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Abstract

The temporal unpredictability in both communication and computation encoun-
tered when computing over the Internet complicates attempts to efficiently compute
collections of jobs that have complex interdependencies. A recently introduced algo-
rithmic scheduling theory aims to mitigate the impact of temporal unpredictability
and to counter the unpredictability in the number of remote workers available over
time, by sequencing job executions to always keep as large as possible the number
of jobs that can be allocated to remote clients. Two simulation experiments are de-
scribed, which use quite different metrics to evaluate the effectiveness of the theory
and its schedules. both experiments indicate that, under a wide range of parameters,
schedules produced using the theory significantly improve the execution of a large
class of computation-dags, over the schedules produced by three simple, intuitively
compelling heuristics.

1 Introduction

Advances in technology have made collections of computers that communicate across the
Internet a viable computational platform [7]. Thus, we see many efforts aimed at using
multiple distributed computers to solve a single computational problem [1, 2, 3, 12]. Per-
haps the major impediment to scheduling complex computations efficiently in this new
environment is temporal unpredictability:
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• Communication takes place over the Internet, hence may experience unpredictable
delays.

• Remote computing workers may not be dedicated to performing the work they receive
remotely, hence may execute that work at an unpredictable rate.

This uncertainty in timing virtually precludes accurate identification of critical paths in
complex computations, and hence demands a new scheduling paradigm that acknowledges
the strengths and weaknesses of the Internet as a computational medium.

Several recent papers [17, 18, 15] have identified a new goal when scheduling computations
that consist of multiple tasks (henceforth termed jobs to emphasize their coarse-grained
nature) with complex interdependencies. The third of these sources has begun to develop
a scheduling theory for an idealized version of Internet-based computing that attempts to
schedule the jobs of a complex computation in a manner that always maximizes the number
of jobs that are eligible for assignment to remote workers. One hopes that this goal has
the dual advantage of:

• maximally exploiting available remote workers, by minimizing the likelihood that
there is no job for a remote worker; and

• minimizing the likelihood of the “gridlock” that can occur when no new jobs can be
assigned pending the completion of already assigned jobs.

The scheduling theory—which is currently being extended in [4, 5]—can optimally schedule
a large variety of structurally uniform dags such as the four familiar ones depicted in Fig. 1,
in addition to a broad repertoire of less uniform ones, such as those depicted in Fig. 2.

The theory being developed in [4, 5, 15] aspires to a scheduling mechanism for complex
Internet-based computations that has both a strong theoretical grounding and a signficant
impact for scheduling real computations. The current paper continues the effort begun in
[13] to evaluate the extent to which the initial phase of the theory, as developed in [15],
achieves its two-pronged goal. Our study shares with that in [13] the methodology of a
head-to-head competition between schedules that are mandated by the theory of [15] and
schedules that arise from intuitively compelling heuristics. Our study differs from that in
[13] in four major respects:

1. They employ four dags that arise in “real” scientfic computations as their testbed
workload. We employ a large number of artificially generated dags.

2. They use as their benchmark an extension of the optimal scheduling algorithm of
[15] that produces schedules for all dags. We use the actual algorithm of [15], which
succeeds in scheduling only a certain class of dags; cf. Theorem 2.1. (We ensure that
our artificially generated dags belong to this class.)
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Figure 1: (Top) An “expansive” and a “reductive” binary tree. (Bottom) An “expansive”
and a “reductive” 2-dimensional mesh; the FFT dag.

Figure 2: Three composite dags that the framework of [15] can schedule optimally. Edges
represent arcs that point upward.

3. Their theoretically mandated schedules compete only against a particular FIFO
scheduler that is inspired by the regimen used in the Condor system [3]. We have our
schedules compete against enhanced version of FIFO, LIFO schedulers, as well as a
greedy scheduler that employs the same scheduling criteria locally that our optimal
scheduler employs globally.

4. They employ a single metric to compare their competing regimens’ schedules, namely,
a type of “batched makespan” metric; cf. [14]. We employ both the “batched makespan”
metric and an “area-maximizing” metric that captures a notion of the average rate
of producing eligible jobs.

Notably, despite these differences, we find similar lessons emerging from [13] and our
study—using both quality metrics. For a broad range of situations that one might ex-
pect to encounter in Internet-based computing environments, the schedules produced using
the theory achieve significant performance improvements over their competitors for a wide
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range of system parameters.

Related work. The source that is most closely related to our study is [13], as discussed
earlier. In terms of the underlying scheduling theory, the closest source are: [17, 18], wherein
the new scheduling paradigm and specify optimal schedules for uniform dags typified by
those in Fig. 1 is introduced; [15], wherein the initial version of the theory—whch is what we
employ in our experiments—is developed; [14], wherein the batched version of the theory,
which gives rise to the “batched makespan” quality metric is introduced. Finally, the
impetus for our study derives from the exciting systems- and/or application-oriented studies
of Internet-based computing, in sources such as [1, 2, 3, 7, 8, 11, 12, 19].

