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1 IntrodutionEarlier work [15, 17℄ has developed the Internet-Computing (IC, for short) Pebble Game,that abstrats the problem of sheduling omputations having intertask dependenies1, forseveral modalities of Internet-based omputing|inluding Grid omputing (f. [2, 6, 5℄),global omputing (f. [3℄), and Web omputing (f. [12℄). The quality metri for shedulesprodued using the Game is to maximize the rate at whih tasks are rendered eligible foralloation to remote lients (hene for exeution), with the dual aim of: (a) enhaning thee�etive utilization of remote lients and (b) lessening the likelihood of the \gridlok" thatan arise when a omputation stalls pending omputation of already-alloated tasks.

Figure 1: An optimal shedule helps utilize lients well and redue hanes of gridlok.A simple example should illustrate our sheduling objetive. Consider the 2-dimensionalevolving mesh of Fig. 1. An optimal shedule for this dag sequenes tasks sequentiallyalong eah level [15℄ (as numbered in the �gure). If just one lient partiipates in theomputation, then after 5 tasks have been exeuted, we an alloate any of 3 eligible tasksto the lient. If there are several lients, we ould enounter a situation wherein 2 of these3 eligible tasks (marked A in the �gure) are alloated to lients who have not yet �nishedexeuting them. There is, then, only one task (marked E) that is eligible and unalloated.If two lients now request work, we may be able to satisfy only one request, thus wastingthe omputing resoures of one lient. Sine an optimal shedule maximizes the number1As is traditional|f. [8, 9℄|we model suh a omputation as a dag (direted ayli graph).2



of eligible tasks, it minimizes the likelihood of this waste of resoures (whose extreme aseis the gridlok that arises when all eligible tasks have been alloated, but none has beenexeuted).Many IC projets|f. [2, 11, 18℄|monitor either the past histories of remote lients, ortheir urrent omputational apabilities, or both. While the resulting snapshots yield noguarantees of future performane, they at least a�ord the server a basis for estimating suhperformane. Our study proeeds under the idealized assumption that suh monitoringyields suÆiently aurate preditions of lients' future performane that the server analloate eligible tasks to lients in an order that makes it likely that tasks will be exeutedin the order of their alloation. We show how suh information often allows us to raftshedules that produe maximally many eligible tasks after eah task exeution.
Figure 2: Dags with omplex task dependenies that our algorithms an shedule optimally.Our ontributions. We develop the framework of a theory of Internet-based shedulingvia three oneptual/algorithmi ontributions. (1) We introdue a new \priority" relation,denoted B, on pairs of bipartite dags; the assertion \G1 B G2" guarantees that one neversari�es our quality metri (whih rewards a shedule's rate of produing eligible tasks) byexeuting all soures of G1, then all soures of G2, then all sinks of both dags. We provide arepertoire of bipartite building-blok dags, show how to shedule eah optimally, and exposethe B-interrelationships among them. (2) We speify a way of \omposing" building bloks,to obtain dags of possibly quite omplex strutures; f. Fig. 2. If the building bloks usedin the omposition form a \relation-hain" under B, then the resulting omposite dag3



is guaranteed to admit an optimal shedule. (3) The framework developed thus far isdesriptive rather than presriptive. It says that if a dag G is onstruted from bipartitebuilding bloks via omposition, and if we an identify the \blueprint" used to onstrutG, and if the underlying building bloks are interrelated in a ertain way, then a presribedstrategy produes an optimal shedule for G. We next address the algorithmi hallenge inthe preeding if's: given a dag G, how does one apply the preeding framework to it? Wedevelop a suite of algorithms that: (a) redue any dag G to its \transitive skeleton" G 0, asimpli�ed version of G that shares the same set of optimal shedules; (b) deompose G 0 todetermine whether or not it is onstruted from bipartite building bloks via omposition,thereby exposing a \blueprint" for G 0; () speify an optimal shedule for any suh G 0 thatis built from building bloks that form a \relation-hain" under B. For illustration, all ofthe dags in Fig. 2 yield to our algorithms.The sheduling theory we develop here has the potential of improving eÆieny and faulttolerane in existing Grid systems. As but one example, when Condor [19℄ exeutes om-putations with omplex task dependenies, suh as the Sloan Digital Sky Survey [1℄, ituses a \FIFO" regimen to sequene the alloation of eligible tasks. Given the temporalunreliability of the remote lients, this sheduling may sometimes lead to an ine�etive useof lients' omputing resoures and, in the extreme ase, to \gridlok." Our shedulingalgorithms have the potential of reduing the severity of these issues. Experimental workis underway to determine how to enhane this potential.Related work. Most losely related to our study are its immediate preursors and mo-tivators, [15, 17℄. The main results of those soures demonstrate the neessity and suf-�ieny of parent orientation for optimality in sheduling the dags of Fig. 3. Notably,these dags yield to the algorithms presented here, so our results both extend the resultsin [15, 17℄ and explain their underlying priniples in a general setting. In a ompanionto this study, we are pursuing an orthogonal diretion for extending [15, 17℄. Motivatedby the demonstration in Setion 3.4 of the limited sope of the notion of optimal shedule4



that we study here, we formulate in [14℄ a sheduling paradigm in whih a server alloatesbathes of tasks periodially, rather than alloating individual tasks as soon as they beomeeligible. Optimality is always possible within this new framework, but ahieving it mayentail a prohibitively omplex omputation. An alternative diretion of inquiry appearsin [7, 13℄, where a probabilisti pebble game is used to study the exeution of interdepen-dent tasks on unreliable lients. Finally, our study has been inspired by the many exitingsystems- and/or appliation-oriented studies of Internet-based omputing, in soures suhas [2, 3, 5, 6, 11, 12, 18℄.
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1,3 0,4Figure 3: Clokwise from upper left: an evolving (2-dimensional) mesh, a (binary)redution-tree, a (2-dimensional) redution-mesh (or, pyramid dag), an FFT-dag.
2 Exeuting Dags on the InternetWe review the basi graph-theoreti terms used in our study. We then introdue severalbipartite \building bloks" to exemplify our theory. Finally, we present the pebble gameon dags we use to model omputations on dags.5



