
tion to Parallel Algorithms and Ar
hite
tures: Arrays, Trees,Hyper
ubes. Morgan Kaufmann, San Mateo, Cal.[94℄ F.T. Leighton, B.M. Maggs, S.B. Rao (1994): Pa
ket routing and job-shop s
heduling inO(
ongestion + dilation) steps. Combinatori
a 14, 167{186.[95℄ F.T. Leighton, B.M. Maggs, A.W. Ri
ha (1998): Fast algorithms for �nding O(
ongestion+ dilation) pa
ket routing s
hedules. Combinatori
a 18.[96℄ F.T. Leighton, M.J. Newman, A.G. Ranade, E.J. S
hwabe (1992): Dynami
 tree embed-dings in butter
ies and hyper
ubes. SIAM J. Comput. 21, 639{654.[97℄ G. Lerman and L. Rudolph (1993): Parallel Evolution of Parallel Pro
essors. Plenum Press,New York.[98℄ K. Li and J. Dorband (1999): Asymptoti
ally optimal probabilisti
 embedding algorithmsfor supporting tree stru
tured
omputations in hyper
ubes. 7th Symp. on Frontiers ofMassively Parallel Computation. 47

[99℄ R.J. Lipton and R.E. Tarjan (1980): Appli
ations of a planar separator theorem. SIAMJ. Comput. 9, 615{627.[100℄ M. Litzkow, M. Livny, M.W. Mutka (1988): Condor { A hunter of idle workstations. 8thIntl. Conf. on Distr. Computing Systs., 104{111.[101℄ B.M. Maggs, F. Meyer auf der Heide, B. V�o
king, M. Westermann (1997): Exploitinglo
ality for data management in systems of limited bandwidth. 38th IEEE Symp. on Foun-dations of Computer S
ien
e, 284{293.[102℄ G. Malewi
z, A.L. Rosenberg M. Yurkewy
h (2004): On s
heduling
omplex dags forInternet-based
omputing. Types
ript, Univ. Massa
husetts. Submitted for publi
ation.[103℄ D.W. Matula and L.L. Be
k (1983): Smallest-last ordering and
lustering and graph
ol-oring algorithms. J. ACM 30, 417{427.[104℄ W.F. M
Coll and A. Tiskin (1998): Memory-eÆ
ient matrix
omputations in the BSPmodel. Algorithmi
a.[105℄ C. Mead and L. Conway (1980): Introdu
tion to VLSI Systems. Addison-Wesley, Reading,Mass.[106℄ G.L. Miller, V. Rama
handran, E. Kaltofen (1988): EÆ
ient parallel evaluation of straight-line
ode and arithmeti

ir
uits. SIAM J. Comput. 17, 687{695.[107℄ G.L. Miller and J.H. Reif (1989): Parallel tree
ontra
tion, Part 1: fundamentals. InRandomness and Computation, vol. 5 (S. Mi
ali, ed.), JAI Press, Greenwi
h, Ct., 47{72.[108℄ G.L. Miller and J.H. Reif (1991): Parallel tree
ontra
tion, Part 2: further appli
ations.SIAM J. Comput. 20, 1128{1147.[109℄ W.L. Miranker and A. Winkler (1984): Spa
etime representations of
omputational stru
-tures. Computing 32, 93{114.[110℄ M. Mitzenma
her (1998): Analyses of load stealing models based on di�erential equations.10th ACM Symp. on Parallel Algorithms and Ar
hite
tures, 212{221.[111℄ M. Mitzenma
her (1999): On the analysis of randomized load balan
ing s
hemes. Theoryof Computing Systs. 32, 361{386.[112℄ J. F. Myoupo (1992): Synthesizing linear systoli
 arrays for dynami
 programming prob-lems. Parallel Pro
. Let. 2, 97{110.[113℄ I. Niven and H.S. Zu
kerman (1980): An Introdu
tion to the Theory of Numbers. (4th Ed.)J. Wiley & Sons, New York.[114℄ B. Obreni�
 (1994): An approa
h to emulating separable graphs. Math. Syst. Th. 27, 41{63.48