A Roadmap. Section 2 outlines portions of the theory of [15] that are relevant to our
study. Section 3 presents the scheduling algorithms whose comparison is our main theme.
Section 4 describes the methodology underlying our algorithmic comparisons. Section 5
presents and analyzes our experimental results. Section 6 summarizes our contributions
and our future plans regarding this work.

2 A Basis for a Scheduling Theory

2.1 Computation-Dags

A directed graph G is given by a set of vertices NG and a set of arcs AG, each of the form
(u → v), where u, v ∈ NG. A path in G is a sequence of arcs that share adjacent endpoints,
as in the following path from vertex u1 to vertex un: (u1 → u2), (u2 → u3), . . . , (un−2 →
un−1), (un−1 → un). A dag (directed acyclic graph) G is a directed graph that has no
cycles—so that no path of the preceding form has u1 = un. When a dag G is used to model
a computation, i.e., is a computation-dag:

• each vertex v ∈ NG represents a job in the computation;
• an arc (u → v) ∈ AG represents the dependence of job v on job u:

v cannot be executed until u is.

(We omit the qualifier “computation-” henceforth.) For any arc (u → v) ∈ AG, u is a parent
of v, and v is a child of u in G. The indegree (resp., outdegree) of vertex u is its number of
parents (resp., children). A parentless vertex of G is a source; a childless vertex is a sink;
all other vertices are internal. G is connected if, when arcs’ orientations are ignored, there
is a path connecting every pair of distinct vertices; G is bipartite if NG consists entirely of
sources and sinks1; for reasons that are clarified in Section 2.3, we call a connected bipartite
dag a CBBB, for Connected Bipartite Building Block.

1Perforce, all arcs go from a source to a sink.
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2.2 A Model for Executing Dags on the Internet

“Pebble games” on dags have yielded elegant formalizations of a variety of problems related
to scheduling dags. Such games use tokens, pebbles, to model the progress of a computa-
tion on a dag: the placement or removal of the various available types of pebbles—which is
constrained by the dependencies modeled by the dag’s arcs—represents the changing (com-
putational) status of the dag’s job-vertices. Our study is based on the Internet-Computing
(IC, for short) Pebble Game of [17]. Based on studies of IC in, e.g., [1, 11, 19], arguments
are presented in [17, 18] (q.v.) that justify the simplified form of the Game studied here.

A. The rules of the Game. The IC Pebble Game on a dag G involves one player S, the
Server, who has access to unlimited supplies of two types of pebbles: eligible pebbles,
whose presence indicates a job’s eligibility for execution, and executed pebbles, whose
presence indicates a job’s having been executed. The Game is played as follows.

The IC Pebble Game

• S begins by placing an eligible pebble on each unpebbled source of G.
/*Unexecuted sources are always eligible for execution, having no parents whose prior
execution they depend on.*/

• At each step, S

– selects a vertex that contains an eligible pebble,

– replaces that pebble by an executed pebble,

– places an eligible pebble on each unpebbled vertex of G all of whose parents
contain executed pebbles.

• S’s goal is to allocate vertices in such a way that every vertex v of G eventually contains
an executed pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

A schedule for the IC Pebble Game is a rule for selecting which eligible pebble to execute
at each step of a play of the Game. For brevity, we henceforth call a vertex eligible (resp.,
executed) when it contains an eligible (resp., an executed) pebble. For uniformity,
we henceforth talk about executing vertices rather than jobs.

B. The quality of a play of the Game. Our goal is to play the IC Pebble Game in a
way that maximizes the production rate of eligible vertices. For each step t of a play of
the Game on a dag G under a schedule Σ, we denote by EΣ(t) the number of vertices of G
that are eligible at step t.
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We measure the IC quality of a play of the IC Pebble Game on a dag G by the size of
EΣ(t) at each step t of the play—the bigger, the better. Our goal is an IC-optimal schedule
Σ, in which EΣ(t) is as big as possible for all steps t.

The goal of IC quality—hence of IC optimality—stems from the following intuitions. (1)
Schedules that produce eligible vertices more quickly may reduce the chance of the “grid-
lock” that could occur when remote clients are slow—so that new jobs cannot be allocated
pending the return of already allocated ones. (2) If the IC Server receives a batch of re-
quests for jobs at (roughly) the same time, then having more eligible jobs available allows
the Server to satisfy more requests, thereby increasing “parallelism.”