2.1 Computation-Dags2.1.1 Basi de�nitions. A direted graph G is given by a set of nodes NG and a set ofars (or, direted edges) AG, eah having the form (u! v), where u; v 2 NG. A path in G isa sequene of ars that share adjaent endpoints, as in the following path from node u1 tonode un: (u1 ! u2); (u2 ! u3); : : : ; (un�2 ! un�1); (un�1 ! un). A dag (direted ayligraph) G is a direted graph that has no yles; i.e., in a dag, no path of the preeding formhas u1 = un. When a dag G is used to model a omputation, i.e., is a omputation-dag:� eah v 2 NG represents a task in the omputation;� an ar (u! v) 2 AG represents the dependene of task v on task u:v annot be exeuted until u is.Given an ar (u ! v) 2 AG, u is a parent of v, and v is a hild of u in G. Eah parentlessnode of G is a soure (node), and eah hildless node is a sink (node); all other nodes areinternal. A dag G is bipartite if:1. NG an be partitioned into subsets X and Y suh that, for every ar (u! v) 2 AG,u 2 X and v 2 Y ;2. eah v 2 NG is inident to some ar of G, i.e., is either the node u or the node w ofsome ar (u! w) 2 AG. (Prohibiting \isolated" nodes avoids degeneraies.)G is onneted if, when ar-orientations are ignored, there is a path onneting every pairof distint nodes.2.1.2 A repertoire of building bloks. Our study applies to any repertoire of onnetedbipartite building-blok dags that one hooses to build omplex dags from. For illustration,we fous on the following spei� dags. The following desriptions proeed left to rightalong suessive rows of Fig. 4; we use the drawings to refer to \left" and \right."The �rst three dags are named for the Latin letters suggested by their topologies. W-dagsepitomize \expansive," and M-dags epitomize \redutive" omputations.6



(1,4)−W: (2,4)−W: (1,3)−M: (2,3)−M:

3−N: 4−Clique:3−Cycle:Figure 4: The building bloks of semi-uniform dags.W-dags. For eah integer d > 1, the (1; d)-W-dag W1;d has one soure and d sinks; its dars onnet the soure to eah sink. Indutively, for positive integers a; b, the (a+b; d)-W-dagWa+b;d is obtained from the (a; d)-W-dagWa;d and the (b; d)-W-dagWb;d by identifying(or, merging) the rightmost sink of the former dag with the leftmost sink of the latter.M-dags. For eah integer d > 1, the (1; d)-M-dagM1;d has d soures and one sink; its d arsonnet eah soure to the sink. Indutively, for positive integers a; b, the (a+ b; d)-M-dagMa+b;d is obtained from the (a; d)-M-dag Ma;d and the (b; d)-M-dag Mb;d by identifying(or, merging) the rightmost soure of the former dag with the leftmost soure of the latter.N-dags. For eah integer s > 0, the s-N-dag N s has s soures and s sinks; its 2s� 1 arsonnet eah soure v to sink v and to sink v + 1 if the latter exists. N s is obtained fromWs�1;2 by adding a new soure on the right whose sole ar goes to the rightmost sink. Theleftmost soure of N s|the dag's anhor|has a hild that has no other parents.(Bipartite) Cyle-dags. For eah integer s > 1, the s-(Bipartite) Cyle-dag Cs is obtainedfrom N s by adding a new ar from the rightmost soure to the leftmost sink|so that eahsoure v has ars to sinks v and v + 1 mod s.(Bipartite) Clique-dags. For eah integer s > 1, the s-(Bipartite) Clique-dag Qs has ssoures and s sinks, and an ar from eah soure to eah sink.We hoose the preeding building bloks beause the dags of Fig. 3 an all be onstrutedusing these bloks. Although details must await Setion 4, it is intuitively lear from the7



�gure that: the evolving mesh is onstruted from its soure outward by \omposing" (or,\onatenating") a (1; 2)-W-dag with a (2; 2)-W-dag, then a (3; 2)-W-dag, and so on; theredution-mesh is onstruted from its soures upward using (k; 2)-M-dags for suessivelydereasing values of k; the redution-tree is onstruted from its soures/leaves upward by\onatenating" olletions of (1; 2)-M-dags; the FFT dag is onstruted from its souresoutward by \onatenating" olletions of 2-yles (whih are idential to 2-liques).2.2 The Internet-Computing Pebble GameA number of so-alled pebble games on dags have been shown, over the ourse of severaldeades, to yield elegant formal analogues of a variety of problems related to shedulingomputation-dags. Suh games use tokens alled pebbles to model the progress of a ompu-tation on a dag: the plaement or removal of the various available types of pebbles|whihis onstrained by the dependenies modeled by the dag's ars|represents the hanging(omputational) status of the dag's task-nodes.Our study is based on the Internet-Computing (IC, for short) Pebble Game of [15℄, whosestruture derives from the \no reomputation allowed" pebble game of [16℄. Argumentsare presented in [15, 17℄ (q.v.) that justify studying a simpli�ed form of the Game in whihtask-exeution order follows task-alloation order. As we remark in the Introdution, whilewe reognize that this assumption will never be ompletely realized in pratie, one hopesthat areful monitoring of lients' past behaviors and urrent apabilities, as presribed in,say, [2, 11, 18℄, an enhane the likelihood, if not the ertainty, of the desired order.2.2.1 The rules of the Game. The IC Pebble Game on a omputation-dag G involves oneplayer S, the Server, who has aess to unlimited supplies of two types of pebbles: eligiblepebbles, whose presene indiates a task's eligibility for exeution, and exeuted pebbles,whose presene indiates a task's having been exeuted. We now present the rules of oursimpli�ed version of the IC Pebble Game of [15, 17℄.8



The Rules of the IC Pebble Game� S begins by plaing an eligible pebble on eah unpebbled soure of G./*Unexeuted soures are always eligible for exeution, having no parents whose priorexeution they depend on.*/� At eah step, S{ selets a node that ontains an eligible pebble,{ replaes that pebble by an exeuted pebble,{ plaes an eligible pebble on eah unpebbled node of G all of whose parentsontain exeuted pebbles.� S's goal is to alloate nodes in suh a way that every node v of G eventually ontainsan exeuted pebble./*This modest goal is neessitated by the possibility that G is in�nite.*/Note. The (idealized) IC Pebble Game on a dag G exeutes one task/node of G per step.The reader should not infer that we are assuming a repertoire of tasks that are uniformlyomputable in unit time. One we adopt the simplifying assumption that task-exeutionorder follows task-alloation order, we an begin to measure time in an event-driven way,i.e., per task, rather than hronologially, i.e., per unit time. Therefore, our model allowstasks to be quite heterogeneous in omplexity, as long as the Server an math tasks'omplexities with lients' resoures (via the monitoring alluded to earlier).A shedule for the IC Pebble Game on a dag G is a rule for seleting whih eligiblepebble to exeute at eah step of a play of the Game. For brevity, we heneforth all anode eligible (resp., exeuted) when it ontains an eligible (resp., an exeuted)pebble. For uniformity, we heneforth talk about exeuting nodes rather than tasks.9



