
Toward a Theory for S
heduling Dags in Internet-Based Computing�Grzegorz Malewi
zy Arnold L. Rosenbergz Matthew Yurkewy
hxMember, IEEE Fellow, IEEEAbstra
tCon
eptual and algorithmi
 tools are developed as a foundation for a theory ofs
heduling
omplex
omputation-dags for Internet-based
omputing. The goal ofthe s
hedules produ
ed is to render tasks eligible for allo
ation to remote
lients(hen
e for exe
ution) at the maximum possible rate. This allows one to utilize remote
lients well, as well as to lessen the likelihood of the \gridlo
k" that ensues when a
omputation stalls for la
k of eligible tasks. Earlier work has introdu
ed a formalismfor studying this optimization problem and has identi�ed optimal s
hedules for severalsigni�
ant families of stru
turally uniform dags. The
urrent paper extends thiswork via a methodology for devising optimal s
hedules for a mu
h broader
lass of
omplex dags, whi
h are obtained via
omposition from a prespe
i�ed
olle
tion ofsimple building-blo
k dags. The paper provides a suite of algorithms that de
omposea given dag G to expose its building blo
ks, and an exe
ution-priority relation B onbuilding blo
ks. When the building blo
ks are appropriately interrelated under B,the algorithms spe
ify an optimal s
hedule for G.Index terms: Internet-based
omputing, Grid
omputing, Global
omputing, Web
om-puting, S
heduling dags, Dag de
omposition, Theory�A portion of this paper appeared at the IEEE Intl. Parallel and Distributed Pro
essing Symp., 2005.yDept. of Computer S
ien
e, U. Alabama, Tus
aloosa, AL 35487, USA, greg�
s.ua.eduzDept. of Computer S
ien
e, U. Massa
husetts, Amherst, MA 01003, USA, rsnbrg�
s.umass.eduxDept. of Computer S
ien
e, U. Massa
husetts, Amherst, MA 01003, USA, yurk�
s.umass.edu

1 Introdu
tionEarlier work [15, 17℄ has developed the Internet-Computing (IC, for short) Pebble Game,that abstra
ts the problem of s
heduling
omputations having intertask dependen
ies1, forseveral modalities of Internet-based
omputing|in
luding Grid
omputing (
f. [2, 6, 5℄),global
omputing (
f. [3℄), and Web
omputing (
f. [12℄). The quality metri
 for s
hedulesprodu
ed using the Game is to maximize the rate at whi
h tasks are rendered eligible forallo
ation to remote
lients (hen
e for exe
ution), with the dual aim of: (a) enhan
ing thee�e
tive utilization of remote
lients and (b) lessening the likelihood of the \gridlo
k" that
an arise when a
omputation stalls pending
omputation of already-allo
ated tasks.

Figure 1: An optimal s
hedule helps utilize
lients well and redu
e
han
es of gridlo
k.A simple example should illustrate our s
heduling obje
tive. Consider the 2-dimensionalevolving mesh of Fig. 1. An optimal s
hedule for this dag sequen
es tasks sequentiallyalong ea
h level [15℄ (as numbered in the �gure). If just one
lient parti
ipates in the
omputation, then after 5 tasks have been exe
uted, we
an allo
ate any of 3 eligible tasksto the
lient. If there are several
lients, we
ould en
ounter a situation wherein 2 of these3 eligible tasks (marked A in the �gure) are allo
ated to
lients who have not yet �nishedexe
uting them. There is, then, only one task (marked E) that is eligible and unallo
ated.If two
lients now request work, we may be able to satisfy only one request, thus wastingthe
omputing resour
es of one
lient. Sin
e an optimal s
hedule maximizes the number1As is traditional|
f. [8, 9℄|we model su
h a
omputation as a dag (dire
ted a
y
li
 graph).2

of eligible tasks, it minimizes the likelihood of this waste of resour
es (whose extreme
aseis the gridlo
k that arises when all eligible tasks have been allo
ated, but none has beenexe
uted).Many IC proje
ts|
f. [2, 11, 18℄|monitor either the past histories of remote
lients, ortheir
urrent
omputational
apabilities, or both. While the resulting snapshots yield noguarantees of future performan
e, they at least a�ord the server a basis for estimating su
hperforman
e. Our study pro
eeds under the idealized assumption that su
h monitoringyields suÆ
iently a

urate predi
tions of
lients' future performan
e that the server
anallo
ate eligible tasks to
lients in an order that makes it likely that tasks will be exe
utedin the order of their allo
ation. We show how su
h information often allows us to
rafts
hedules that produ
e maximally many eligible tasks after ea
h task exe
ution.
Figure 2: Dags with
omplex task dependen
ies that our algorithms
an s
hedule optimally.Our
ontributions. We develop the framework of a theory of Internet-based s
hedulingvia three
on
eptual/algorithmi