2.3 A Framework for Crafting IC-Optimal Schedules

The priority relation ⊲. For i = 1, 2, let the bipartite dag Gi have si sources, and let it
admit the IC-optimal schedule Σi. If the following inequalities hold:2

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1

(x) + EΣ2
(y) ≤ EΣ1

(min{s1, x + y}) + EΣ2
(max{0, x + y − s1}),

(2.1)

then G1 has priority over G2, denoted G1 ⊲ G2. Informally, one never decreases IC quality
by executing a source of G1 whenever possible.

A framework for scheduling complex dags. The operation of composition is defined
inductively as follows.

• Start with a set B of base “building block” dags.3

• One composes dags G1,G2 ∈ B—which could be the same dag with vertices renamed
to achieve disjointness—to obtain a composite dag G, as follows.

– Let G begin as the sum (or, disjoint union), G1 +G2, of the dags G1,G2. Rename
vertices to ensure that NG is disjoint from NG1

and NG2
.

– Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an
equal-size set S2 of sources from the copy of G2 in the sum.

– Pairwise identify (i.e., merge) the vertices in the sets S1 and S2 in some way. The
resulting set of vertices is G’s vertex-set; the induced set of arcs is G’s arc-set.4

• Add the dag G thus obtained to the base set B.

2[a, b] denotes the set of integers {a, a + 1, . . . , b}.
3The base dags considered in [4, 15] are CBBBs.
4An arc (u → v) is induced if {u, v} ⊆ NG .
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We denote the composition operation by ⇑ and say that G is composite of type [G1 ⇑ G2].

The dag G is a ⊲-linear composition of the CBBBs G1, . . . ,Gn if: (a) G is composite of type
G1 ⇑ · · · ⇑ Gn (composition is associative); (b) each Gi ⊲ Gi+1, for all i ∈ [1, n − 1].

Theorem 2.1 ([15]). Let G be a ⊲-linear composition of G1, . . . ,Gn, where each Gi admits
an IC-optimal schedule Σi. The schedule Σ for G that proceeds as follows is IC optimal.

1. For i = 1, . . . , n, in turn, Σ executes the vertices of G that correspond to sources of Gi,
in the order mandated by Σi.

2. Σ finally executes all sinks of G in any order.

3 The Four Competing Scheduling Algorithms

3.1 The IC-Optimal Scheduling Algorithm ICO

One finds in [15] a suite of algorithms that determine whether or not a given dag G can
be decomposed into a set of CBBBs {Gi} that satisfy Theorem 2.1 and that, whenever
possible, use the theorem to derive an IC-optimal schedule for G. These algorithms, whose
assemblage we collectively call scheduler ico, process G via the following sequence of steps.

1. “Prune” G to remove all shortcut arcs.

• An arc a = (u → v) is a shortcut if there is a path from u to v that does not use a.

• The algorithm in, e.g., [10] will accomplish this “pruning.”

• The resulting “pruned” dag G′ shares its IC-optimal schedules with G.

2. “Parse” G′ into a collection of CBBBs, G1, . . . ,Gn, such that G′ is composite of type
G1 ⇑ · · · ⇑ Gn.

• Such a “parsing” is not always possible. When it is possible, it is unique and can be
found by iteratively greedily removing a maximal CBBB subgraph of G′ all of whose
sources are sources of G′.

3. Replace G′ by the super-dag G′′ whose vertices are the CBBBs G1, . . . ,Gn and whose arcs
form a blueprint of the sequence of compositions that created G′.

• Specifically, if G ′ was formed by identifying some sources of CBBB Gi with some
sinks of CBBB Gj, then there is an arc in G′′ from supervertex Gj to supervertex Gj .

4. Determine whether or not there is an ⊲-linearization of the CBBBs G1, . . . ,Gn that is
consistent with the topological dependencies within the super-dag G′′.
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• This determination basically amounts to determining if the priority relation ⊲

imposes on G′′ a total order that is consistent with a topological sort5 of G′′.

5. If all steps to this point have succeeded, then output the schedule for G mandated by
Theorem 2.1.

3.2 The Competing Heuristic Schedulers

The fifo heuristic.

1. fifo initially enqueues G’s sources into a FIFO queue Q, in nonincreasing order of
outdegree (so that the vertices of maximum outdegree emerge first); vertices of equal
outdegree are enqueued in random order.

2. When a remote client C requests a vertex, fifo allocates to C the vertex obtained
by dequeuing Q.

3. When a vertex v completes execution, fifo enqueues (into Q), in nonincreasing or-
der of outdegree, those of v’s children that are rendered eligible by v’s execution;
vertices of equal outdegree are enqueued in random order.

The lifo heuristic.

1. lifo initially pushes G’s sources into a (LIFO) stack S, in nondecreasing order of
outdegree (so that the vertices of maximum outdegree emerge first); vertices of equal
outdegree are pushed in random order.

