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Abstract. Advancing technologies have enabled simple mobile robots
that collaborate to perform complex tasks. Understanding how to achieve
such collaboration with simpler robots leverages these advances, poten-
tially allowing more robots for a given cost and/or decreasing the cost
of deploying a fixed number of robots. This paper is a step toward un-
derstanding the algorithmic strengths and weaknesses of robots that are
identical mobile finite-state machines (FSMs)—FSMs being the avatar
of “simple” digital computers. We study the ability of (teams of) FSMs
to identify and search within varied-size quadrants of square (n × n)
meshes of tiles—such meshes being the avatars of tesselated geographi-
cally constrained environments. Each team must accomplish its assigned
tasks scalably—i.e., in arbitrarily large meshes (equivalently, for arbi-
trarily large values of n). Each subdivision of a mesh into quadrants is
specified via a pair of fractions 〈ϕ,ψ〉, where 0 < ϕ,ψ < 1, chosen from a
fixed, finite repertoire of such pairs. The quadrants specified by the pair
〈ϕ,ψ〉 are delimited by a horizontal line and a vertical line that cross at
anchor mesh-tile v(ϕ,ψ) = 〈bϕ(n−1)c, bψ(n−1)c〉. The current results:

• A single FSM cannot identify tile v(ϕ,ψ) in meshes of arbitrary sizes,
even for a single pair 〈ϕ,ψ〉—except when v(ϕ,ψ) resides on a mesh-edge.
• A pair of identical FSMs can identify tiles v(ϕi,ψi) in meshes of arbi-
trary sizes, for arbitrary fixed finite sets of k pairs {〈ϕi, ψi〉}ki=1. The
pair can sweep each of the resulting quadrants in turn.
• Single FSMs can always verify (for all pairs and meshes) that all of the
tiles of each quadrant are labeled in a way that is unique to that quadrant.
This process parallelizes linearly for teams of FSMs.
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1 A Motivating Story

Managing Agriculture in Rationalia. The state of Rationalia controls its
agrarian economy very tightly. Years ago, the state partitioned all arable land
into 1×1 unit-plots whose (common) physical size is dictated by the demands of
the agricultural endeavor: the need to cultivate, plant, and harvest each unit-plot.
Each year, after reviewing all farmers’ performances (yields, cost efficiencies,
etc.), the state aggregates the unit-plots into square plots and allocates to each
farmer Φi a plot of dimensions ni × ni (measured in unit-plots), where ni is
determined based on Φi’s past performance. (The unit-plots of each ni × ni



plot are indexed from 〈0, 0〉 in the northwest corner to 〈ni − 1, ni − 1〉 in the
southeast.) Each farmer cultivates crops of the same 4 types, which we label
A,B,C,D. (Clerical extensions will handle k crop-types.) As with plot sizes,
the government uses past performance to determine how much of each crop-
type each farmer should cultivate. Formally, each Φi is assigned a fixed pair
〈ϕi, ψi〉 of rational numbers (what else, given the country’s name?), each strictly
between 0 and 1. Φi’s ni×ni plot is then partitioned into quadrants determined
by the pair 〈ϕi, ψi〉. Each farmer’s quadrant NW is devoted to crop-type A,
quadrant NE to crop-type B, quadrant SW to crop-type C, and quadrant SE to
crop-type D. In detail, each Φi’s quadrants are specified by passing through her
ni×ni plot a horizontal line and a vertical line that cross at the anchor unit-plot
vi = 〈bϕi(ni−1)c, bψi(ni−1)c〉, leading to the pattern depicted in Fig. 1. Anchor
unit-plot vi determines where Φi’s quadrants meet and the crop-types change.

bϕi(ni − 1)c columns ni − bϕi(ni − 1)c columns
bψi(ni − 1)c rows all of type A all of type B

ni − bψi(ni − 1)c rows all of type C all of type D

Fig. 1. The arrangement of Φi’s crop-types; lengths count unit-plots.

To implement the described system, the government must efficiently parti-
tion each farmer’s plot into quadrants and sow each quadrant’s unit-plots with
crops of the appropriate type, achieving the arrangement of Fig. 1. We for-
malize this organization problem via: the Anchor-Identification (A-I) Problem,
which requires the organizing agent(s) to identify each farmer’s anchor unit-
plot; the Plot-Sweep (P-S) Problem, which requires the agent(s) to sweep each
of the resulting quadrants, in turn, sowing the authorized type of crop in each.
The government faces an additional challenge. Regrettably, some farmers cheat
in order to increase their profits, specifically by changing their allocation pa-
rameters 〈ϕi, ψi〉 in response to the relative profitability of the crop-types. The
government must monitor each farmer’s compliance with her assigned allocation
parameters. This is the Compliance-Checking (C-C) Problem.