ontributions. (1) We introdu
e a new \priority" relation,denoted B, on pairs of bipartite dags; the assertion \G1 B G2" guarantees that one neversa
ri�
es our quality metri
 (whi
h rewards a s
hedule's rate of produ
ing eligible tasks) byexe
uting all sour
es of G1, then all sour
es of G2, then all sinks of both dags. We provide arepertoire of bipartite building-blo
k dags, show how to s
hedule ea
h optimally, and exposethe B-interrelationships among them. (2) We spe
ify a way of \
omposing" building blo
ks,to obtain dags of possibly quite
omplex stru
tures;
f. Fig. 2. If the building blo
ks usedin the
omposition form a \relation-
hain" under B, then the resulting
omposite dag3

is guaranteed to admit an optimal s
hedule. (3) The framework developed thus far isdes
riptive rather than pres
riptive. It says that if a dag G is
onstru
ted from bipartitebuilding blo
ks via
omposition, and if we
an identify the \blueprint" used to
onstru
tG, and if the underlying building blo
ks are interrelated in a
ertain way, then a pres
ribedstrategy produ
es an optimal s
hedule for G. We next address the algorithmi

hallenge inthe pre
eding if's: given a dag G, how does one apply the pre
eding framework to it? Wedevelop a suite of algorithms that: (a) redu
e any dag G to its \transitive skeleton" G 0, asimpli�ed version of G that shares the same set of optimal s
hedules; (b) de
ompose G 0 todetermine whether or not it is
onstru
ted from bipartite building blo
ks via
omposition,thereby exposing a \blueprint" for G 0; (
) spe
ify an optimal s
hedule for any su
h G 0 thatis built from building blo
ks that form a \relation-
hain" under B. For illustration, all ofthe dags in Fig. 2 yield to our algorithms.The s
heduling theory we develop here has the potential of improving eÆ
ien
y and faulttoleran
e in existing Grid systems. As but one example, when Condor [19℄ exe
utes
om-putations with
omplex task dependen
ies, su
h as the Sloan Digital Sky Survey [1℄, ituses a \FIFO" regimen to sequen
e the allo
ation of eligible tasks. Given the temporalunreliability of the remote
lients, this s
heduling may sometimes lead to an ine�e
tive useof
lients'
omputing resour
es and, in the extreme
ase, to \gridlo
k." Our s
hedulingalgorithms have the potential of redu
ing the severity of these issues. Experimental workis underway to determine how to enhan
e this potential.Related work. Most
losely related to our study are its immediate pre
ursors and mo-tivators, [15, 17℄. The main results of those sour
es demonstrate the ne
essity and suf-�
ien
y of parent orientation for optimality in s
heduling the dags of Fig. 3. Notably,these dags yield to the algorithms presented here, so our results both extend the resultsin [15, 17℄ and explain their underlying prin
iples in a general setting. In a
ompanionto this study, we are pursuing an orthogonal dire
tion for extending [15, 17℄. Motivatedby the demonstration in Se
tion 3.4 of the limited s
ope of the notion of optimal s
hedule4

that we study here, we formulate in [14℄ a s
heduling paradigm in whi
h a server allo
atesbat
hes of tasks periodi
ally, rather than allo
ating individual tasks as soon as they be
omeeligible. Optimality is always possible within this new framework, but a
hieving it mayentail a prohibitively
omplex
omputation. An alternative dire
tion of inquiry appearsin [7, 13℄, where a probabilisti
 pebble game is used to study the exe
ution of interdepen-dent tasks on unreliable
lients. Finally, our study has been inspired by the many ex
itingsystems- and/or appli
ation-oriented studies of Internet-based
omputing, in sour
es su
has [2, 3, 5, 6, 11, 12, 18℄.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

3,0 2,1 1,2 0,3

0,21,12,0

1,0 0,1

0,0

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

3

1

2

0

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4Figure 3: Clo
kwise from upper left: an evolving (2-dimensional) mesh, a (binary)redu
tion-tree, a (2-dimensional) redu
tion-mesh (or, pyramid dag), an FFT-dag.
2 Exe
uting Dags on the InternetWe review the basi
 graph-theoreti
 terms used in our study. We then introdu
e severalbipartite \building blo
ks" to exemplify our theory. Finally, we present the pebble gameon dags we use to model
omputations on dags.5

