
Applying IC-Scheduling Theory to Familiar Classes of

Computations

Gennaro Cordasco∗

Univ. of Salerno

Grzegorz Malewicz†

Google, Inc.

Arnold L. Rosenberg‡

Univ. of Massachusetts

September 21, 2006

Abstract

Earlier work has developed the underpinnings of IC-Scheduling Theory, an al-
gorithmic framework for scheduling computations having intertask dependencies for
Internet-based computing (IC, for short). The goal of the schedules produced by the
Theory is to render tasks eligible for execution at the maximum possible rate, with
the dual aim of: (a) utilizing remote clients’ computational resources well, by al-
ways having work to allocate to an available client; (b) lessening the likelihood of the
“gridlock” that ensues when a computation stalls for lack of tasks that are eligible
for execution. While motivated by real computations, the Theory has been devel-
oped with computations represented abstractly, via directed acyclic graphs (dags).
The current paper reconnects the abstract theory with an eclectic variety of real
computations and computational paradigms, by illustrating how to schedule these
computations optimally.

1 Introduction

Earlier work [9, 21, 22, 23] has developed IC-Scheduling Theory, an algorithmic framework
for studying the problem of scheduling computations that have intertask dependencies for

∗Dip. di Informatica e Applicazioni, Univ. di Salerno, Baronissi (SA) 84081, ITALY,
cordasco@dia.unisa.it

†Dept. of Engineering, Google Inc., Mountain View CA 94043, USA, malewicz@google.com
‡Dept. of Computer Science, Univ. of Massachusetts Amherst, Amherst, MA 01003, USA,

rsnbrg@cs.umass.edu

1

the several modalities of Internet-based computing (IC, for short)—including Grid comput-
ing (cf. [5, 13, 12]), global computing (cf. [6]), and Web computing (cf. [17]). The goal is
to craft schedules that maximize the rate at which tasks are rendered eligible for allocation
to remote clients (hence for execution), with the dual aim of: (a) enhancing the effective
utilization of remote clients, by always having work to allocate to an available client; (b)
lessening the likelihood of the “gridlock” that can arise when a computation stalls pending
computation of already-allocated tasks.

IC-Scheduling Theory idealizes the problem of scheduling computations having intertask
dependencies for IC, via the assumption that tasks are executed in the order of their
allocation. (This assumption idealizes the hope that monitoring clients’ past behaviors
and current capabilities, as prescribed in [5, 16, 24], can render the desired order likely,
if not certain.) Building on the case studies of [22, 23], we have developed in [21, 9,
10] what we hope will be the underpinnings of an algorithmic theory of how to schedule
computations having intertask dependencies for IC. Simulation experiments reported in
[19, 15] bolster this hope by showing that, in a wide range of circumstances, the Theory’s
schedules outperform those produced by popular heuristics.

While motivated by real computations, IC-Scheduling Theory has been developed with
computations represented abstractly, via directed acyclic graphs (dags, for short).1 The
current paper attempts to reconnect the Theory by describing an eclectic variety of signif-
icant familiar computations and computational paradigms, providing for each:

1. an analysis of its intertask dependency structure;

2. a sketched formal analysis of how this structure is scheduled optimally by the theory;

3. a discussion of how this structure can be rendered multi-granular by clustering tasks
to adjust task granularities, at least over a wide range, while maintaining a desirable
intertask dependency structure. Multi-granularity is quite important in IC, since it
allows one both to tailor task granularity for remote clients that have widely varying
computing powers and to diminish the volume of inter-client communication (which
proceeds over the Internet).

We illustrate each paradigm with one or more significant applicative computations. The
reader should keep in mind throughout that our overriding concern when discussing each
illustrative computation is how the structure of the computation’s intertask dependencies
is accommodated by IC-Scheduling Theory. Other issues—even critical ones such as com-
munication load, which may influence one’s decision about the computation’s suitability for
IC—are not our primary concern here (although we plan to address them in future work).

1All technical terms are defined in Section 2.

2

This paper is part of our multi-pronged attempt to assess the impact of IC-Scheduling The-
ory on “real” IC. In [19], an extension of the scheduling algorithm of [21] is compared, via
simulated computations on four “real” scientific dags, against the “FIFO” dag-scheduling
heuristic used by the Condor system [7]. In [15], the (unextended) algorithm of [21] is
compared, via simulated computations on many artificially generated dags, against three
natural dag-scheduling heuristics, including “FIFO.” All of the simulations suggest that
IC-scheduling theory has a significant positive impact on the scheduling problem for IC,
either matching or improving the performance of competing schedulers.

Roadmap. Section 2 presents the technical background for our study, including a review of
the highlights of IC-scheduling theory, from [9, 21]. Section 3 discusses the important class
of expansion-reduction computations, which, notably, includes computations derived using
the divide-and-conquer paradigm. Section 4 discusses the class of wavefront computations
encountered in applications as varied as finite-element computations and the arrays that
arise in computer vision. The development builds on studies in [22] and [23]. Section 5,
which also builds on [23], discusses butterfly-structured computations, which include the
important family of convolutions. Section 6 expands on the theme of expansion-reduction
computations, considering more complicated modes of “expansion,” such as the impor-
tant parallel-prefix paradigm. Finally, Section 7 focuses on the important matrix-multiply
computation, which is a gateway to a variety of linear-algebraic computations. Section 8
projects future directions in the development of IC-scheduling theory.