2.2.2 IC quality. The goal in the IC Pebble Game is to play the Game in a way thatmaximizes the number of eligible nodes at every step t. For eah step t of a play ofthe Game on a dag G under a shedule �: bE�(t) denotes the number of nodes of G thatare eligible at step t, and E�(t) the number of eligible nonsoure nodes. (Note thatE�(0) = 0.)We measure the IC quality of a play of the IC Pebble Game on a dag G by the size ofbE�(t) at eah step t of the play|the bigger bE�(t) is, the better. Our goal is an IC-optimalshedule �, in whih, for all steps t, bE�(t) is as big as possible.It is not a priori lear that IC-optimal shedules ever exist! The property demands thatthere be a single shedule � for dag G suh that, at every step of the omputation, �maximizes the number of eligible nodes aross all shedules for G. In priniple, it ouldbe that every shedule that maximizes the number of eligible nodes at step t requiresthat a ertain set of t nodes has been exeuted, while every analogous shedule for step t+1requires that a di�erent set of t+1 nodes has been exeuted. Indeed, we see in Setion 3.4that there exist dags that do not admit any IC-optimal shedule. Surprisingly, though, thestrong requirement of IC optimality an be ahieved for large families of dags|even onesof quite omplex struture.The signi�ane of IC quality|hene of IC optimality|stems from the following intuitivesenarios. (1) Shedules that produe eligible nodes maximally fast may redue thehane of a omputation's \stalling" beause no new tasks an be alloated pending thereturn of already assigned ones. (2) If the Server reeives a bath of requests for tasks at(roughly) the same time, then an IC-optimal shedule ensures that maximally many tasksare eligible at that time, so that maximally many requests an be satis�ed. See [15, 17℄for more elaborate disussions of IC quality.
10



3 The Rudiments of IC-Optimal ShedulingWe now lay the groundwork for an algorithmi theory of how to devise IC-optimal shedules.Beginning with a result that simpli�es the quest for suh shedules, we expose IC-optimalshedules for the building bloks of Setion 2.1.2. We then reate a framework for shedulingdisjoint olletions of building bloks via a priority relation on dags, and we demonstratethe nonexistene of suh shedules for ertain other olletions.Exeuting a sink produes no eligible nodes, while exeuting a nonsink may. This simplefat allows us to fous on shedules with the following simple struture.Lemma 1. Let � be a shedule for a dag G. If � is altered to exeute all of G's nonsinksbefore any of its sinks, then the IC quality of the resulting shedule is no less than �'s.When applied to a bipartite dag G, Lemma 1 says that we never diminish IC quality byexeuting all of G's soures before exeuting any of its sinks.3.1 IC-Optimal Shedules for Individual Building BloksA shedule for any of the very uniform dags of Fig. 3 is IC optimal when it sequenestask exeution sequentially along eah level of the dags [15℄. While suh order is neitherneessary nor suÆient for IC optimality with the \semi-uniform" dags studied later, it isimportant when sheduling the building-blok dags of Setion 2.1.2.Theorem 1. Eah of our building-blok dags admits an IC-optimal shedule that exeutessoures from one end to the other; for N-dags, the exeution must begin with the anhor.Proof. The strutures of the building bloks render the following bounds on E�(t) obvious,
11



as t ranges from 0 to the number of soures in the given dag.2Ws;d : E�(t) � (d� 1)t+ [t = s℄;N s : E�(t) � t;Ms;d : E�(t) � [t = 0℄ + b(t� 1)=(d� 1) ;Cs : E�(t) � t� [t 6= 0℄ + [t = s℄;Qs : E�(t) = s� [t = s℄:The exeution orders in the theorem onvert eah of these bounds to an equality.3.2 Exeution Priorities for Bipartite DagsWe now de�ne a relation on bipartite dags that often a�ords us an easy avenue towardIC-optimal shedules|for omplex, as well as bipartite, dags.Let the disjoint bipartite dags G1 and G2 have s1 and s2 soures and admit the IC-optimalshedules �1 and �2, respetively. If the following inequalities hold,3(8x 2 [0; s1℄) (8y 2 [0; s2℄) :E�1(x) + E�2(y) � E�1(minfs1; x+ yg) + E�2((x + y)�minfs1; x + yg): (1)then we say that G1 has priority over G2, denoted G1 B G2.The inequalities in (1) say that one never dereases IC quality by exeuting a soure of G1,in preferene to a soure of G2, whenever possible.The following result is quite important in our algorithmi framework.Theorem 2. The relation B on bipartite dags is transitive.Proof. Let G1, G2, G3 be arbitrary bipartite dags suh that:1. eah Gi has si soures and admits an IC-optimal shedule �i;2For any statement P about t, [P (t)℄ = if P (t) then 1 else 0.3[a; b℄ denotes the set of integers fa; a+ 1; : : : ; bg.12



2. G1 B G2, and G2 B G3.To see that G1 B G3, fous on a moment when we have exeuted x1 < s1 soures of G1 andx3 � s3 soures of G3 (so E�1(x1) + E�3(x3) sinks are eligible). We onsider two ases.Case 1. s1 � x1 � minfs2; x3g. In this ase, we haveE�1(x1) + E�3(x3) � E�1(x1) + E�2(minfs2; x3g) + E�3(x3 �minfs2; x3g)� E�1(x1 +minfs2; x3g) + E�3(x3 �minfs2; x3g); (2)the �rst inequality follows beause G2BG3, the seond beause G1BG2. We an iterate thesetransfers until either all soures of G1 are exeuted or no soures of G3 are exeuted.Case 2. s1 � x1 < minfs2; x3g. This ase is a bit subtler than the preeding one. Lety = s3 � x3 and z = (s1 � x1) + (s3 � x3) = (s1 � x1) + y. Then x1 = s1 � (z � y), andx3 = s3� y. (This hange of notation is useful beause it relates x1 and x3 to the numbersof soures in G1 and G3.) We note the following useful fats about y and z:� 0 � y � z by de�nition� 0 � z < s3 beause s1 � x1 < x3� z � y � s1 beause x1 � 0� s1 � x1 = z � y by de�nition� z � y < s2 beause s1 � x1 < s2Now we apply these observations to the problem at hand. Beause G2BG3 and z�y 2 [0; s2℄and fy; zg � [0; s3℄, we know thatE�2(s2 � (z � y)) + E�3(s3 � y) � E�2(s2) + E�3(s3 � z);so that E�3(s3 � y)� E�3(s3 � z) � E�2(s2)� E�2(s2 � (z � y)): (3)Intuitively: exeuting the last z�y soures of G2 is no worse (in IC quality) than exeutingthe \intermediate" soures s3 � z through s3 � y of G3.13