2. When a remote client C requests a vertex, lifo allocates to C the vertex obtained
by popping S.

3. When a vertex v completes execution, lifo pushes (onto S), in nondecreasing order of
outdegree, those of v’s children that are rendered eligible by v’s execution; vertices
of equal outdegree are pushed in random order.

The greedy heuristic.

1. greedy initially inserts G’s sources, in random order, into a MAX-Priority Queue P

[6]. (The ultimate order of vertices having distinct outdegrees is determined by P ’s
queuing discipline.)

5A topological sort of a dag is a linearization of its vertices under which all arcs point from left to right.

8



2. When a remote client C requests a vertex, greedy allocates to C the vertex obtained
via the EXTRACT-MAX operation on P .

3. When a vertex v completes execution, greedy inserts (into P ), in random order,
those of v’s children that are rendered eligible by v’s execution.

4 The Experimental Setup

This section is devoted to describing the experimental setup that we use to compare ico

against fifo, lifo, and greedy. Our experiments proceed as follows.

1. We generate a dag G that is random within a class of dags that admit IC-optimal
schedules; Section 4.1 provides details.

2. We execute G using all four schedulers of Section 3. Since fifo, lifo, and greedy

all involve a degree of randomization, we invoke each fifty times on each dag and use
the means and variances of their “performances” for our comparisons with ico.

3. We compile the statistics that compare the “qualities” of the executions of step 2.
We employ two quality metrics for our comparisons, which arise from quite distinct
intuitions. The first metric can be viewed as measuring the “average” IC quality of
a schedule; the second introduces a computational model and uses an analogue of
“time to completion” as its metric. Sections 4.2 and 4.3 provide details.

4.1 On Generating “Random” Dags

Of course, the real test for any scheduler is to deal with given dags of possibly complex
structures. However, since our goal is to assess the value of IC optimality when it exists,
we “cheat” by evaluating our competing schedulers on dags that are chosen via random
compositions from among dags that are guaranteed (by results in [17, 18, 15]) to admit
such schedules. Our selection process proceeds as follows.

1. We select a random target size for the dag we want to generate. We select a range of
sizes that allows us to observe trends in the behaviors of schedulers, typically from a
few hundred vertices to several thousand.

2. We choose an appropriate collection of CBBBs randomly from a repertoire that is
defined and analyzed in [15].

IC-optimal schedules for all these CBBBs are identified in [15], as are all ⊲-priorities
among them.
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3. We compose the selected CBBBs in ways that are chosen randomly among composi-
tions that are guaranteed (by Theorem 2.1) to preserve IC-optimal schedulability.

This means that we compose a CBBB Gi with a CBBB Gi only when Gi ⊲ Gj.

We now provide the definitions and salient properties of the CBBBs in the repertoire.

4.1.1 The repertoire of CBBBs

Although we choose CBBBs from those in [15], our methodology applies easily to any class
of CBBBs that admit IC-optimal schedules, such as those in [4]. Our first three CBBBs
are named for the Latin letters suggested by their topologies.

(2,3)−M:

4−Clique:3−N:

(1,4)−W: (2,4)−W: (1,3)−M:

Figure 3: The building blocks for our semi-uniform dags. Edges represent arcs that point
upward.

W-dags. For each integer d > 1, the (1, d)-W-dag W1,d has one source and d sinks; its d arcs
connect the source to each sink. Inductively, for positive integers a, b, the (a + b, d)-W-dag
Wa+b,d is obtained from the (a, d)-W-dag Wa,d and the (b, d)-W-dag Wb,d by identifying
(or, merging) the rightmost sink of Wa,d with the leftmost sink of Wb,d.

M-dags. For each integer d > 1, the (1, d)-M-dag M1,d has d sources and one sink; its d arcs
connect each source to the sink. Inductively, for positive integers a, b, the (a + b, d)-M-dag
Ma+b,d is obtained from the (a, d)-M-dag Ma,d and the (b, d)-M-dag Mb,d by identifying
(or, merging) the rightmost source of Ma,d with the leftmost source of Mb,d.

N-dags. For each integer s > 0, the s-N-dag N s has s sources and s sinks; its 2s − 1 arcs
connect each source v to sink v and to sink v + 1 if the latter exists. N s is obtained from
Ws−1,2 by adding a new source on the right whose sole arc goes to the rightmost sink. The
leftmost source of N s—the dag’s anchor—has a child that has no other parents.

(Bipartite) Clique-dags. For each integer s > 1, the s-(Bipartite) Clique-dag Qs has s

sources and s sinks, and an arc from each source to each sink.
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4.1.2 Schedulability and ⊲-priorities among the CBBBs

The following results from [15] enable our generation of random dags that are assured to
admit IC-optimal schedules.