Related work. Our study builds directly on our earlier work that develops the nascent
IC-scheduling theory. The fundamental notions of IC-scheduling theory are introduced in
[22, 23], which also characterize and specify optimal schedules for several uniform dags
(some of which appear in this paper). The examples of the preceding sources are developed
into the seeds of a scheduling theory in [9, 21], whose conceptual contributions we have just
described; these sources also provide a rich repertoire of building blocks for the complex
dags that the theory can handle. Major extensions to the theory are currently being
developed in [10]. A companion to the preceding sources, [20]—which is motivated by
the fact that many dags do not admit an optimal schedule in the sense of [21]—pursues
an orthogonal regimen for scheduling dags for IC, in which a server allocates batches of
tasks periodically, rather than allocating individual tasks as soon as they become eligible.
Optimality is always possible within the batched framework, but achieving it may entail a
prohibitively complex computation. As described earlier, our work also relates closely to
[19, 15], which discuss the simulation studies alluded to, as well as (in the first of these
sources) describing the prio tool. In less directly related work, [14] presents a probabilistic
approach to the problem of executing tasks on unreliable clients. Finally, the impetus for
our study derives from the many exciting systems- and/or application-oriented studies of
IC, in sources such as [5, 6, 12, 13, 16, 17, 24].

3

2 The Rudiments of IC-Scheduling Theory

2.1 Computation-Dags

A directed graph G is given by a set of nodes NG and a set of arcs (or, directed edges) AG,
each of the form (u→ v), where u, v ∈ NG. (The arc is oriented from u to v.) A path in G
is a sequence of arcs that share adjacent endpoints, as in the following path from node u1

to node un: (u1 → u2), (u2 → u3), . . . , (un−1 → un). A dag (directed acyclic graph) G is
a directed graph that has no cycles—so that no path of the preceding form has u1 = un.
When a dag G is used to model a computation, i.e., is a computation-dag:

• each node v ∈ NG represents a task in the computation;
• an arc (u→ v) ∈ AG represents the dependence of task v on task u: v cannot be

executed until u is.

For any arc (u→ v) ∈ AG, u is a parent of v, and v is a child of u in G. The indegree (resp.,
outdegree) of node u is its number of parents (resp., children). A parentless node of G is a
source, and a childless node is a sink. G is connected if, when one ignores the orientations
of its arcs, there is a path connecting every pair of distinct nodes.

2.2 A Quality Model for Executing Dags on the Internet

When one executes a computation-dag2 G, a node v ∈ NG is eligible (for execution) only
after all of v’s parents have been executed; hence, every source of G is always eligible.
We do not allow recomputation of nodes, so a node loses its eligible status once it is
executed. In compensation, after a node v ∈ NG has been executed, there may be new
nodes that are rendered eligible; this occurs when v is their last parent to be executed.
A schedule for a dag G is a rule for selecting which eligible node to execute at each step of
an execution of G. We measure the quality of an execution of G by the number of eligible

nodes after each node-execution—the more, the better. (Note that we measure time in an
event-driven manner, as the number of nodes that have been executed to that point.) Our
goal is to execute G’s nodes in an order that maximizes the production rate of eligible

nodes at every step of the computation. Any schedule for G that achieves this demanding
goal is said to be IC-optimal.

The significance of IC optimality stems from the following scenarios. (1) Schedules that
produce eligible nodes more quickly may reduce the chance of the “gridlock” that could
occur when remote clients are slow—so that new tasks cannot be allocated pending the
return of already allocated ones. (2) If the IC Server receives a batch of requests for tasks
at (roughly) the same time, then having more eligible tasks available allows the Server
to satisfy more requests, thereby increasing “parallelism.”

2For brevity, we henceforth refer to “dags,” without the qualifier “computation.”

4

2.3 Tools for Crafting IC-Optimal Schedules

We describe tools for generating IC-optimal schedules to use with our sample computations.

2.3.1 Composition-based scheduling tools

The priority relation ⊲. For i = 1, 2, let the dag Gi have ni nonsinks, and let it admit
the IC-optimal schedule Σi. If the following inequalities hold:3

(∀x ∈ [0, n1]) (∀y ∈ [0, n2]) :
EΣ1

(x) + EΣ2
(y) ≤ EΣ1

(min{n1, x + y}) + EΣ2
(max{0, x + y − n1}),

(2.1)

then G1 has priority over G2, denoted G1 ⊲ G2. Informally, one never decreases IC quality
by executing a nonsink of G1 whenever possible.

Generating complex dags via composition. The operation of composition is defined
inductively as follows.

• Start with a set S of base dags.

• To compose dags G1,G2 ∈ S—which could be the same dag with nodes renamed to
achieve disjointness—thereby obtaining a composite dag G:

– Let G begin as the sum G1 +G2,
4 with nodes renamed if necessary to ensure that

NG ∩ (NG1
∪NG2

) = ∅.

– Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an
equal-size set S2 of sources from the copy of G2 in the sum.

– Pairwise identify (i.e., merge) the nodes in the sets S1 and S2 (in an arbitrary
way). The resulting node-set is NG; the induced set of arcs is AG.5

• Add the dag G thus obtained to the base set S.

We denote the composition operation by ⇑ and say that G is composite of type [G1 ⇑ G2].

The dag G is a ⊲-linear composition of the dags G1, . . . ,Gn if: (a) G is composite of type
G1 ⇑ · · · ⇑ Gn; (b) Gi ⊲ Gi+1, for all i ∈ [1, n− 1].

The following results underlies the main scheduling algorithm of [21].

3[a, b] denotes the set of integers {a, a + 1, . . . , b}.
4If G1 and G2 are disjoint, in the sense that NG1

∩NG2
= ∅, then their sum, denoted G1 +G2, is the dag

whose node-set is NG1
∪NG2

and whose arc-set is AG1
∪AG2

.
5An arc (u→ v) is induced if {u, v} ⊆ NG .

5

Theorem 2.1 ([21]). Let G be a ⊲-linear composition of G1, . . . ,Gn, where each Gi admits
an IC-optimal schedule Σi. The schedule Σ for G that proceeds as follows is IC optimal.

1. For i = 1, . . . , n, in turn, Σ executes the nodes of G that correspond to nonsinks of Gi,
in the order mandated by Σi.

2. Σ finally executes all sinks of G in any order.