Similarly, beause G1 B G2 and z � y 2 [0;minfs1; s2g℄, we know thatE�1(s1 � (z � y)) + E�2(s2) � E�1(s1) + E�2(s2 � (z � y));so that E�2(s2)� E�2(s2 � (z � y)) � E�1(s1)� E�1(s1 � (z � y)): (4)Intuitively: exeuting the last z�y soures of G1 is no worse (in IC quality) than exeutingthe last z � y soures of G2.By transitivity (of �), inequalities (3, 4) imply thatE�3(s3 � y)� E�3(s3 � z) � E�1(s1)� E�1(s1 � (z � y)):so that E�1(x1) + E�3(x3) = E�1(s1 � (z � y)) + E�3(s3 � y)� E�1(s1) + E�3(s3 � z)= E�1(s1) + E�3(x3 � (s1 � x1)): (5)The preeding ases|partiularly, the hains of inequalities (2, 5)|verify that system (1)always holds for G1 and G3, so that G1 B G3, as was laimed.Theorem 2 has a orollary that further exposes the nature of B and that tells us howto shedule pairwise B-omparable bipartite dags IC optimally. Spei�ally, we developtools that extend Theorem 1 to disjoint unions|alled sums|of building-blok dags. LetG1; : : : ;Gn be onneted bipartite dags that are pairwise disjoint, in that NGi \NGj = ; forall distint i and j. The sum of these dags, denoted G1+ � � �+Gn, is the bipartite dag whosenode-set and ar-set are, respetively, the unions of the orresponding sets of G1; : : : ;Gn.Corollary 1. Let G1; : : : ;Gn be pairwise disjoint bipartite dags, with eah Gi admitting anIC-optimal shedule �i. If G1 B � � �B Gn, then the shedule �? for the sum G1 + � � �+ Gnthat exeutes, in turn, all soures of G1 aording to �1, all soures of G2 aording to �2,and so on for all i 2 [1; n℄, and �nally exeutes all sinks, is IC optimal.14



Proof. By Lemma 1, we lose no generality by fousing on a step t when the only exeutednodes are soures of the sum-dag. For any indies i and j > i, the transitivity of Bguarantees that Gi B Gj. Suppose that some soures of Gi are not exeuted at step t,but at least one soure of Gj is exeuted. Then by the de�nition of B, in (1), we neverderease the number of eligible sinks at step t by \transferring" as many soure-exeutionsas possible from Gj to Gi. By repeating suh \transfers" a �nite number of times, we endup with a \left-aligned" situation at step t, wherein there exists i 2 [1; n℄, suh that allsoures of G1; : : : ;Gi�1 are exeuted, some soures of Gi are exeuted, and no souresof Gi+1; : : : ;Gn are exeuted.One an atually prove Corollary 1 without invoking the transitivity of B, by suessively\transferring exeutions" from eah Gi to Gi�1.3.3 Priorities among Our Building BloksWe now determine the pairwise priorities among the building-blok dags of Setion 2.1.2.Theorem 3. We observe the following pairwise priorities among our building-blok dags.1. For all s and d, Ws;d B G for the following bipartite dags G:(a) all W-dags Ws0;d0 whenever d0 < d, or whenever d0 = d and s0 � s;(b) all M-dags, N-dags, and Cyle-dags;() Clique-dags Qs0 with s0 � d.2. For all s, N s B G for the following bipartite dags G:(a) all N-dags N s0, for all s0; (b) all M-dags.3. For all s, Cs B G for the following bipartite dags G;(a) Cs; (b) all M-dags. 15



4. For all s and d, Ms;d BMs0;d0 whenever d0 > d, or whenever d0 = d and s0 � s.5. For all s, Qs BQs.The proof of Theorem 3 is a long sequene of alulations paired with an invoation of thetransitivity of B; we relegate it to the Appendix (Setion A).3.4 Inompatible Sums of Building BloksEah of our building bloks admits an IC-optimal shedule, but some of their sums do not.Lemma 2. The following sums of building-blok dags admit no IC-optimal shedule.1. all sums of the forms Cs1 + Cs2 or Cs1 +Qs2 or Qs1 +Qs2, where s1 6= s2;2. all sums of the form N s1 + Cs2 or N s1 +Qs2;3. all sums of the form Qs1 +Ms2;d, where s1 > s2.Proof. 1. Fous on shedules for the dag G = Cs1 + Cs2, where s1 6= s2. There is a uniquefamily �1 of shedules for whih E�(s1) = s1; all of these exeute soures of Cs1 for the �rsts1 steps. For any other shedule �0, E�0(s1) < E�(s1). Similarly, there is a unique family�2 of shedules for whih E�(s2) = s2; all of these exeute soures of Cs2 for the �rst s2steps. For any other shedule �0, E�0(s2) < E�(s2). Sine s1 6= s2, the families �1 and �2are disjoint! Thus, no shedule for G maximizes IC quality at both steps s1 and s2; hene,G does not admit any IC-optimal shedule.Exatly the same argument works for the other indiated sum-dags of part 1.2. Say, for ontradition, that there is an IC-optimal shedule � for a dag N s1 + Gs2,where Gs2 2 fCs2;Qs2g. The �rst node that � exeutes must be the anhor of N s1, foronly this hoie yields E�(1) 6= 0. It follows that � must exeute all soures of N s1 in the�rst s1 steps, for this would yield E�(t) = t for all t � s1, while any other hoie would16



not maximize IC quality until step s1. We laim that � does not maximize IC quality atsome step s > 1, hene annot be IC optimal. To wit: If s2 � s1, then �'s de�ieny ismanifest at step s1 + 1. A shedule �0 that exeutes all soures of Gs2 and then exeutess1 � s2 + 1 soures of N s1 has E�0(s1 + 1) = s1 + 1. But � exeutes a soure of Gs2 forthe �rst time at step s1 + 1, and so E�(s1 + 1) = s1. If s2 > s1, then �'s de�ieny ismanifest at step s2. A shedule �0 that exeutes all soures of Gs2 during the �rst s2 stepshas E�0(s2) = s2. However, during this period, � exeutes some x � 1 soures of N s1,hene only some y � s2 � 1 soures of Gs2 . (Note that x + y = s2.) Sine s1 < s2, it mustbe that y � 1. But then, by step s2, � will have produed exatly x eligible sinks onN s1 and no more than y � 1 eligible sinks on Gs2, so that E�(s2) = x+ y � 1 < s2.3. Assume, for ontradition that there is an IC-optimal shedule � for Qs1 +Ms2;d, wheres1 > s2. Fous on the numbers of eligible sinks after s1 and after s2 steps. The �rsts2 nodes that � exeutes must be nodes of Ms2;d ditated by an IC-optimal shedule forthat dag, for this is the only hoie for whih E�(s2) 6= 0. A shedule �0 that exeutesall soures of Qs1 during the �rst s1 steps would have E�0(s1) = s1. Consider what �an have produed by step s1. Sine � spends at least one step before step s1 exeutinga node of Ms2;d, it annot have rendered any sink of Qs1 eligible by step s1; hene,E�(s1) � b(s1 � 1)=(d� 1) � s1 � 1. It follows that � annot be IC optimal.We summarize our priority-related results about sums of building bloks in Table 1.4 On Sheduling Compositions of Building BloksWe show now how to devise IC-optimal shedules for omplex dags that are obtained viaomposition from any base set of onneted bipartite dags that an be related by B. Weillustrate the proess using the building bloks of Setion 2.1.2 as a base set.We indutively de�ne the operation of omposition on dags.17