Vertex execution order. We specify an IC-optimal execution order for the sources of
our CBBBs. (Sinks can be executed in any way once all sources are executed [15].)

1. Execute sources of Wa,d and Ma,d from one end to the other.

2. Execute sources of N s from the anchor to the other end.

3. Execute sources of Qs in any order.

⊲-priorities. One verifies the following pairwise ⊲-priorities among our CBBBs.

1. For all s and d, Ws,d ⊲ G for the following CBBBs G:

(a) all W-dags Ws′,d′ whenever d′ < d, or whenever d′ = d and s′ ≥ s;

(b) all M-dags and N-dags;

(c) Clique-dags Qs′ with s′ ≤ d.

2. For all s, N s ⊲ G for the following CBBBs G:

(a) all N-dags N s′, for all s′; (b) all M-dags.

3. For all s and d, Ms,d ⊲ Ms′,d′ whenever d′ > d, or whenever d′ = d and s′ ≤ s.

4. For all s, Qs ⊲ Qs.

4.1.3 Generating random compositions of CBBBs

We generated dags for our experiments in the following way.

Selecting random CBBBs. In order to ensure that all dags generated for our experiments
admitted IC-optimal schedules, we constructed these dags from random ⊲-linearizable
compositions of the CBBBs enumerated in the preceding subsection. In order to ensure a
variety of dag structures that abstracted “real” computational dependencies, we employed
the following combinations of CBBBs.

1. Random W-dags, abstracting “expansive” dags, that grow from sources to sinks.

2. Random M-dags, abstracting “reductive” dags, that shrink from sources to sinks.

3. Random W-dags, “followed by” N-dags, “followed by” M-dags, abstracting “fork-
join” dags, that grow from sources, then shrink toward sinks.

4. Random compositions of Q2, abstracting convolutional dags such as the FFT dag.
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Fig. 1 exemplifies options 1, 2, and 4; Fig. 2 exemplifies option 3.

Randomly composing CBBBs. Having assembled a ⊲-linearizable selection of CBBBs,
we composed them in a manner that guaranteed consistency with Theorem 2.1. All
selections—of CBBBs, of partially constructed dags to compose, and of sources and sinks
to effect compositions—were random in terms of both numbers and selcted individuals.

Executing dags. As noted earlier, the ico scheduler is deterministic, but the three
competing heuristics all incorporate elements of randomness. In recognition of this, we had
each of fifo, lifo, and greedy execute each generated dag fifty times, and we used the
means and standard deviations of the results to compare the heuristics’ schedules with the
IC-optimal one.

4.2 The Area-Maximization Experiment

4.2.1 The area-maximization metric

Our first quality metric for comparing schedulers can be viewed as measuring the “average”
IC quality of a schedule. Consider a schedule Σ for an n-vertex dag G.

The notion of IC optimality rewards Σ only if it maximizes the number of eligible vertices
at every step in its execution of G; i.e.,

(∀t) EΣ(t) = max
Σ′ a schedule for G

{EΣ′(t)}.

The new quality metric we identify here rewards Σ for maximizing the average number of
vertices of G that are eligible as G is executed. We term this average the “area” of schedule
Σ because of the formal analogy with the integral-calculus technique of approximating
integrals—in this case of the function EΣ—by Riemann sums.

The plot of schedule Σ is the (n + 1)-entry vector Π(Σ) = 〈EΣ(0), EΣ(1), . . . , EΣ(n)〉.
Of course, EΣ(0) is just the number of sources of G, and EΣ(n) ≡ 0 for any schedule,
but we retain these entries of Π(Σ) for completeness. The area of schedule Σ is the sum
A(Σ) =

∑n

i=0
EΣ(i). Of course, the normalized area

Ê(Σ)
def

=
1

n
A(Σ) =

1

n

n∑

i=0

EΣ(i). (4.1)

is the average number of vertices of G that are eligible under schedule Σ.

We note some important properties of the area-maximization metric.

Observation. (a) Whereas some dags do not admit any IC-optimal schedule
[15], every dag admits an area-maximizing schedule. (b) If the dag G admits
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an IC-optimal schedule, then: (i) every area-maximizing schedule for G is IC
optimal; (ii) every IC-optimal schedule for G is area-maximizing.

4.2.2 The area-maximization experiment

Our area-maximization experiment generates random dags in the manner described in
Section 4.1. We study each generated dag G as follows.

1. We compute Ê(ico) directly, as G is generated.

2. We execute G fifty times using each of our three heuristic schedulers, and we compile
the mean values and standard deviations of Ê for the fifty schedules produced by each
heuristic scheduler. We denote by Ẽ(fifo), Ẽ(lifo), and Ẽ(greedy), the resulting

mean values of Ê(fifo), Ê(lifo), and Ê(greedy), respectively.