2.3.2 Duality-based scheduling tools

The dual of a dag G is the dag G̃ that is obtained by reversing all of G’s arcs (thereby
interchanging sources and sinks). One can infer both IC-optimal schedules and ⊲-priorities

for a dag G from corresponding entities for G̃ (Theorems 2.2 and 2.3, respectively).

Scheduling-based duality. Let G be a dag with n nonsinks, U = {u1, . . . , un}, and N

nonsources, V = {v1, . . . , vN}. Let Σ be a schedule for G that executes U ’s nodes in the
order uk1

, uk2
, . . . , ukn

(followed by all of G’s sinks). Each execution of a nonsink, say
ukj

, renders eligible a (possibly empty) “packet” of nonsources, Pj = {vj,1, . . . , vj,ij}, of
G. Thus, Σ renders G’s nonsources eligible in a sequence of such “packets:”

P1 = {v1,1, . . . , v1,i1}, P2 = {v2,1, . . . , v2,i2}, . . . , Pn = {vn,1, . . . , vn,in}.

A schedule Σ̃ for G̃ is dual to Σ if it executes G̃’s nonsinks—i.e., V ’s nodes—in an order of
the form6

[[vn,1, . . . , vn,in]], [[vn−1,1, . . . , vn−1,in−1
]], . . . , [[v1,1, . . . , v1,i1]],

after which, Σ̃ executes G̃’s sinks. (G̃ generally admits many schedules that are dual to Σ.)

Theorem 2.2 ([9]). Let the dag G admit the IC-optimal schedule ΣG. Any schedule for G̃
that is dual to ΣG is IC optimal.

Priority-based duality. We can infer ⊲-priorities via duality.

Theorem 2.3 ([9]). For all dags G1 and G2: G1 ⊲ G2 if, and only if, G̃2 ⊲ G̃1.

3 Alternating Expansion-Reduction Computations

3.1 The Abstract Dags

The structure of the dags. The computations we exemplify in this section are built
via iterated composition from the two basic building blocks depicted in Fig. 1: the Vee
dag V on the left and the Lambda dag Λ on the right. (Both are named for the shapes of

6[[a, b, . . . , c]] denotes a fixed, but unspecified, permutation of the set {a, b, . . . , c}.

6

w

0 1
x x

10y y

z

Figure 1: The Vee dag V (left) and the Lambda dag Λ (right).

their drawings. Note that Λ and V are dual to one another.) Via iterated composition:
V is a typical building block for an “expansive” computation, in which one generates an
out-tree to generate subcomputations—as, e.g., in the “divide” phase of a divide-and-
conquer computation; Λ is a typical building block for a “reductive” computation, in which
one generates an in-tree that accumulates previously computed results—as, e.g., in the
recombination phase of a divide-and-conquer computation.

Our interest here is in multiphase computations, which compose alternating “expansive”
computations—represented by out-trees—and “reductive” computations—represented by
complete in-trees.7 One such computation, which performs an expansive computation
followed by a reductive one, is illustrated in Fig. 2, where the composition is represented
explicitly. The out-tree at the left-bottom of the figure generates values; the in-tree at the

Figure 2: A sample expansion-reduction computation.

left-top accumulates the values. The two trees are composed into the diamond dag at the
right by merging (in this case, all) sinks of the out-tree with sources of the in-tree.

Rendering expansion-reduction computations multi-granular. The out-tree in an
expansion-reduction computation generates the values that the in-tree subsequently accu-

7Our restriction to binary trees in illustrations is irrelevant to the theory: any fixed degree works.
Indeed, one finds degree-d analogues of both V and Λ in [21].

7

mulates. One can easily coarsen the tasks in such a computation by selectively truncating
branches of the out-tree, together with mated portions of the in-tree, in a manner that
leaves more of the overall computation to remote clients. We illustrate this process in
Fig. 3, where we transform the diamond dag of Fig. 2 by coarsening two tasks. To sim-

Figure 3: Coarsening tasks in the dag of Fig. 2.

plify our illustration, we replace the in-tree of Fig. 2 by the dual, T̃ , of the out-tree T ;
this is clearly just a simplification, not a required change. The reader should be able to
extrapolate from this example to render other diamond dags multi-granular.

IC-optimal schedules for diamond dags. Every dag that represents an alternating
expansive-reductive computation admits an IC-optimal schedule. We approach the task of
deriving such a schedule in steps, beginning with out-trees and in-trees and progressing to
increasingly complex compositions thereof.

Out-trees and in-trees. Note first that every out-tree is an iterated composition of
the Vee dag V, i.e., is composite of type V ⇑ · · · ⇑ V . A trivial computation using (2.1)
shows that V⊲V , which verifies that every out-tree is a ⊲-linear composition, hence admits
an IC-optimal schedule (Theorem 2.1). Indeed, easily, every schedule for an out-tree is IC
optimal! Since every in-tree is dual to an out-tree, we infer from Theorem 2.2 that every
in-tree admits an IC-optimal schedule.8 Indeed:

A schedule for an in-tree T is IC optimal if, and only if, it executes the two
sources of each copy of Λ in T in consecutive steps. [23]

Diamond dags. Every diamond dag D is (by definition) a composition of an out-tree
T and an in-tree T ′, hence, is composite of type T ⇑ T ′. Invoking the associativity of
dag-composition [21], we infer that D is composite of some type V ⇑ · · · ⇑ V ⇑ Λ ⇑ · · · ⇑ Λ,
where the only uncertainty is the number of V ’s (which must match the number of Λ’s).
Since a trivial computation involving (2.1) shows that V ⊲ Λ, we see that every diamond
dag is a ⊲-linear composition, hence admits an IC-optimal schedule (Theorem 2.1). Indeed

8Instead of invoking the Theorem, we could alter our discussion of out-trees by uniformly replacing
“out-tree” by “in-tree” and “V” by “Λ.”

8

any schedule that executes all T using an IC-optimal schedule, then executes all of T ′ using
an IC-optimal schedule, is IC optimal for D.