Complicating the preceding tasks is the government’s extreme reluctance to
expend money. Therefore, it convened an elite task force to determine:
1. How little intelligence do robots need to solve our three Problems?
2. Given the preceding bounds, how few robots suffice to solve the Problems?
The government’s operating assumptions are:
– Employing robots would be cheaper than employing humans.
– Less-“intelligent” robots are less expensive to deploy than more capable ones.
In this paper, we play the role of the elite task force. We craft a formal setting
for the preceding story and study whether robots that have the capabilities
(or, “intelligence”) of finite-state machines (FSMs) can accomplish the following
formalized versions of the three Problems for arbitrary anchor unit-plots v.
1. The A-I Problem: FSM(s) proceed from their initial unit-plots to v.



2. The P-S Problem: FSM(s) sweep each quadrant specified by v and label each
encountered unit-plot u with its assigned crop-type.
3. The C-C Problem: FSM(s) sweep the plot and check that each encountered
unit-plot u has the authorized label.
We view FSMs as the lowest level of “intelligence” that might be able to solve
the preceding Problems. Informally, we show that:
1. A single FSM cannot solve the A-I Problem in arbitrary plots—even for a

single pair of parameters 〈ϕ,ψ〉. Not obviously, a single FSM can solve the
A-I Problem when the anchor unit-plot resides on an edge of the plot.

2. A team of ≥ 2 identical FSMs can solve the A-I Problem in arbitrary plots,
for arbitrary fixed pairs of parameters. Having discovered an anchor unit-
plot, the team can solve the P-S Problem for the resulting quadrants.

3. A single FSM can solve arbitrary instances of the C-C Problem; k > 1 iden-
tical FSMs can accomplish this k times faster than a single FSM (to within
rounding).

2 Technical Background and Related Work

2.1 Technical background. Our model of FSM-robot (FSM) augments the capabil-
ities of standard finite-state machines (see, e.g., [16]) with the ability to navigate
square meshes (our story’s “plots”) of tiles (our story’s “unit-plots”).
Meshes and tiles. Every edge of every tile v is labeled to indicate which of v’s
potentially four neighbors actually exist. (Labels on tile edges enable FSMs to
avoid “falling off” Mn by moving to a nonexistent tile.) Mn admits partitions
into quadrants (labeled NW, NE, SE, SW in clockwise order) that are determined
by crossing lines perpendicular to its edges; each partition is determined by an
anchor tile at which the defining horizontal and vertical line cross.
A single FSM on Mn. At any moment, an FSM F occupies a single tile of Mn,
coresiding with the crop in that tile but with no other FSM. At each step, F can
move to any of the (≤ 4) neighbors of its current tile in the primary compass
directions: (N)orth, (E)ast, (W )est, (S)outh. (One easily augments F ’s move
repertoire with any fixed finite set of atomic moves.) As F plans its next move,
it must consider the label of its current tile—to avoid “falling off” Mn.
Multiple FSMs on Mn. All FSMs operate synchronously, hence, can follow tra-
jectories in lockstep. This ability is no less realistic than are human synchronous-
start endeavors. FSMs on neighboring tiles can exchange (simple) messages, e.g.,
“i am here.” This enables one FSM to act as an “usher” for others; cf. Sec. 4.
FSMs’ moves are tightly orchestrated: an FSM attempts to move in direction:

N only at steps t ≡ 0 mod 4; E only at steps t ≡ 1 mod 4;
S only at steps t ≡ 2 mod 4; W only at steps t ≡ 3 mod 4

(Larger repertoires of atomic moves require larger moduli.) Thereby, FSMs need
never collide! If several FSMs want to enter a tile from (perforce distinct) neigh-
boring tiles, then one will have permission to enter before the others.

2.2 Algorithmic standards.
• Algorithms are scalable. They work on arbitrary-size meshes; FSMs can learn



only “finite-state” properties of Mn’s size measures (n, n2)—e.g., parity.
• All FSMs are identical: (a) None has a “name” that renders it unique. (b) All
execute the same finite-state program; cf. [16, 19].
These standards are often violated in implementations of “ant-like” robots (cf. [8,
11, 18]), where practical simplicity overshadows algorithmic simplicity.