We compare schedulers Σ and Σ′ under the area-maximization metric via the quantity

∆(Σ, Σ′)
def

= Ẽ(Σ) − Ẽ(Σ′),

where Ẽ(ico) ≡ Ê(ico) by convention. (Note that n · ∆(Σ, Σ′) is just the l1 distance
between Π(Σ) and Π(Σ′).) As just observed, ∆(ico, Σ′) is always nonnegative.

4.3 The Batched-Makespan Experiment

4.3.1 The batched-makespan metric

Our second quality metric for comparing schedulers arises from changing the IC Pebble
Game from a “client-centric” to a “server-centric” model of Internet-based computing.

The “client-centric” model—which is the one studied in [15, 17, 18]—views the Server as
being interrupted by the arrival of each available remote client. When so interrupted, the
Server allocates an eligible job to the client, if such a job exists; otherwise, the client is
viewed as disappearing (looking elsewhere for work).

The “server-centric” model—a variant of which is studied in [14]—has remote clients as-
semble in groups at preassigned times—perhaps, but not necessarily, periodically. At these
preassigned times, the Server polls for the presence of a nonempty group of clients and a
nonempty pool of eligible jobs. When a poll is “successful,” finding, say, r ≥ 1 remote
clients and e ≥ 1 eligible jobs, the Server chooses max(r, e) eligible jobs and allocates
them, one per client, until either clients or eligible jobs run out. At this point, any
unserved clients disappear (say, looking elsewhere for work) and any unallocated jobs are
returned to the eligible pool.
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The “server-centric” model suggests the following batched-makespan metric for a scheduler
Σ when executing an n-vertex dag G. Given a pattern of arrivals of batched requests,
r0, r1, . . ., with the interpretation that, for each nonnegative integer i, ri remote clients
arrive requesting jobs when the Server polls for the ith time, how many pollings does it
take before G is completely executed? If we assume that pollings are timed so that all jobs
that were allocated at the ith polling will have been completed before the (i+1)th polling,
then we are seeking the smallest integer m such that a0 + a1 + · · · + am ≥ n, where

a0 = max(r0, EΣ(0))

a1 = max(r0, EΣ(a0)) = max(r1, EΣ(max(r0, EΣ(0))))
...

...
...

am = max(r0, EΣ(am−1)).

Under the “server-centric” model, the Server may have to allocate r > 1 eligible jobs
at once at some preassigned polling times. In contrast, ico always waits until it sees all
EICO(t− 1) jobs that are eligible after the execution of the (t− 1)th job before selecting
the tth job to allocate to a remote client. This leads to the following apparent anomaly.

Observation. Under the batched-makespan metric, some schedulers can con-
ceivably outperform scheduler ico on some dags.

4.3.2 The batched-makespan experiment

Our batched-makespan experiment generates random dags in the manner described in
Section 4.1. We study the batched-execution of each generated dag G as follows.

We assume that the Server polls for clients requesting work in an event-driven manner,
namely, as soon as all tasks allocated in earlier phases are completed. At each poll by
the Server, we assume that there are ρ requests for work, where ρ is a random variable
whose value is distributed exponentially in the set {2, 4, . . . , 214}. (Thus, our system has
no memory; each polling is independent of all others.) When coupled with the variability
in the sizes of the generated dags, this range of values for ρ gives us a reasonable picture
of how varying dag sizes and request sizes are dealt with by our four schedulers.

We execute each generated dag G fifty times using each of our four schedulers. (In contrast
to the area-maximization experiment, for this experiment, ico encounters randomness
also, due to the request-arrival rate ρ.) We end up with four batched execution times,
T (ico), T (fifo), T (lifo), and T (greedy), which are the means of the observed numbers
of pollings required by each of the four schedulers. For each G, we compare scheduler ico

against its competing schedulers Σ ∈ {fifo, lifo, greedy} via the phase-ratio T (Σ) ÷
T (ico) (so larger reported numbers favor ico).
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5 Experimental Results and Interpretation

5.1 Area-Maximization Results

Our results from the area-maximization experiment present both the means and 95% con-
fidence intervals of the quantities ∆(ico, Σ) for Σ ∈ {fifo, lifo, greedy}. (In many
cases, the intervals are so tight around the means that they are indistinguishable from
those points.) We fitted curves of the form a · vb to the data—where v is the size of
the generated dag—using a nonlinear regression function, calculated in GNUplot via the
Marquardt-Levenberg algorithm [9].