More complicated alternations. Although our primary focus has been on diamond
dags as exemplars of expansion-reduction computations, our analysis of diamond dags
applies almost verbatim to a far broader family of alternating in-trees and out-trees, such
as are exemplified in Fig. 4. Note from the rightmost dag in the figure that the numbers
of leaves of composed out-trees and in-trees need not match.

Figure 4: Sample alternating expansion-reduction computations.

To analyze these extended dags, we note that, although T ⊲ T ′ for any out-tree T and in-
tree T ′, the converse does not hold. Nonetheless, the dag G of type T ′ ⇑ T that “merges”
T ′’s single sink with T ’s single source, as in the leftmost dag in Fig. 4, admits an IC optimal
schedule, because G’s topology forces every schedule to execute all of T ′ before any of T ;
hence, we need worry only about how to compute T and T ′ individually.

The preceding reasoning actually shows that any alternating composition of out-trees and
in-trees of the composition-types depicted in Table 1 admits an IC-optimal schedule. (The
superscript “(out)” identifies an out-tree; “(in)” identifies an in-tree.)

Tree-dag notation Diamond-dag notation

(T (out)
0 ⇑ T (in)

0) ⇑ (T (out)
1 ⇑ T (in)

1) ⇑ · · · ⇑ (T (out)
n ⇑ T (in)

n) D0 ⇑ D1 ⇑ · · · ⇑ Dn

T (in)
0 ⇑ (T (out)

1 ⇑ T (in)
1) ⇑ · · · ⇑ (T (out)

n ⇑ T (in)
n) T (in)

0 ⇑ D1 ⇑ · · · ⇑ Dn

(T (out)
1 ⇑ T (in)

1) ⇑ · · · ⇑ (T (out)
n ⇑ T (in)

n) ⇑ T (out)
0 D1 ⇑ · · · ⇑ Dn ⇑ T

(out)
0

Table 1: Diamond dags that admit IC-optimal schedules.

3.2 A Sample Computation: Numerical Integration

Alternating expansive-reductive dags arise in a number of important divide-and-conquer
computations; we describe just one significant one.

9

A number of popular numerical integration algorithms proceed in the following way. (One
can imagine the following as specifying the task that is computed in each node of the
out-tree that represents the expansive portion of the computation.) Say that one wants to
integrate a function F over an interval [a0 ↔ b0].

9 One chooses a computationally simple
functional form that provides a numerically adequate approximation to the area under F ,
at least over a very small interval. The Trapezoid Rule, e.g., uses a linear approximation
to the area under F , while Simpson’s Rule uses a quadratic approximation; for simplicity,
we describe the Trapezoid Rule, which is based on the approximation

A(X, Y)
def

=
1

2
(F (X) + F (Y))(Y −X).

One then computes two quantities

A0 = A(a0, b0)

A1 = A

(
a0,

1

2
(a0 + b0)

)
+ A

(
1

2
(a0 + b0), b0

)
.

A0 is a linear approximation to the area under F over the interval [a0 ↔ b0], while A1

is the approximation obtained by splitting the interval [a0 ↔ b0] in two, thereby making
some accommodation for F ’s curvature within the interval. If the difference |A0 − A1|
is sufficiently small (relative to a predetermined tolerance), then the approximation A0

is accepted, and the current task-node becomes a leaf of the out-tree. If the difference
is too large—i.e., exceeds the tolerance—then the current task spawns two new tasks,
representing the two summands of A1, which become its children in the out-tree: the left
child-task seeks to integrate F over the interval [a0 ↔

1
2
(a0 + b0)], the right child over the

interval [1
2
(a0 + b0) ↔ b0]. In terms of the depiction of V in Fig. 1, the variables w, x0, x1

represent the intervals over which the task-node must integrate the function F :

if w = [a0 ↔ b0]
then x0 = [a0 ↔

1
2
(a0 + b0)]

and x1 = [1
2
(a0 + b0)↔ b0]

The initial task—the root of the out-tree—represents the entire interval [a0, b0].

Note. The preceding if-then-else prescription specifies intertask dependencies
within the out-tree portion of the diamond dag. It does not specify a compu-
tation that we are doing.

The integration procedure ends by composing the final out-tree T , whose leaves contain
the area of F over the subintervals wherein a linear approximation to F suffices, with its

9We use the notation [X ↔ Y] to denote the closed real interval {Z | X ≤ Z ≤ Y }.

10

dual in-tree T̃ , which accumulates these areas; hence, the sink of T̃ provides the sought
approximation to the area under F over the entire interval. In terms of the depiction of Λ
in Fig. 1, the variables y0, y1, z represent the areas under F over the various subintervals:

if y0 = A(a0,
1
2
(a0 + b0))

and y1 = A(1
2
(a0 + b0), b0)

then z = y0 + y1

The described computation thus generates a (possibly quite irregular) binary out-tree whose
leaves contain the areas under the curve in regions that are small enough for a linear (Trape-
zoid Rule) or quadratic (Simpson’s Rule) approximation to provide an adequate approxi-
mation to the true area. It then uses an in-tree to accumulate these areas over subintervals
into the area of F over the entire interval [a0 ↔ b0]. By appropriately coarsening the
diamond dag that represents this computation, one can decrease the volume of internode
communication, as well as render the computation’s tasks more coarse-grain.

4 Wavefront-Related Computations

This section builds on and extends the study of mesh-like computations in [22, 23].

4.1 The Abstract Dags

The structure of the dags. The computations we exemplify in this section all have the
structures of two-dimensional meshes that are truncated along their diagnals; see Fig. 5.
While the out-mesh on the lefthand side of the figure represents a large family of wavefront-

Figure 5: An out-mesh (left) and an in-mesh (right).

structured computations, it is useful also to consider the in-mesh on the righthand side.
These latter dags (which are called pyramid dags in [8]) are useful when discussing multi-
granularity in mesh-like dags. Moreover, our analyses of in-meshes follow directly from our
analyses of out-meshes, via duality (see Section 2.3.2).