G1 B G2 Ws0;d0 N s0 Ms0;d0 Cs0 Qs0Ws;dB d0 < d ord0 = d ands0 � s all s0 all s0; d0 all s0 s0 � delse XN sB all s0 all s0; d0 X XMs;dB d0 > d ord0 = d ands0 � s X for s0 > sCsB X all s0; d0 s0 = selse X X for s0 6= sQsB X X for s > s0 X for s0 6= s s0 = selse XTable 1: The relation B among building-blok dags. Entries either list onditions for pri-ority or indiate (via \X") the absene of any IC-optimal shedule for that pairing.� Start with a base set B of onneted bipartite dags.� Given G1;G2 2 B|whih ould be opies of the same dag with nodes renamed toahieve disjointness|one obtains a omposite dag G as follows.{ Let G begin as the sum, G1 + G2. Rename nodes to ensure that NG is disjointfrom NG1 and NG2 .{ Selet some set S1 of sinks from the opy of G1 in the sum G1 + G2, and anequal-size set S2 of soures from the opy of G2.{ Pairwise identify (i.e., merge) the nodes in S1 and S2 in some way.4 The resultingset of nodes is NG; the indued set of ars is AG.4When S1 = S2 = ;, the omposite dag is just a sum.18



� Add the dag G thus obtained to the set B.We denote omposition by * and say that the dag G is omposite of type [G1 * G2℄.Notes. (a) The roles of G1 and G2 in a omposition are asymmetri: G1 ontributes sinks,while G2 ontributes soures. (b) G's type indiates only that soures of G2 were mergedwith sinks of G1; it does not identify whih nodes were merged. () The dags G1 and/or G2ould themselves be omposite.
(c)(b)(a)Figure 5: Dags of the following types: (a) [[W1;5 * W2;4℄ * C3℄; (b) [[[W3;2 * M2;3℄ *M1;2℄ * M1;3℄; () [N 3 * [N 3 * N 2℄℄ = [[N 3 * N 3℄ * N 2℄. Eah admits an IC-optimalshedule.Composition is assoiative, so we do not have to keep trak of the order in whih dags areinorporated into a omposite dag. Fig. 5 illustrates this fat, whih we verify now.Lemma 3. The omposition operation on dags is assoiative. That is, a dag G is ompositeof type [[G1 * G2℄ * G3℄ if, and only if, it is omposite of type [G1 * [G2 * G3℄℄.Proof. For simpliity, we refer to sinks and soures that are merged in a omposition bytheir names prior to the merge. Context should disambiguate eah ourrene of a name.Let G be omposite of type [[G1 * G2℄ * G3℄, i.e., of type [G 0 * G3℄, where G 0 is ompositeof type [G1 * G2℄. Let T1 and S2 omprise, respetively, the sinks of G1 and the soures ofG2 that were merged to yield G 0. Note that no node from T1 is a sink of G 0, beause these19



nodes have beome internal nodes of G 0. Let T 0 and S3 omprise, respetively, the sinks ofG 0 and the soures of G3 that were merged to yield G. Eah sink of G 0 orresponds eitherto a sink of G1 that is not in T1 or to a sink of G2. Hene, T 0 an be partitioned into thesets T 01, whose nodes are sinks of G1, and T 02, whose nodes are sinks of G2. Let S 01 and S 02omprise the soures of G3 that were merged with, respetively, nodes of T 01 and nodes ofT 02. Now, G an be obtained by �rst merging the soures of S 02 with the sinks of T 02 andthen merging the soures of the resulting dag, S 01 [S2, with the sinks, T 01[T1, of G1. Thus,G is also omposite of type [G1 * [G2 * G3℄℄. The onverse yields to similar reasoning.We an now illustrate the natural orrespondene between the node-set of a omposite dagand those of its building bloks, via Fig. 3:� The evolving 2-dimensional mesh is omposite of type W1;2 * W2;2 * W3;2 * � � � .� A binary redution-tree is obtained by pairwise omposing many instanes of M1;2(seven instanes in the �gure).� The 5-level 2-dimensional redution-mesh is omposite of typeM5;2 *M4;2 *M3;2 *M2;2 *M1;2.� The FFT dag is obtained by pairwise omposing many instanes of C2 = Q2 (twelveinstanes in the �gure).Dag G is a B-linear omposition of the onneted bipartite dags G1;G2; : : : ;Gn if:1. G is omposite of type G1 * G2 * � � � * Gn;2. eah Gi B Gi+1, for all i 2 [1; n� 1℄.Dags that are B-linear ompositions admit simple IC-optimal shedules.Theorem 4. Let G be a B-linear omposition of G1;G2; : : : ;Gn, where eah Gi admits anIC-optimal shedule �i. The shedule � for G that proeeds as follows is IC optimal.20



1. � exeutes the nodes of G that orrespond to soures of G1, in the order mandatedby �1, then the nodes that orrespond to soures of G2, in the order mandated by �2,and so on, for all i 2 [1; n℄.2. � �nally exeutes all sinks of G in any order.Proof. Let �0 be a shedule for G that has maximum E�0(x) for some x, and let X omprisethe �rst x nodes that �0 exeuted. By Lemma 1, we may assume that either1. X ontains all nonsinks of G (and perhaps some sinks), or2. X is a proper subset of the nonsinks of G.In situation 1, E�(x) is maximal by hypothesis. We therefore assume that situation 2holds and show that E�(x) � E�0(x). When X ontains only nonsinks of G, eah node ofX orresponds to a spei� soure of one spei� Gi. Let us fous, for eah i 2 [1; n℄, onthe set of soures of Gi that orrespond to nodes in X; all this set Xi. We laim that:The number of eligible nodes in G at step x, denoted e(X), is jSj � jXj +Pmi=1 ei(Xi),where S is the set of soures of G, and ei(Xi) is the number of sinks of Gi that are eligiblewhen only soures Xi of Gi are exeuted.To verify this laim, imagine that we exeute nodes of G and the orresponding nodes of itsbuilding blok Gi in tandem, using the terminology of the IC Pebble Game for onveniene.The main ompliation arises when we pebble an internal node v of G, sine we thensimultaneously pebble a sink vi of some Gi and a soure vj of some Gj. At eah step t ofthe Game: if node v of G beomes eligible, then we plae an eligible pebble on vi andleave vj unpebbled; if v beomes exeuted, then we plae an exeuted pebble on vjand an eligible pebble on vi. An exeuted pebble on a sink of G is replaed with aneligible pebble. No other pebbles hange.
21