5.1.1 Schedules for familiar dags

We instantiated the dags of Fig. 1 in several different sizes: 3-to-10 levels for the FFT
dag and 10-to-100 levels for the mesh-structured dags (so the largest FFT dag was roughly
equal in size to the largest meshes). The results appear in Fig. 4. One discerns a number
of meaningful patterns in the figure. Most importantly, ∆(ico, Σ) grows nontrivially with
the size of the dag being scheduled.

FFT dags. greedy and fifo compute the same schedule (to within the random ordering
of equal-outdegree vertices), because each nonsink of the FFT has outdegree 2, so the
priority-queue of greedy functions exactly as the FIFO queue of fifo. lifo performs the
worst, because whenever both sources of a copy of C2 within the FFT is completed, lifo

allocates both of the newly eligible sinks consecutively, despite the fact that they are
sources of distinct copies of C2. The disparity among the three heuristics manifests itself
only via the coefficient of the form avb. All three yield to an exponent b = 1.7; alifo = 0.11
in contrast with afifo = agreedy = 0.023.

Two-dimensional reduction-meshes. Both greedy and fifo perform well on these
dags, but neither attains IC optimality. greedy’s preference for “inner” mesh-vertices
(those of outdegree 2) rather than “outer” ones causes it to interleave the execution of
mesh levels; fifo’s random ordering of equal-outdegree vertices precludes its sequential
execution of each mesh level. Both of these characteristics preclude IC-optimal schedules
[18]. lifo lags the other schedules, presumably for a reason similar to its behavior on FFT
dags.

Two-dimensional evolving meshes. In this case, both greedy and fifo produce IC-
Optimal schedules. (Randomizing vertex order seems not to cause suboptimality as long as
fifo’s is enforced.) lifo again lags, for the same reasons as above: most vertices depend
directly on more than one parent, and lifo favors executing nodes that are deeper into the
dag, and less likely to have neighboring vertices that are executed.
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Figure 4: Area-maximization results for FFT dags (top), reduction-meshes (middle), and
evolving meshes (bottom).
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Figure 5: Area-maximization results for random compositions of W-dags.

5.1.2 Schedules for randomly constructed dags

As we began experimenting with randomly constructed dags, we encountered noise in the
observed data that made it hard to discern trends concerning the values of ∆(ico, Σ):

• for fixed Σ but different size dags,

• for different Σ’s with the same dag,

• across families of kindred dags (constructed, say, from the same repertoire of CBBBs).

Fig. 5 exemplifies the problem of trying to fit a perspicuous curve to observed data. In
order to filter the observed data in a way that would expose meaningful trends, we decided
to eliminate all data for each heuristic Σ, except for the lower-envelope convex hull [6] of
the values of ∆(ico, Σ) across the range of generated dags. While this ploy restricted us to
reporting on lower bounds on the performance disadvantage of each heuristic, it did allow us
to make defensible claims about the area-maximizing advantage of the ico scheduler, rather
than to speculate on the “possible” advantage. For illustration, the graph in Fig. 6 exhibits
the lower-envelope convex hull of the data from Fig. 5. We do this filtering consistently
throughout this section. The W-dag-based results are supplemented in Fig. 7 with data
for random compositions of, respectively, M-dags, combined W-dags, N-dags, and M-dags,
and bipartite cliques. We make a few observations about our results—which should be
interpreted in the light of the lower-bound nature of the data.

Comparing ico against its competitors.

• In all the graphs presented, we observe that the functions avb that we fit to the filtered
data points all have exponents b > 2. This indicates that the average per-step gain
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in eligible jobs from using ico, rather than any of the three heuristic competitors,
increases at least linearly with dag size.

• The fact that some of the coefficients a are very small indicates that the indicated
advantage is likely to be “asymptotic,” taking hold only for rather large dags.

Comparisons among the competitors.

• For all generated dags, greedy seems to outperform both other heuristics—by a
considerable margin on dags that are built using W-dags. The consistency of this
observation would cause us to rank greedy as the best scheduler after ico.

• fifo appears to be the weakest scheduler on dags that are built using W-dags. This
may be an unanticipated result of our method of ensuring IC optimal schedulability,
rather than an intrinsic property of fifo. Specifically, we always compose W-dags
with smaller outdegrees “on top of” ones with larger outdegrees, which would lead
fifo to execute potentially shallow subtrees (in the expansive regions) of a dag, before
executing deeper ones. Thus, one should from refrain assessing the relative strength
of fifo pending further study.

• The sparseness of data regarding random compositions of W-, N-, and M-dags weak-
ens detailed inferences from the observed values of the parameters a and b. But, recall
that these values describe lower envelopes, so all the observed data lie on or above
these envelopes.