IC-optimal schedules for mesh-like dags. Ad hoc arguments in [22, 23] show, respec-
tively, that both out- and in-meshes admit IC-optimal schedules. A more interesting proof

11

Figure 6: The out-mesh and in-mesh as compositions.

emerges by extrapolating from Fig. 6, which shows that every out-mesh is a composition of
W-dags10 having increasing numbers of sources. Since the schedule that executes a W-dag’s
sources consecutively is IC optimal and since smaller W-dags have ⊲-priority over larger
ones (both results from [21]), every out-mesh is a ⊲-linear composition, hence admits an
IC-optimal schedule. By duality, the same is true for in-meshes.

Figure 7: Rendering an out-mesh multi-granular.

Rendering wavefront computations multi-granular. There are many clustering
strategies that allow one to coarsen the tasks in a mesh-like computation, but all are more
complicated than their analogues for the other dags we study here, due to the “tighter” in-
terdependencies in mesh-like dags. Fig. 7 suggests one scheme for coarsening an out-mesh’s
tasks by a factor of 4; this factor can be adjusted by sliding the dashed lines to generate
equilateral “rectangles” and “triangles” whose “areas” determine the coarsening factor.11

When all tasks have equal granularity, the coarsened mesh is just a smaller version of the
original, fine-grained one, hence also admits an IC-optimal schedule. However, when tasks
differ in granularities, the coarsened mesh loses the regularity of its fine-grained ancestor
and may not admit an IC-optimal schedule. What is true of all such coarsenings, though,

10W-dags and M-dags are named for the Latin letters suggested by their topologies.
11Each “triangle” is an out-mesh, and each “rectangle” is the composition of an out-mesh and an in-mesh;

hence both types of dags admit IC-optimal schedules.

12

is the important fact that the amount of computation represented by a coarsened task
grows quadratically with the task’s “sidelength,” while the communication—a much dearer
resource in IC—grows only linearly with “sidelength.”

5 Butterfly-Structured Computations

5.1 The Abstract Dags

This section builds on and extends the study of the FFT computation in [23].

The structure of the dags. The computations we exemplify in this section are all built
via iterated composition from the butterfly building block B of Fig. 8, so named for its shape
in the drawing. A large variety of transformations effected by butterfly building blocks—

1

x x

y y

0 1

0

Figure 8: The butterfly building block B.

i.e., specifications of y0 and y1 as functions of x0 and x1—lead to useful computations.

Notable among the dags constructed from butterfly building blocks is the d-dimensional
butterfly network Bd, for d = 1, 2, The 1-dimensional butterfly network is the butterfly
building block: B1 = B. The 2- and 3-dimensional networks, B2 and B3, are depicted in
Fig. 9. (The reader should easily be able to extrapolate to higher dimensional networks.)

Figure 9: The 2-dimensional (left) and 3-dimensional (right) butterfly networks.

IC-optimal schedules for butterfly networks. The easiest way to begin deriving an
IC-optimal schedule for the d-dimensional butterfly network Bd is to note (the well-known
fact) that Bd is an iterated composition of the butterfly building block B. This fact is
illustrated for B3 in Fig. 10.

13

Figure 10: The butterfly network as a composition of butterfly building blocks.

A trivial computation using (2.1) shows that B ⊲ B. It follows that every iterated com-
position of B—hence, specifically, every butterfly network Bd is an ⊲-linear composition.
By Theorem 2.1, then, every such composition admits an IC-optimal schedule. Indeed, a
generalized argument from [23] shows:

A schedule for an iterated composition G of the butterfly building block B is IC
optimal if, and only if, it executes the two sources of each copy of B within G
in consecutive steps.

Rendering butterfly-structured computations multi-granular. The literature dis-
cusses many computations whose dependency structure is modeled by butterfly networks;
cf. [18, 25]. Most such discussions—including ours in Section 5.2—focus on computations
having fine-grained tasks. These discussions notwithstanding, butterfly networks support
important computations having tasks of arbitrary granularities. This is because every
(a + b)-dimensional butterfly network Ba+b is (isomorphic to) a copy of Ba each of whose
nodes is a copy of Bb; cf. [1]. Fig. 10 exemplifies this fact for the case a = 2 and b = 1.
This fact allows one both to adjust the granularities of the tasks that are allocated to re-
mote clients and to control the volume of internode communication, while always retaining
butterly-structured dependencies.

5.2 Sample Computations

We noted earlier that many transformations effected by butterfly building blocks lead to
useful computations. We exemplify just two now: the comparator transformation

y0 = min(x0, x1) and y1 = max(x0, x1) (5.1)

and the convolution transformation

y0 = x0 + ωx1 and y1 = x0 − ωx1 (5.2)

14

where ω is a constant associated with this specific butterfly building block. We now describe
the complex computations that these transformations lead to.

Sorting. It has been known for decades [2] that some iterated compositions of the butterfly
building block—using the comparator transformation (5.1)—will sort any sequence of keys
from an ordered domain, that are presented at the sources of the composite dag. In fact,
one can derive one such family of networks (though not the most efficient one) via iterated
composition of butterfly networks; the most efficient known such networks require a more
complicated iterated composition of comparators [11].

In summation, there are sorting algorithms—any comparator-based one will work—that
can be computed IC optimally by a simply specified algorithm.

Convolutions. Given two univariate polynomials of degree n,

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn and g(x) = b0 + b1x + b2x

2 + · · ·+ bnxn

their product is the polynomial

[f ⊗ g](x) = A0 + A1x + A2x
2 + · · ·+ A2nx2n

where each coefficient Ak is a convolution, i.e., a sum of the form

Ak = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 =
k∑

i=0

aibk−i.