[115℄ B. Obreni�
, M.C. Herbordt, A.L. Rosenberg, C.C. Weems (1999): Using emulations to en-han
e the performan
e of parallel ar
hite
tures. IEEE Trans. Parallel and Distr. Systs. 10,1067{1081.[116℄ The Olson Laboratory Fight AIDS�Home proje
t. hwww.fightaidsathome.orgi.[117℄ C.H. Papadimitriou and M. Yannakakis (1990): Towards an ar
hite
ture-independent anal-ysis of parallel algorithms. SIAM J. Comput. 19, 322{328.[118℄ M.S. Paterson, C.E. Hewitt (1970): Comparative s
hematology. Proje
t MAC Conf. onCon
urrent Systems and Parallel Computation, ACM Press, 119{127.[119℄ G.F. P�ster (1995): In Sear
h of Clusters. Prenti
e-Hall.[120℄ P. Quinton (1984): Automati
 synthesis of systoli
 arrays from uniform re
urren
e equa-tions. 11th IEEE Intl. Symp. on Computer Ar
hite
ture, 208{214.[121℄ P. Quinton (1988): Mapping re
urren
es on parallel ar
hite
tures. 3rd Intl. Conf. on Su-per
omputing.[122℄ P. Quinton, B. Joinnault, P. Ga
het (1986): A new matrix multipli
ation systoli
 array.Parallel Algorithms and Ar
hite
tures (M. Cosnard et al., eds.) North-Holland, Amsterdam,259{268.[123℄ M.O. Rabin (1989): EÆ
ient dispersal of information for se
urity, load balan
ing, and faulttoleran
e. J. ACM 36, 335{348.[124℄ A.G. Ranade (1993): A framework for analyzing lo
ality and portability issues in paral-lel
omputing. In Parallel Ar
hite
tures and Their EÆ
ient Use: The 1st Heinz-NixdorfSymp., Paderborn, Germany (F. Meyer auf der Heide, B. Monien, A.L. Rosenberg, eds.)Le
ture Notes in Computer S
ien
e 678, Springer-Verlag, Berlin, 185{194.[125℄ J.H. Reif and L.G. Valiant (1987): A logarithmi
 time sort for linear networks. J. ACM34, 60{76.[126℄ A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-Theoreti
 Con-
epts in Computer S
ien
e: Pro
eedings of the Intl. Wkshp. WG80 (H. Noltemeier, ed.)Le
ture Notes in Computer S
ien
e 100, Springer-Verlag, Berlin, 150{176.[127℄ A.L. Rosenberg (1994): Needed: a theoreti
al basis for heterogeneous parallel
omputing.In Developing a Computer S
ien
e Agenda for High-Performan
e Computing (U. Vishkin,ed.) ACM Press, New York, 137{142.[128℄ A.L. Rosenberg (1999): Guidelines for data-parallel
y
le-stealing in networks of worksta-tions, I: on maximizing expe
ted output. J. Parallel Distr. Comput. 59, 31{53.[129℄ A.L. Rosenberg (2000): Guidelines for data-parallel
y
le-stealing in networks of worksta-tions, II: on maximizing guaranteed output. Intl. J. Foundations of Computer S
ien
e 11,183{204. 49

[130℄ A.L. Rosenberg (2001): On sharing bags of tasks in heterogeneous networks of workstations:greedier is not better. 3rd IEEE Intl. Conf. on Cluster Computing (Cluster'01), 124{131.[131℄ A.L. Rosenberg (2002): Optimal s
hedules for
y
le-stealing in a network of workstationswith a bag-of-tasks workload. IEEE Trans. Parallel and Distr. Systs. 13, 179{191.[132℄ A.L. Rosenberg (2003): A

ountable Web-
omputing. IEEE Trans. Parallel andDistr. Systs. 14, 97{106.[133℄ A.L. Rosenberg (2004): On s
heduling mesh-stru
tured
omputations on the Internet.IEEE Trans. Comput., 1176{1186.[134℄ A.L. Rosenberg and L.S. Heath (2001): Graph Separators, with Appli
ations. Kluwer A
a-demi
/Plenum Publishers, New York.[135℄ A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing 31,115{139.[136℄ A.L. Rosenberg and M. Yurkewy
h (2004): Guidelines for s
heduling some
ommon
omputation-dags for Internet-based
omputing." IEEE Trans. Comput., to appear.[137℄ The RSA Fa
toring by Web Proje
t. hhttp://www.npa
.syr.edu/fa
toringi (with Fore-word by A. Lenstra). Northeast Parallel Ar
hite
ture Center.[138℄ L. Rudolph, M. Slivkin, E. Upfal (1991): A simple load balan
ing s
heme for task allo
ationin parallel ma
hines. 3rd ACM Symp. on Parallel Algorithms and Ar
hite
tures, 237{244.[139℄ V. Sarkar (1989): Partitioning and S
heduling Parallel Programs for Multipro
essors. MITPress, Cambridge, Mass.[140℄ V. Sarkar and J. Hennessy (1986): Compile-time partitioning and s
heduling of parallelprograms. SIGPLAN Noti
es 21 (7) 17{26.[141℄ C.P. S
hnorr and A. Shamir (1986): An optimal sorting algorithm for mesh
onne
ted
omputers. 18th ACM Symp. on Theory of Computing, 255{263.[142℄ E.J. S
hwabe (1992): Embedding meshes of trees into de Bruijn graphs. In-form. Pro
. Let. 43, 237{240.[143℄ L. Snyder (1985): An inquiry into the bene�ts of multigauge parallel
omputation.Intl. Conf. on Parallel Pro
essing, 488{492.[144℄ D. Szada, B. Lawson, J. Owen (2003): Hardening fun
tions for large-s
ale distributed
omputing. IEEE Se
urity and Priva
y Conf.[145℄ M.M. Theimer and K.A. Lantz (1989): Finding idle ma
hines in a workstation-based dis-tributed environment. IEEE Trans. Software Eng'g. 15, 1444{1458.[146℄ C.D. Thompson (1979): Area-time
omplexity for VLSI. 11th ACM Symp. on Theory ofComputing, 81{88. 50