Fous on an arbitrary Gi. Note that the soures of Gi that are exeuted omprise preiselythe set Xi. The sinks of Gi that are eligible omprise preisely the set Yi of sinks all ofwhose parents are exeuted; hene, jYij = ei(Xi). The umulative number of soures ofthe dags Gi that are eligible is jSj � p, where p is the number of soures of G that areexeuted. It follows that the umulative number of eligible pebbles on the dags Gi ise1(X1) + � � �+ en(Xn) + jSj � p. We now alulate the surfeit of eligible pebbles on thedags Gi over the eligible pebbles on G. Extra eligible pebbles get reated when G isdeomposed, in only two ases: (1) when an internal node of G beomes exeuted, (2)when we proess a sink of G that is exeuted. The number of former ases is jX1j+ � � �+jXnj�p. Denoting the number of latter ases by q, we note that q+ jX1j+ � � �+ jXnj = jXj.The laim is thus veri�ed, beause the number of eligible nodes in G ise(X) = (e1(X1) + � � �+ en(Xn) + jSj � p) � (jX1j+ � � �+ jXnj � p+ q):Beause of the priority relations among the dags Gi, Corollary 1 implies that e(X) =Pni=1E�i(x0i), where x0i is a \low-index-loaded" exeution of the Gi. Beause of the way thedags Gi are omposed, the soures of eah Gj ould have been merged only with sinks oflower-index dags, namely, G1; : : : ;Gj�1. Thus a \low-index-loaded" exeution orrespondsto a set X 0 of x exeuted nodes of G that satisfy preedene onstraints. Thus, there is ashedule|namely �|that exeutes nodes of G that orrespond to the dags G1;G2; : : : ;Gn,in turn, and this shedule is IC optimal.5 IC-Optimal Shedules via Dag-DeompositionSetion 4 desribes how to build omplex dags that admit IC-optimal shedules. Of ourse,the \real" problem is not to build a dag but rather to exeute a given one. We now raftan algorithmi framework that onverts the syntheti setting of Setion 4 to an analytialsetting. We present a suite of algorithms that take a given dag G and:22



1. simplify G's struture in a way that preserves the IC quality of its shedules;2. deompose (the simpli�ed) G into its \onstituents" (when it is, indeed, omposite);3. determine when (the simpli�ed) G is a B-linear omposition of its \onstituents".When this program sueeds, we invoke Theorem 4 to shedule G IC optimally, bottom-up,from the deomposition. We now develop the advertised algorithmi setting.5.1 \Skeletonizing" a Complex DagThe word \simpli�ed" is needed in the preeding paragraph beause a dag an fail to beomposite just beause it ontains \shortut" ars that do not impat inter-task depen-denies. Often, removing all shortuts renders a dag omposite, hene suseptible to oursheduling strategy. (Easily, not every shortut-free dag is omposite.)For any dag G and nodes u; v 2 NG, we write u G v to indiate that there is a path fromu to v in G. An ar (u ! v) 2 AG is a shortut if there is a path u  G v that does notinlude the ar. The reader an show easily that:Lemma 4. Composite dags ontain no shortuts.Fortunately, one an eÆiently remove all shortuts from a dag without hanging its set ofIC-optimal shedules. A (transitive) skeleton (or, minimum equivalent digraph) G 0 of dagG is a smallest subdag of G that shares G's node-set and transitive losure [4℄.Lemma 5 ([10℄). Every dag G has a unique transitive skeleton, �(G), whih an be foundin polynomial time.We an raft an IC-optimal shedule for a dag G automatially by rafting suh a shedulefor �(G). A speial ase of the following result appears in [15℄.23



Theorem 5. A shedule � has the same IC quality when it exeutes a dag G as when itexeutes �(G). In partiular, if � is IC optimal for �(G), then it is IC optimal for G.Proof. Say that, under shedule �, a node u beomes eligible at step t of the IC PebbleGame on �(G). This means that at step t, all of u's anestors in �(G)|its parents, itsparents' parents, et.|are exeuted. Beause �(G) and G have the same transitivelosure, node u has preisely the same anestors in G as it does in �(G). Hene, undershedule �, u beomes eligible at step t of the IC Pebble Game on G.By Lemma 4, a dag annot be omposite unless it is transitively skeletonized. By Theo-rem 5, one having sheduled �(G) IC optimally, we have also sheduled G IC optimally.Therefore, this setion paves the way for our deomposition-based sheduling strategy.5.2 Deomposing a Composite DagEvery dag G that is omposed from onneted bipartite dags an be deomposed to exposethe dags and how they ombine to yield G. We desribe this proess in detail and illustrateit with the dags of Fig. 3.A onneted bipartite dag H is a onstituent of G just when:1. H is an indued subdag of G: NH � NG, and AH omprises all ars (u ! v) 2 AGsuh that fu; vg � NH.2. H is maximal: the indued subdag of G on any superset of H's nodes|i.e., any set Ssuh that NH � S � NG|is not onneted and bipartite.Seleting a onstituent. We selet any onstituent of G all of whose soures are alsosoures of G, if possible; we all the seleted onstituent B1 (the notation emphasizing thatB1 is bipartite). 24



In Fig. 3: Every andidate B1 for the FFT dag is a opy of C2 inluded in levels2 and 3; every andidate for the redution-tree is a opy of M1;2; the uniqueandidate for the redution-mesh is M4;2.Detahing a onstituent. We \detah" B1 from G by deleting the nodes of G thatorrespond to soures of B1, all inident ars, and all resulting isolated sinks. We therebyreplae G with a pair of dags hB1;G 0i, where G 0 is the remnant of G after B1 is detahed.If G 0 is not empty, then the proess of seletion and detahment ontinues, produing asequene of the formG =) hB1;G 0i =) hB1; hB2;G 00ii =) hB1; hB2; hB3;G000iii =) � � � ;leading ultimately to a sequene of onneted bipartite dags: B1;B2; : : : ;Bn.We laim that the desribed proess reognizes whether or not G is omposite, and, if so, itprodues the dags from whih G is omposed (possibly in a di�erent order from the originalomposition). If G is not omposite then the proess fails.Theorem 6. Let the dag G be omposite of type G1 * � � � * Gn. The deomposition proessprodues a sequene B1; : : : ;Bn of onneted bipartite dags suh that:� G is omposite of type B1 * � � � * Bn;� fB1; : : : ;Bng = fG1; : : : ;Gng.Proof. The result is trivial when n = 1, as G is then a onneted bipartite dag. Assume,therefore, that the result holds for all n < m, and let G be omposite of type G1 *� � � * Gm. In this ase, G1 is a onstituent of G all of whose soures are soures of G.(Other Gi's may share this property.) There is, therefore, a dag B1 for our proess todetah. Sine any onstituent of G all of whose soures are soures of G must be oneof the Gi, we know that B1 is one of these dags. It follows that G is omposite of type25