Convolutions arise in myriad computations other than polynomial multiplication, one of
the most important being the Fast Fourier Transform (FFT); cf. [11]. In fact, the data
dependencies of the d-dimensional FFT computation have the form of the butterfly network
Bd, hence can be computed IC optimally by a simply specified algorithm. Specifically, each
butterfly building block used to construct the FFT computation uses the convolutional
transformation (5.2) with a value of ω that is derived from the dth complex roots of unity.

In fact, one can use the FFT computation to perform a large repertoire of convolutions,
notably including polynomial multiplication, in sequential time Θ(n log n). We thereby can
schedule a broad range of convolutional computations IC optimally.

6 A More Complex Expansion-Reduction Paradigm

6.1 The Parallel-Prefix/Scan Operator

The operator and an associated dag. We now describe the parallel-prefix (or, scan)
operator, a meta-computation that provides myriad examples of important computations

15

that our theory can schedule IC optimally. It has been shown in, e.g., [3, 18], that the
ability to compute parallel-prefixes efficiently automatically enables one to compute a large
variety of computations efficiently, ranging from microscopic ones such as carry-lookahead
addition, to large ones such as we exemplify in Section 6.2.1.

The parallel-prefix operator is defined for an arbitraryy binary associative operation that
we denote ∗ (think, e.g., of +, ×, min, max, “concatenate”). The ∗-parallel prefix of the
input vector 〈x1, x2, . . . , xn〉 is the output vector 〈y1, y2, . . . , yn〉, where

y1 = x1

y2 = y1 ∗ x2 = x1 ∗ x2
...

...
...

yn = yn−1 ∗ xn = x1 ∗ x2 ∗ · · · ∗ xn−1 ∗ xn

(6.3)

There are many ways of implementing the ∗-parallel prefix computation. The following
way is attractive because it performs the computation in O(log n) parallel steps (in the
presence of n-fold parallel computation).

for j = 0 to ⌊log2(n− 1)⌋ do
for i = 2j to n− 1 do in parallel

xi ← xi−2j ∗ xi

do in parallel yi ← xi

The 8-input parallel-prefix dag P8 that represents this algorithm is depicted in Fig. 11.

Figure 11: The 8-input parallel-prefix dag P8.

IC-optimal schedules for parallel-prefix dags. The easiest way to begin deriving an
IC-optimal schedule for the n-input parallel-prefix dag Pn is to note that it is an iterated
composition of N-dags.

For each integer s > 0, the s-source N-dag N s has s sources and s sinks; its
2s − 1 arcs connect each source v to sink v and sink v + 1 if the latter exists.
N s’s leftmost source—the dag’s anchor—has a child that has no other parents.

16

This fact is illustrated in Fig. 12, where it is shown that P8 is composite of type N 8 ⇑ N 4 ⇑
N 4 ⇑ N 2 ⇑ N 2 ⇑ N 2 ⇑ N 2. (The fact that the constituent N-dags shrink is a coincidence;
it is not needed for our analysis.) It is not hard to verify—cf. [21]—that: (a) the schedule

Figure 12: Exemplifying parallel-prefix dags as compositions of N-dags.

that executes the sources of N s sequentially, starting with the anchor, is IC optimal; (b)
N s ⊲ N t for all s and t. These facts combine to show that every dag Pn is a ⊲-linear
composition, hence admits an IC-optimal schedule (Theorem 2.1). Indeed:

Any schedule that executes Pn by executing its constituent N-dags in nonin-
creasing order of their numbers of sources is IC optimal.

Rendering parallel-prefix computations multi-granular. Since system (6.3) de-
mands only that the “scanned” operation ∗ be associative, one can employ the ∗-parallel-
prefix dag P(∗)

n to apply the operator to a rather wide range of operations. For instance:

• to generate the first n powers of an integer N , one lets ∗ be integer multiplication
and uses input 〈N, . . . , N〉;

• to generate the first n powers of an complex number ω, one lets ∗ be complex mul-
tiplication (which is significantly harder than integer multiplication) and uses input
〈ω, . . . , ω〉;

• to generate the first n “logical” powers of the adjacency matrix A of an n-node graph
G, with the end of computing all paths in G, one lets ∗ be logical matrix multiplication
(which replaces the arithmetic sum and product of ordinary matrix multiplication by
the logical sum (OR) and product (AND)) and uses input 〈A . . . , A〉. This, of course,
is a considerably more complex operation than multiplication of numbers.

These examples illustrate how one can use the parallel-prefix operator for tasks of varying
complexity and coarseness. Of course, to get finer-grain tasks, one can, e.g., expand the
operation of matrix multiplication to its constituent scalar operations; cf. Section 7. Of
course, we can also modify the granularity of tasks by manipulating the dependency dag,
as illustrated in earlier sections.

17

6.2 Two Sample Computations

6.2.1 The Discrete Laplace Transform

The n-dimensional Discrete Laplace Transform (DLT, for short)—a/k/a the Z-Transform—
transforms an n-dimensional vector 〈x0, x1, . . . , xn−1〉 to an m-dimensional vector of com-
plex functions 〈y0(ω), y1(ω), . . . , ym−1(ω)〉. The value yk(ω) is given (cf. [4]) by

yk(ω) = x0 + x1ω
k + x2ω

2k + · · ·+ xn−1ω
(n−1)k =

n−1∑

i=0

xiω
ik. (6.4)

We consider two algorithms for computing the DLT. Both use an in-tree to accumulate
the terms of the sum (6.4), but they generate the terms quite differently. We expect each
algorithm to be preferable to the other on some platforms—but at least, the two algorithms
illustrate quite different dag structures that both admit IC optimal schedules. The in-tree
used by both algorithms has n sources. Each source vi begins by multiplying xi times the
power of ω that vi has received. Then, in terms of the depiction of Λ in Fig. 1, the variables
y0, y1, z represent subsums of (6.4):

if y0 = xi · ωik

and y1 = xj · ω
jk

then z = y0 + y1

We now present the two generating algorithms.