2.3 Related work. Our study combines ideas from complementary bodies of lit-
erature that span several decades. The literature on automata theory and its
applications contains studies such as [3–5, 7, 14] that focus on the (in)ability of
FSMs to explore graphs with goals such as finding “entrance”-to-“exit” paths or
exhaustively visiting all nodes or all edges. Other studies, e.g., [10], focus on algo-
rithms that enable FSMs that populate the tiles of (multidimensional) meshes—
the cellular automaton model [9]—to synchronize. The robotics literature con-
tains numerous studies—e.g., [1, 2, 8, 18]—that explore ants as a metaphor for
simple robots that collaborate to accomplish complex tasks. Cellular automata
appear in many application- and implementation-oriented robotic applications of
automata-theory [11, 13, 15, 18]. The current study melds the automata-theoretic
and robotic points of view by studying FSMs that traverse square meshes, with
goals more closely motivated by robotics than automata theory. Our closest pre-
cursor is [17], which requires each FSM in a mesh to park, i.e., go to its closest
corner and organize with other FSMs there into a maximally compact formation.

3 The Anchor-Identification Problem

The Anchor-Identification (A-I) Problem for Mn is formalized as follows.

Input: A pair of rationals 〈ϕ,ψ〉, where 0 < ϕ,ψ < 1
Task: All FSMs on Mn proceed from their initial tiles to anchor tile v(ϕ,ψ).

One FSM ends on v(ϕ,ψ); all others cluster around it.

3.1 The general A-I Problem for one FSM. A single FSM cannot solve the A-I
Problem on arbitrarily large meshes, for any input pair 〈ϕ,ψ〉. The proof exploits
a result from [17] that exposes the inability of single FSMs to navigate the
interiors of large meshes, i.e., submeshes that are bounded away from the edges.

3.2 The Edge-Constrained A-I Problem for one FSM. Not obviously, a single FSM
can solve the variant of the A-I Problem wherein the sought anchor-tile resides
on an edge of Mn. Formally, this Problem for FSM F is:

Input: A rational ϕ with 0 < ϕ < 1

Task: F proceeds from its initial tile to:

8>><>>:
bottom version: 〈(n− 1), bϕ(n− 1)c〉
top version: 〈0, bϕ(n− 1)c〉
left version: 〈bϕ(n− 1)c, 0〉
right version: 〈bϕ(n− 1)c, (n− 1)〉

Theorem 1. For any fixed rational 0 < ϕ < 1: A single FSM F (ϕ) whose size
depends only on ϕ can solve the Edge-Constrained A-I Problem with input ϕ on
any mesh Mn, within O(n) steps.
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Fig. 2. F(ϕ) proceeds from tile vs to the anchor tile vh to solve: (left) the bottom-edge-
Constrained A-I Problem and (right) the right-edge version, both with input ϕ = a/b.

Sketch. Let ϕ = a/b for integers b > a > 0. F (ϕ) moves from vs to vh: it goes to
〈0, 0〉 and continues thence to vh via a diagonal walk of super-steps. The bottom-
edge walk has slope −b/a; the right-edge walk has slope −a/b (Fig. 2). ut

3.3 The A-I Problem for teams of (≥ 2) identical FSMs.

Theorem 2. Let Ψ = {〈ϕi, ψi〉}ki=1 be any fixed set of rational pairs, where
0 < ϕi, ψj < 1 for all i, j. One can design an FSM F (Ψ) such that a team of two
or more copies of F (Ψ) can solve the A-I Problem in every mesh Mn, for every
pair 〈ϕ,ψ〉 ∈ Ψ , within O(n) synchronous steps.
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Fig. 3. The 3-phase coordinated trajectories for FSMs F1 and F2 to solve the A-I
Problem with inputs 〈ϕ,ψ〉. Solid lines show F1’s trajectory; dashed lines show F2’s.

Sketch. We use Theorem 1 to design identical FSMs F1 and F2 that solve the A-I
Problem for a rational pair 〈ϕ,ψ〉. See Fig. 3. F1 and F2 meet at tile 〈0, 0〉, then
execute the algorithm of Theorem 1 to go to the projections of anchor v(ϕ,ψ): F1

goes to the left-edge anchor vh,1; F2 goes (in lockstep) to the top-edge anchor



vh,2. When F1 reaches vh,1 (resp., F2 reaches vh,2), it starts to walk eastward
(resp., delays one step, then starts to walk southward). The FSMs halt when
they meet: F1 is then on tile v(ϕ,ψ); F2 is on v(ϕ,ψ)’s northward neighbor. ut

4 The Plot-Sweep Problem

A pair of FSMs sweep through each quadrant specified by anchor tile v, in turn.

Theorem 3. For any rational pair 〈ϕ,ψ〉, where 0 < ϕ,ψ < 1, one can design
an FSM F (ϕ,ψ) such that team of two copies of F (ϕ,ψ) can solve the P-S Problem
in every mesh Mn.
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Fig. 4. Starting a sweep of Mn’s NE quadrant. The left FSM “ushers” the right one.