B1 * (G1 * � � � * Gi�1 * Gi+1 * � � � * Gm); moreover, the dag G 0 resulting after detahing B1is omposite of type G1 * � � � * Gi�1 * Gi+1 * � � � * Gm, beause the detahment proessdoes not a�et any soures of G other than those it shares with B1. By indutive hypothesis,then, G 0 an be deomposed as indiated in the theorem. We now invoke Lemma 3.5.3 The Super-Dag Obtained by Deomposing GThe next step in our strategy is to abstrat the struture of G exposed by its deompositioninto B1; : : : ;Bn in an algorithmially advantageous way. Thereby, we shift fous from thedeomposition to G's assoiated super-dag SG def= S(B1 * � � � * Bn), whih is onstruted asfollows. Eah node of SG|whih we all a supernode to prevent ambiguity|is one of theBi's. There is an ar in SG from supernode u to supernode v just when some sink(s) of u areidenti�ed with some soure(s) of v when one omposes the Bi's to produe G. Figs. 6 and 7present two examples; in both, supernodes appear in dashed boxes and are interonnetedby dashed ars.

Figure 6: The omposition of dags of Fig. 5(b), and its assoiated superdag.In terms of super-dags, the question of whether or not Theorem 4 applies to dag G reduesto the question of whether or not SG admits a topologial sort [4℄ whose linearization ofsupernodes is onsistent with the relation B. For instane, one derives an IC-optimal26
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Figure 7: The 3-dimensional FFT dag and its assoiated superdag.shedule for the dag G of Fig. 5(b) (whih is deomposed in Fig. 6) by noting that G isomposite of typeW3;2 * M1;2 * M2;3 *M1;3 and thatW3;2BM1;2BM2;3BM1;3. Indeed,G points out the hallenge in determining if Theorem 4 applies, sine it is also ompositeof type W3;2 * M2;3 * M1;2 * M1;3, but M2;3 6BM1;2. We leave to the reader the easyveri�ation that the linearization B1; : : : ;Bn is a topologial sort of S(B1 * � � � * Bn).5.4 On Exploiting Priorities among ConstituentsOur remaining hallenge is to devise a topologial sort of SG that linearizes the supernodesin an order that honors relation B. We now present suÆient onditions for this to our,veri�ed via a linearization algorithm.Theorem 7. Say that the dag G is omposite of type B1 * � � � * Bn and that, for eahpair of onstituents, Bi, Bj with i 6= j, either Bi B Bj or Bj B Bi. Then G is a B-linearomposition whenever the following holds.Whenever Bj is a hild of Bi in S(B1 * � � � * Bn), we have Bi B Bj. (6)Proof. We begin with an arbitrary topologial sort, bB def= B�(1); : : : ;B�(n), of the superdagSG. We invoke the hypothesis that B is a (weak) order on the Bi's to reorder bB aording27



to B, using a stable5 omparison sort. Let ~B def= B�(1)B � � �BB�(n) be the linearization of SGprodued by the sort. We laim that ~B is also a topologial sort of SG. To wit, pik any Biand Bj suh that Bj is Bi's hild in SG. By de�nition of topologial sort, Bi preedes Bj inbB. We laim that, beause Bi B Bj (by (6)), Bi preedes Bj also in ~B. On the one hand, ifBj 6BBi, then the sort neessarily plaes Bi before Bj in ~B. On the other hand, if Bj B Bi,then sine the sort is stable, Bi preedes Bj in ~B beause it preedes Bj in bB. Thus, ~B is,indeed, a topologial sort of SG, so that G is omposite of type B�(1) * � � � * B�(n). In otherwords, G is the desired B-linear omposition of B�(1); : : : ;B�(n).We an �nally apply Theorem 4 to �nd an IC-optimal shedule for the dag G.6 Conlusions and ProjetionsWe have developed three notions that form the basis for a theory of sheduling omplexomputation-dags for Internet-based omputing: the priority relation B on bipartite dags(Setion 3.2), the operation of omposition of dags (Setion 4), and the operation of de-omposition of dags (Setion 5). We have established a way of ombining these notions toprodue shedules for a large lass of omplex omputation-dags, that maximize the num-ber of tasks that are eligible for alloation to remote lients at every step of the shedule(Theorems 4, 7). We have used our notions to progress beyond the struturally uniformomputation-dags studied in [15, 17℄ to families that are built in strutured, yet exible,ways from a repertoire of bipartite building-blok dags. The omposite dags that we annow shedule optimally enompass not only those studied in [15, 17℄, but, as illustrated inFig. 5, also dags that have rather omplex strutures, inluding nodes of varying degreesand non-leveled global struture.One diretion for future work is to extend the repertoire of building-blok dags that form5That is, if Bi B Bj and Bj B Bi, then the sort maintains the original relative order of Bi and Bj .28
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for ase (2): sine bx=s1 + by=s2 � 1 + b(x+ y � s1)=s2 in our setting,E�1(x) + E�2(y) = (d� 1)s1 + (d� 1)(x+ y � s1) + bx=s1+ by=s2� (d� 1)s1 + 1 + (d� 1)(x+ y � s1) + b(x+ y � s1)=s2= E�1(s1) + E�2(x + y � s1):(ii): G2 =Ws2;d0 where d0 < d. With this pairing, we have:E�1(x) + E�2(y) = (d� 1)x+ bx=s1+ (d0 � 1)y + by=s2 :For ase (1): sine (d0 � 1)y + 1 � (d� 1)y,E�1(x) + E�2(y) � (d� 1)(x + y) + b(x + y)=s1 = E�1(x + y) + E�2(0);for ase (2): sine d0 < d, and bx=s1+ by=s2 � 1 + b(x + y � s1)=s2 in our setting,E�1(x) + E�2(y) � (d� 1)s1 + (d0 � 1)(x + y � s1) + bx=s1+ by=s2� E�1(s1) + E�2(x + y � s1):(iii): G2 = N s2 . With this pairing, we have E�1(x) + E�2(y) = (d� 1)x+ bx=s1+ y.For ase (1): E�1(x) + E�2(y) � (d� 1)(x+ y) + b(x+ y)=s1 = E�1(x+ y) + E�2(0);for ase (2): E�1(x) + E�2(y) = (d� 1)s1 + bx=s1+ (d� 1)(x� s1) + y� E�1(s1) + E�2(x + y � s1).(iv) G2 = Cs2. Cyle-dags yield to almost the same alulations as N-dags. When y > 0,we have E�1(x) + E�2(y) = (d� 1)x + bx=s1+ y � 1 + by=s2.For ase (1): E�1(x) + E�2(y) � (d� 1)(x+ y) + b(x+ y)=s1 + by=s2 � 1� E�1(x + y) + E�2(0);for ase (2): sine bx=s1 + by=s2 = 2 when x = s1 and y = s2, and is � 1 otherwise,E�1(x) + E�2(y) � (d� 1)s1 + (x+ y � s1) + b(x+ y � s1)=s2= E�1(s1) + E�2(x + y � s1):32