Generate terms via the parallel-prefix operator. For any complex number ω, one can
compute yk(ω) by using an n-input parallel-prefix dag Pn with input vector 〈ωk, ωk, . . . , ωk〉
to generate the vector 〈1, ωk, ω2k, . . . , ω(n−1)k〉 as input to the accumulating in-tree. The
resulting 8-input composite DLT dag, L8, is depicted on the lefthand side of Fig. 13.

We simplify the argument that every Ln admits an IC-optimal schedule by assuming that
n = 2p is a power of 2. Focus on the building blocks of Ln, and note: (a) Ln is composite
of type Pn ⇑ T n, where T n is the n-source in-tree; (b) Pn is composite of type12

N 2p ⇑ (N 2p−1 ⇑ N 2p−1) ⇑ (N 2p−2 ⇑ N 2p−2 ⇑ N 2p−2 ⇑ N 2p−2) ⇑ · · · ⇑ (N2 ⇑ N 2 ⇑ · · · ⇑ N 2)

(2p−1 copies of “N 2”); (c) T n is composite of type Λ ⇑ · · · ⇑ Λ (2p − 1 copies of “Λ”).

The three facts (from [21]) that: (1) (∀s, t) [N s ⊲ N t]; (2) (∀s) [N s ⊲ Λ]; (3) [Λ ⊲ Λ],
imply that every Ln is a ⊲-linear composition, hence admits an IC-optimal schedule (The-
orem 2.1). Indeed, the theorem indicates that

12We add parentheses to the type expression to enhance legibility.

18

ωk ωkωkωkωkωk ωk ωk

ω2k ω3k ω4k ω5k ω6k ω7k1 ωk

ωk ωkωkωkωkωk ωk ωk

ωk1 , ω3kω2k, ω5kω4k, ω7kω6k,

Figure 13: (left) The 8-input DLT dag L8; (right) a coarsened version of L8.

Any schedule that executes Ln by executing its constituent copy of Pn IC opti-
mally, then executing its constituent copy of T n IC optimally, is IC optimal.

The argument showing that the coarsened version of L8 depicted on the righthand side of
Fig. 13 admits an IC-optimal schedule combines the preceding ⊲-priority-related reasoning
with the purely topological fact that the righthand portion of the in-tree cannot be executed
until its sources have been executed. Details are left to the reader.

Generate terms via a specialized out-tree. An alternative algorithm for generating
the terms of the sum (6.4) employs a ternary out-tree that is built out of the 3-prong
Vee dag V3 depicted in Fig. 14. In terms of the depiction of V3 in Fig. 14, the variables

w

x
1

x x
20

Figure 14: The 3-prong Vee dag V3.

w, x0, x1, x2 represent powers of the parameter ωk in (6.4):

if w = ωik

then x0 = ω · w2 = ω(2i+1)k

and x1 = w = ωik

and x2 = w2 = ω2ik

19

The initial power—the root of the out-tree—represents the parameter ωk. The 8-input
resulting composite dag for the DLT, L′

8, is depicted in Fig. 15. Having presented several

1 ωk ω2kω3k ω4kω5kω6kω7k

ωk

ω2kω3k

Figure 15: The alternative 8-input DLT dag L′
8.

such arguments by now, we indicate only sketchily why every L′
n admits an IC-optimal

schedule. One validates easily the chain

V3 ⊲ V3 ⊲ Λ ⊲ Λ,

Thus, every L′
n is a ⊲-linear composition, hence admits the IC-optimal schedule that exe-

cutes the out-tree, then the leftmost source, then the in-tree.

6.2.2 Computing paths in a graph

We now consider an operation that, while not familiar, is quite natural. It exemplifies a
coarse computation that falls within the framework of this section. We anticipated this
computation in our discussion of the multi-granular nature of the parallel-prefix operator
in Section 6.1. Consider Fig. 16 as we describe the computation. Say that we have a 9-node
graph G, presented via its 9× 9 boolean adjacency matrix A. (We choose the integer 9 to
make Fig. 16 attractive.) We wish to compute a 9 × 9 matrix M of integers whose (i, j)

entry is a vector ~vi,j = 〈β(1)
i,j , . . . , β

(8)
i,j 〉, where

β
(k)
i,j =

{
1 if there is a path of length k in G between nodes i and j

0 if there is no such path

We compute M via a computation whose intertask dependencies are depicted in Fig. 16.

20

A

A A A A A A A A

A2 A3 A4 A5 A6 A7 A8

Figure 16: Computing the paths in a 9-node graph.

1. We use an 8-input parallel-prefix to compute all logical powers of A (as described in
Section 6.1). Within each power Ak, the (i, j) entry is 1 or 0, indicating whether or
not there is a path of length k in G between nodes i and j.

2. We use an in-tree to accumulate the information from the eight power matrices Ak

into the 64 vectors ~vi,j of matrix M .

There are, of course, many variations on the indicated theme, all of which yield to compu-
tations having the structure depicted in Fig. 16.

7 Matrix Multiplication

Our final sample computation is the ubiquitous operation of matrix multiplication. The
well-known algorithm that multiplies one n×n matrix by another via recursive invocation of
the 2×2 algorithm (cf. [11]) allows one considerable control over the granularities of tasks.
Since we have one specific application in mind here, we invert the order of presentation
from other sections.

7.1 Multipying 2× 2 Matrices Recursively

The product of the 2× 2 matrices A =

(
A B

C D

)
and B =

(
E F

G H

)
is given by:

A× B =

(
A B

C D

)
×

(
E F

G H

)
=

(
AE + BG AF + BH

CE + DG CF + BH

)
(7.1)

21

Importantly, the rightmost expression in (7.1) does not invoke the commutativity of mul-
tiplication, so the equation holds when the elements of A and B are themselves matrices.
Thus, (7.1) actually specifies a recursive algorithm for multiplying any n × n matrix by
another. Each level of this recursion has the simple structure exposed in Fig. 17.

xx x x x x x x

A E C HDGBF

+ ++ +

Figure 17: The dag M: Multiplying 2× 2 matrices, or, via recursion, n× n matrices.