• For dags built from bipartite cliques, all three heuristic schedulers perform almost
identically.
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5.2 Batched-Makespan Results

In all of the graphs in this section, the mean request-rate parameter ρ is plotted along
the x-axis using a logarithmic scale; the phase-ratios T (Σ) ÷ T (ico) appear on the y-axis.
Means and 95% confidence intervals are reported for phase-ratios. Since it is difficult to
display trends in these statistics over entire classes of dags, we present only two dags per
class. These pairs represent trials on dags of different sizes (with the smaller on the left).
We have tried to select for display dag that exhibit behavior typical of dags in their classes.

5.2.1 Schedules for familiar dags

The most notable observation from Fig. 8, wherein appear the batched-makespan results
for our familiar dags, is the apparent correlation between the results obtained using the
structural area-maximization metric and the behavioral batched-makespan metric. If this
observation, which persists with the results concerning random dags in the next subsection,
is verified by subsequent experimentation, then this could greatly simplify the scheduling
problem for Internet-based computing. With our familiar dags, at least, an ordering of the
four schedulers according to their relative batched-makespan performances is consistent
with the analogous ordering for the area-maximization metric—at least for an important
range of the request rate ρ. While we do not know how to quantify this observation, it
appears to be the case qualitatively that using a scheduler that produces schedules of higher
IC quality has a benign effect on the batched-makespan of the resulting schedules.

One notes in the righthand FFT graph of Fig. 8 an instance in which the phase-ratio
T (greedy) ÷ T (ico) < 1. This indicates that greedy takes fewer phases to complete
than does ico, a situation described at the end of Section 4.3.1.

5.2.2 Schedules for randomly constructed dags

Our observations concerning executing random compositions of CBBBs under the batched-
makespan metric are largely qualitative. Our actual results appear in Fig. 9.

We note first that our results are quite consistent with those in [13], despite the fact that
we compare ico against three competitors, on a large range of artificially generated dags,
whereas that source compares a heuristic extension of ico against a version of fifo, on a
set of four dags that arise from actual scientific computations.

Next, we note that the overall “shapes” of the results in Figs. 8 and 9 are to be expected.
No matter what class of dags is being executed, there will be only certain ranges of the
client-request-rate parameter ρ for which the scheduling strategy has any impact on batched
makespan. On the one hand, if requests arrive at a very slow rate, then any scheduler is
likely to be able to generate enough eligible jobs to satisfy the demand. At the other

20



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for an FFT dag of 80 vertices

FIFO
LIFO

GREEDY

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for an FFT dag of 2304 vertices

FIFO
LIFO

GREEDY

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for a Reduction Mesh dag of 210 vertices

FIFO
LIFO

GREEDY

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for a Reduction Mesh dag of 1830 vertices

FIFO
LIFO

GREEDY

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for an Evolving Mesh dag of 210 vertices

FIFO
LIFO

GREEDY

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10  100  1000  10000

P
ha

se
 r

at
io

Mean arrival rate

Phase Ratio for an Evolving Mesh dag of 1830 vertices

FIFO
LIFO

GREEDY

Figure 8: Phase-ratios for two different reduction-meshes (top), evolving meshes (middle),
and FFT dags (bottom).
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Figure 9: From top: phase-ratios for two different compositions of: W-dags, M-dags,
cliques, combined W-, N-, and M-dags.
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extreme, if there is, effectively, an unlimited supply of requests, then the batched makespan
is effectively limited only by the critical path in the dag, so any approximation of a breadth-
first allocation of jobs (such as fifo and greedy supply) should give performance that
is roughly as good as any scheduler can yield. It is only between these extremes that one
discerns significant differences in the performances of competing schedulers.

The detailed placements and amplitudes of the “humps” depend on the structures of the
dags being executed. Notably, though, in all of our experimentation, we noted only one
instance of a phase-ratio dipping below 1; i.e., in essentially all experiments, ico at least
matched the batched-makespan performance of the competing heuristics. And, in many
instances—see Fig. 9—ico outperformed its competitors over a range of values of ρ by
completing execution in 10–20% fewer phases than the heuristics.

6 Where We Are, and Where We’re Going

Our study supplements the evidence in [13] that the nascent scheduling theory of [4, 5, 15]
has significant implications for Internet-based computing. Our simulations have pitted the
ico scheduler against three natural heuristics, on hundreds of artificially generated dags,
using both the area-maximization and batched-makespan quality metrics. The simulations
in [13] pit an extension of ico against a verison of fifo, on four real scientific dags, using
the batched-makespan metric. It is heartening that our results are consistent with those
reported in [13].

The ultimate validation—or refutation—of the significance of the theory of IC-optimal
scheduling will require actual experiments with real workloads on real computing platforms.
The integration of G. Malewicz’s prio scheduling tool into the Condor DAGMan tool [3],
as described in [13], may give us this opportunity.
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