[147℄ C.D. Thompson (1980): A Complexity Theory for VLSI. Ph.D. Thesis, CMU.[148℄ C.D. Thompson and H.T. Kung (1977): Sorting on a mesh-
onne
ted parallel
omputer.C. ACM 20.[149℄ J.D. Ullman (1984): Computational Aspe
ts of VLSI. Computer S
ien
e Press, Ro
kville,Md.[150℄ L.G. Valiant (1983): Optimality of a two-phase strategy for routing in inter
onne
tionnetworks. IEEE Trans. Comp., C-32, 861{863.[151℄ L.G. Valiant (1989): Bulk-syn
hronous parallel
omputers. In Parallel Pro
essing and Ar-ti�
ial Intelligen
e (M. Reeve and S.E. Zenith, eds.) J. Wiley and Sons, New York, 15{22.[152℄ L.G. Valiant (1990): General purpose parallel ar
hite
tures. In Handbook of Theoreti
alComputer S
ien
e (J. van Leeuwen, ed.) Elsevier S
ien
e, Amsterdam, 943{972.[153℄ L.G. Valiant (1990): A bridging model for parallel
omputation. C. ACM 33, 103{111.[154℄ L.G. Valiant and G.J. Brebner (1981): Universal s
hemes for parallel
omputation. 13thACM Symp. on Theory of Computing, 263{277.[155℄ P.M.B. Vitanyi (1986): Nonsequential
omputation and laws of nature. VLSI Algorithmsand Ar
hite
tures (Aegean Wkshp. on Computing) Le
ture Notes in Computer S
ien
e 227,Springer-Verlag, Berlin, 108{120.[156℄ P.M.B. Vitanyi (1988): Lo
ality,
ommuni
ation and inter
onne
t length in multi
omput-ers. SIAM J. Comput. 17, 659{672.[157℄ P.M.B. Vitanyi (1988): A modest proposal for
ommuni
ation
osts in multi
omputers.In Con
urrent Computations: Algorithms, Ar
hite
ture, and Te
hnology (S.K. Tewksbury,B.W. Di
kinson, S.C. S
hwartz, eds.) Plenum Press, New York, 203{216.[158℄ A.S. Wagner (1989): Embedding arbitrary binary trees in a hyper
ube. J. ParallelDistr. Comput. 7, 503{520.[159℄ C. Weth, U. Kraus, J. Freuer, M. Ruder, R. Danne
ker, P. S
hneider, M. Konold, H. Ruder(2000): XPulsar�home | s
hools help s
ientists. Types
ript, Univ. T�ubingen.[160℄ S.W. White and D.C. Torney (1993): Use of a workstation
luster for the physi
al mappingof
hromosomes. SIAM NEWS, Mar
h, 1993, 14{17.[161℄ A.Y. Wu (1985): Embedding of tree networks into hyper
ubes. J. Parallel Distr. Comput. 2,238{249.[162℄ T. Yang and A. Gerasoulis (1992): PYRROS: stati
 task s
heduling and
ode generationfor message passing multipro
essors. 6th ACM Conf. on Super
omputing, 428{437.[163℄ Y. Yang and H. Casanova (2003): UMR: A multi-round algorithm for s
heduling divisibleworkloads. 17th Intl. Parallel and Distributed Pro
essing Symp. (IPDPS'03).51