7.2 IC-Optimal Schedules for Our Matrix-Multiplication Dag

The structure of the dag in Fig. 17 can be elucidated in terms of (bipartite) cycle-dags.

For each integer s > 1, the s-source (bipartite) cycle-dag Cs is obtained from
the N-dag N s by adding a new arc from the rightmost source to the leftmost
sink—so that each source v of Cs has arcs to sinks v and v + 1 mod s.

One notes in Fig. 17 that our matrix-multiplication dagM contains two copies of C4, one
to compute the products AE, AF, CE, CF and one for BG, BH, DG, DH . These copies
are composed with four copies of Λ that compute the required sums of these products. In
fact, M is composite of type C4 ⇑ C4 ⇑ Λ ⇑ Λ ⇑ Λ ⇑ Λ. A simple calculation using (2.1)
verifies that C4 ⊲ C4 ⊲ Λ ⊲ Λ (cf. [21]). Thus, M is a ⊲-linear composition, hence admits
an IC-optimal schedule (Theorem 2.1), one of which is specified as follows.

The following is an IC-optimal schedule for multiplying 2×2 matrices. Compute
the eight required products in the order AE, CE, CF, AF, BG, DG, DH, BH.
Then compute the four required sums involving these products, in any order.

As with previous sample computations, refining or clustering the dependency dag allows
one to adjust the granularity of the computation’s constituent tasks.

22

8 Where We Are, and Where We’re Going

In Sections 5–7, we present a broad range of computational structures that yield to IC-
scheduling theory and that arise in significant “real” computations. We have exploited
results only from [21, 9], which develop the existing algorithmics of IC-scheduling theory.
We expect the upcoming sequel [10] to these sources to enable the IC-optimal scheduling of
additional computational structures, which arise in other significant “real” computations.

Our current research priorities focus on four broad thrusts for extending and/or refining
IC-scheduling theory:

1. enabling the optimal scheduling of ever broader classes of dags;

2. developing rigorous notions of “almost” optimal scheduling that apply to all dags
(which is important since the strong demands of IC optimality preclude the IC-
optimal scheduling of many dags [21]);

3. incorporating concerns such as communication load, which are critically important
to IC;

4. extending the assessment component of IC-scheduling theory, both via further simu-
lation experiments, as in [15, 19], and via experimentation using actual IC systems,
as enabled by the prio tool of [19] and its potential successors.

Acknowledgments. The research of A. Rosenberg was supported in part by NSF Grant
CCF-0342417.

References

[1] A. Avior, T. Calamoneri, S. Even, A. Litman, A.L. Rosenberg (1998): A tight layout
of the butterfly network. Theory of Computing Systs. 31 (Special issue for SPAA/96)
475–487.

[2] V.E. Beneš (1964): Optimal rearrangeable multistage connecting networks. Bell
Syst. Tech. J. 43, 1641–1656.

[3] G.E. Blelloch (1989): Scans as primitive parallel operations. IEEE Trans. Comput. 38,
1526–1538.

[4] L.I. Bluestein (1970): A linear filtering approach to the computation of the Discrete
Fourier Transform. IEEE Trans. Audio Electroacoust., AU-18, 451–455.

23

[5] R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for
service oriented Grid computing. 10th Heterogeneous Computing Wkshp.

[6] W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into
a metacomputer. 13th Intl. Parallel Processing Symp., 160–166.

[7] Condor Project, University of Wisconsin. http://www.cs.wisc.edu/condor

[8] S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9,
308–316.

[9] G. Cordasco, G. Malewicz, A.L. Rosenberg (2006): Advances in a dag-scheduling the-
ory for Internet-based computing. Submitted for publication. See also, On scheduling
expansive and reductive dags for Internet-based computing. 26th Intl. Conf. on Dis-
tributed Computing Systems, 2006.

[10] G. Cordasco, G. Malewicz, A.L. Rosenberg (2006): Extending IC-Scheduling Theory
via the Sweep Algorithm. Typescript, Univ. Massachusetts.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to Algorithms
(2nd Edition). MIT Press, Cambridge, Mass.

[12] I. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing
Infrastructure (2nd Edition). Morgan-Kaufmann, San Francisco.

[13] I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable
virtual organizations. Intl. J. Supercomputer Applications.

[14] L. Gao and G. Malewicz (2006): Toward maximizing the quality of results of de-
pendent tasks computed unreliably. Theory of Computing Systs., to appear. See also,
Intl. Conf. on Principles of Distributed Systems, 2004.

[15] R. Hall, A.L. Rosenberg, A. Venkataramani (2006): A comparison of dag-scheduling
strategies for Internet-based computing. Typescript, Univ. Massachusetts.

[16] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling mecha-
nisms for global computing applications. Intl. Parallel and Distr. Processing Symp.

[17] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home:
massively distributed computing for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press, Los Alamitos, CA.

[18] F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Mateo, Cal.

24

[19] G. Malewicz, I. Foster, A.L. Rosenberg, M. Wilde (2006): A tool for prioritizing DAG-
Man jobs and its evaluation.” 15th IEEE Intl. Symp. on High-Performance Distributed
Computing, 156–167.

[20] G. Malewicz and A.L. Rosenberg (2005): On batch-scheduling dags for Internet-based
computing. Euro-Par 2005. In Lecture Notes in Computer Science 3648, Springer-
Verlag, Berlin, 262–271.

[21] G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006): Toward a theory for scheduling
dags in Internet-based computing. IEEE Trans. Comput. 55, 757–768.

[22] A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-
based computing. IEEE Trans. Comput. 53, 1176–1186.

[23] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428–438.

[24] X.-H. Sun and M. Wu (2003): GHS: A performance prediction and node scheduling
system for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

[25] J.D. Ullman (1984): Computational Aspects of VLSI. Computer Science Press,
Rockville, Md.

25