(v) G2 = Qs2 for s2 � d. We onsider only the ase s2 = y, sine other ases are trivial.With this pairing, we have E�1(x) + E�2(y) = (d� 1)x + bx=s1+ s2.For ase (1): E�1(x)+E�2(s2) � (d� 1)(x+ s2)+ b(x + s2)=s1 = E�1(x+ s2)+E�2(0);for ase (2): it suÆes to onsider the ase x < s1, wherein, sine s2 � d,E�1(x) + E�2(s2) = (d� 1)s1 + (d� 1)(x� s1) + s2� (d� 1)s1 + 1 + s2 � b(x + s2 � s1)=s2 = E�1(s1) + E�2(x + s2 � s1):A.2 When N-dags have priority. In this setion, G1 = N s1.All N-dags are \equivalent" in priority, so N-dags in a sum an be exeuted in any order.Also, an IC-optimal shedule for an N-dag produes exatly one eligible sink per soure-exeution, whereas any IC-optimal shedule for an M-dag produes at most one eligiblesink per soure-exeution.A.3 When Cyle-dags have priority. In this setion, G1 = Cs1.(i): G2 = Cs1. If x = 0, then E�1(0) + E�2(y) = y � 1 + by=s1 = E�1(y) + E�2(0).When x; y > 0, E�1(x) + E�2(y) = x� 1 + bx=s1+ y � 1 + by=s1.For ase (1): E�1(x) + E�2(y) � (x+ y)� 1 + b(x + y)=s1 = E�1(x + y) + E�2(0);for ase (2): E�1(x) + E�2(y) � x+ y � 2 + b(x + y)=s1= s1 + (x+ y � s1)� 1 + b(x + y � s1)=s1 = E�1(s1) + E�2(x + y � s1).(ii): G2 =Ms0;d0 . Say that y > 0. If x = 0, then E�1(0) + E�2(y) = b(y � 1)=(d0 � 1) :For ase (1), E�1(0) + E�2(y) � y � 1 � E�1(y) + E�2(0);for ase (2): E�1(0) + E�2(y) = bs1=(d0 � 1) + (y � s1 � 1)=(d0 � 1)� s1 + b(y � s1 � 1)=(d0 � 1) = E�1(s1) + E�2(y � s1).Finally when x > 0, E�1(x) + E�2(y) = x� 1 + bx=s1 + b(y � 1)=(d0 � 1).33



For ase (1): E�1(x) + E�2(y) � (x+ y)� 1 + b(x + y)=s1 = E�1(x + y) + E�2(0);for ase (2): sine d0 > 1 and x� s1 � 0,E�1(x) + E�2(y) � s1 + (x� s1) + b(y � 1)=(d0 � 1)� s1 + b(x+ y � s1 � 1)=(d0 � 1) = E�1(s1) + E�2(x + y � s1):A.4 When M-dags have priority. In this setion, G1 =Ms;d.(i): G2 = Ms0;d where s0 � s. Here, G1 has s1 = (d � 1)s + 1 soures, and G2 hass2 = (d� 1)s0 + 1 soures. If x = 0, then sine s1 � s2, E�1(z) = E�2(z) for all x 2 [0; s2℄,so E�1(0) + E�2(y) = E�1(y) + E�2(0).When x; y > 0, E�1(x) + E�2(y) = b(x� 1)=(d� 1)+ b(y � 1)=(d� 1).For ase (1): E�1(x) + E�2(y) � b(x+ y � 1)=(d� 1) = E�1(x + y) + E�2(0);for ase (2): E�1(x) + E�2(y) � s+ (1� s1)=(d� 1) + b(x + y � 2)=(d� 1)= s+ b(x + y � s1 � 1)=(d� 1) = E�1(s1) + E�2(x + y � s1).The seond equality follows sine (1�s1)=(d�1) is an integer, the third sine x+y�s1 > 0.(ii): G2 = Ms0;d0 where d0 > d. Here, G1 has s1 = (d � 1)s + 1 soures, and G2 hass2 = (d0 � 1)s0 + 1 soures.First, when x = 0: E�1(0) + E�2(y) = b(y � 1)=(d0 � 1).For ase (1): E�1(0) + E�2(y) � b(y � 1)=(d� 1) = E�1(y) + E�2(0);for ase (2): E�1(0) + E�2(y) = bs1=(d0 � 1) + (y � s1 � 1)=(d0 � 1)� b(s1 � 1)=(d� 1) + (y � s1 � 1)=(d0 � 1) = E�1(s1) + E�2(y � s1).Finally, when x > 0, E�1(x) + E�2(y) = b(x� 1)=(d� 1) + b(y � 1)=(d0 � 1).For ase (1): E�1(x) + E�2(y) � b(x+ y � 1)=(d� 1) = E�1(x + y) + E�2(0);
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for ase (2): sine x� s1 � 0, and d0 > d,E�1(x) + E�2(y) = s+ (1� s1)=(d� 1) + b(x� 1)=(d� 1)+ b(y � 1)=(d0 � 1)� s+ b(x� s1)=(d0 � 1)+ b(y � 1)=(d0 � 1)� E�1(s1) + E�2(x + y � s1):A.5 When Clique-dags have priority. In this setion, G1 = Qs1.Let G2 = Qs1. With this pairing, we have:E�1(x) + E�2(y) = s1 � bx=s1 + s1 � by=s1 :For ase (1): E�1(x) + E�2(y) � s1 � b(x+ y)=s1 = E�1(x + y) + E�2(0);for ase (2): E�1(x) + E�2(y) = s1 + s1 � (bx=s1+ by=s1 � 1)� s1 + (s1 � b(x+ y � s1)=s1) = E�1(s1) + E�2(x + y � s1).
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