Sketch. Focus on a sweep of quadrant NE. Once F1 and F2 identify anchor
tile v(ϕ,ψ), F1 moves to v(ϕ,ψ) and F2 to v(ϕ,ψ)’s eastward neighbor (stage 0 of
Fig. 4). Thence, F1 climbs the column that extends northward from v(ϕ,ψ) and
acts as an “usher” while F2 threads the rest of the quadrant; see Fig. 4. ut

5 Compliance-Checking by a Single FSM

Our final task is the Compliance-Checking (C-C) Problem for Mn:

Input: A pair or rationals 〈ϕ,ψ〉, where 0 < ϕ,ψ < 1
Task: The FSM(s) on Mn perform a sweep from tile 〈0, 0〉, to check that the

tile labels have the format illustrated in Fig. 1.

Theorem 4. A team of k ≥ 1 identical FSMs can solve the C-C Problem for
any pair of rationals 〈ϕ,ψ〉, in any mesh Mn, within 1

kn
2 +O(n) steps.

Sketch. An FSM F (〈ϕ,ψ〉) can check that boundaries are as in Fig. 1 in two phases.
Using a row-sweep, F (〈ϕ,ψ〉) easily checks that each row’s crop-labels belong to
A?B? or to C?D?; see Fig. 5(left) for the case k = 1. (Larger teams use the
Edge-Constrained A-I algorithm to partition the columns evenly among them.)
In the boundary phase, F (〈ϕ,ψ〉) finds the edge-constrained projections of anchor
tile v(ϕ,ψ), viz., tiles vhoriz = 〈bϕ(n− 1)c, n− 1〉 and vvert = 〈n− 1, bψ(n− 1)c〉.
Sawtooth trajectories northward from vhoriz and westward from vvert enable
F (ϕ,ψ) to verify all boundaries (Fig. 5(middle, right)). ut
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Fig. 5. (left) F (ϕ,ψ) verifies the form of each row’s labels: (left to right) all As followed
by all Bs OR all Cs followed by all Ds. (middle, right) F (ϕ,ψ) verifies that labeled
quadrants have the correct horizontal and vertical endpoints.

6 Conclusions

6.1 Retrospective. We have gained new understanding of the algorithmic strengths
and weaknesses of finite-state robots as they navigate square meshes. We have
contrasted the powers of a single FSM vs. teams of ≥ 2 identical FSMs on three
basic problems, each specified by a pair of fractions 〈ϕ,ψ〉 that specify the anchor
tile v(ϕ,ψ) in any n× n mesh Mn. Each anchor specifies a partition of Mn into
quadrants. The Anchor-Identification (A-I) Problem has FSMs move to v(ϕ,ψ);
the Plot-Sweep (P-S) Problem has FSMs sweep through each of the quadrants
specified by v(ϕ,ψ); the Compliance-Checking (C-C) Problem has FSMs verify
that every tile of Mn has a label that is unique to its quadrant. Single FSMs
cannot solve the A-I or P-S Problems, but they can solve the C-C Problem;
teams of ≥ 2 identical FSMs can solve all three problems, and they can speed
up the C-C Problem linearly via parallelism. All problem solutions are scalable:
a single FSM design works for all meshes. FSMs can sometimes use Mn’s edges
to appear to count to n, even though unbounded counting is impossible. The
P-S and C-C Problems combine to show that single FSMs can sometimes check
patterns that they are unable to generate.

6.2 Sample extensions. (1) One can generalize Theorem 3 to sweep nonsquare
submeshes; e.g., if the “usher” FSM follows a diagonal trajectory, then the team
sweeps a trapezoidal region. (2) One can personalize the A-I Problem so that
FSM F (ϕ,ψ) moves to the “copy” of tile v(ϕ,ψ) in F (ϕ,ψ)’s starting quadrant.

6.3 Prospective. The Parking Problem for FSMs in [17] focuses on the ques-
tion “What can FSMs discover about where they reside within Mn?” The cur-
rent study, especially the A-I Problem, focuses on the question “How well can
FSMs discover designated target tiles within Mn?” An obvious goal for future
research would be to extend the definitions of “where they reside” and “des-
ignated target tile.” A valuable source of inspiration are robotic studies such
as [1, 8, 11]. Another direction for the future would be to go beyond pure path
planning/exploration by designing FSMs that can scalably find and transport
“food” and that can avoid obstacles, inspired by, e.g., [2, 6, 8, 11, 15].
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