2.1 Computation-Dags2.1.1 Basi
 de�nitions. A dire
ted graph G is given by a set of nodes NG and a set ofar
s (or, dire
ted edges) AG, ea
h having the form (u! v), where u; v 2 NG. A path in G isa sequen
e of ar
s that share adja
ent endpoints, as in the following path from node u1 tonode un: (u1 ! u2); (u2 ! u3); : : : ; (un�2 ! un�1); (un�1 ! un). A dag (dire
ted a
y
li
graph) G is a dire
ted graph that has no
y
les; i.e., in a dag, no path of the pre
eding formhas u1 = un. When a dag G is used to model a
omputation, i.e., is a
omputation-dag:� ea
h v 2 NG represents a task in the
omputation;� an ar
 (u! v) 2 AG represents the dependen
e of task v on task u:v
annot be exe
uted until u is.Given an ar
 (u ! v) 2 AG, u is a parent of v, and v is a
hild of u in G. Ea
h parentlessnode of G is a sour
e (node), and ea
h
hildless node is a sink (node); all other nodes areinternal. A dag G is bipartite if:1. NG
an be partitioned into subsets X and Y su
h that, for every ar
 (u! v) 2 AG,u 2 X and v 2 Y ;2. ea
h v 2 NG is in
ident to some ar
 of G, i.e., is either the node u or the node w ofsome ar
 (u! w) 2 AG. (Prohibiting \isolated" nodes avoids degenera
ies.)G is
onne
ted if, when ar
-orientations are ignored, there is a path
onne
ting every pairof distin
t nodes.2.1.2 A repertoire of building blo
ks. Our study applies to any repertoire of
onne
tedbipartite building-blo
k dags that one
hooses to build
omplex dags from. For illustration,we fo
us on the following spe
i�
 dags. The following des
riptions pro
eed left to rightalong su

essive rows of Fig. 4; we use the drawings to refer to \left" and \right."The �rst three dags are named for the Latin letters suggested by their topologies. W-dagsepitomize \expansive," and M-dags epitomize \redu
tive"
omputations.6

(1,4)−W: (2,4)−W: (1,3)−M: (2,3)−M:

3−N: 4−Clique:3−Cycle:Figure 4: The building blo
ks of semi-uniform dags.W-dags. For ea
h integer d > 1, the (1; d)-W-dag W1;d has one sour
e and d sinks; its dar
s
onne
t the sour
e to ea
h sink. Indu
tively, for positive integers a; b, the (a+b; d)-W-dagWa+b;d is obtained from the (a; d)-W-dagWa;d and the (b; d)-W-dagWb;d by identifying(or, merging) the rightmost sink of the former dag with the leftmost sink of the latter.M-dags. For ea
h integer d > 1, the (1; d)-M-dagM1;d has d sour
es and one sink; its d ar
s
onne
t ea
h sour
e to the sink. Indu
tively, for positive integers a; b, the (a+ b; d)-M-dagMa+b;d is obtained from the (a; d)-M-dag Ma;d and the (b; d)-M-dag Mb;d by identifying(or, merging) the rightmost sour
e of the former dag with the leftmost sour
e of the latter.N-dags. For ea
h integer s > 0, the s-N-dag N s has s sour
es and s sinks; its 2s� 1 ar
s
onne
t ea
h sour
e v to sink v and to sink v + 1 if the latter exists. N s is obtained fromWs�1;2 by adding a new sour
e on the right whose sole ar
 goes to the rightmost sink. Theleftmost sour
e of N s|the dag's an
hor|has a
hild that has no other parents.(Bipartite) Cy
le-dags. For ea
h integer s > 1, the s-(Bipartite) Cy
le-dag Cs is obtainedfrom N s by adding a new ar
 from the rightmost sour
e to the leftmost sink|so that ea
hsour
e v has ar
s to sinks v and v + 1 mod s.(Bipartite) Clique-dags. For ea
h integer s > 1, the s-(Bipartite) Clique-dag Qs has ssour
es and s sinks, and an ar
 from ea
h sour
e to ea
h sink.We
hoose the pre
eding building blo
ks be
ause the dags of Fig. 3
an all be
onstru
tedusing these blo
ks. Although details must await Se
tion 4, it is intuitively
lear from the7

�gure that: the evolving mesh is
onstru
ted from its sour
e outward by \
omposing" (or,\
on
atenating") a (1; 2)-W-dag with a (2; 2)-W-dag, then a (3; 2)-W-dag, and so on; theredu
tion-mesh is
onstru
ted from its sour
es upward using (k; 2)-M-dags for su

essivelyde
reasing values of k; the redu
tion-tree is
onstru
ted from its sour
es/leaves upward by\
on
atenating"
olle
tions of (1; 2)-M-dags; the FFT dag is
onstru
ted from its sour
esoutward by \
on
atenating"
olle
tions of 2-
y
les (whi
h are identi
al to 2-
liques).2.2 The Internet-Computing Pebble GameA number of so-
alled pebble games on dags have been shown, over the
ourse of severalde
ades, to yield elegant formal analogues of a variety of problems related to s
heduling
omputation-dags. Su
h games use tokens
alled pebbles to model the progress of a
ompu-tation on a dag: the pla
ement or removal of the various available types of pebbles|whi
his
onstrained by the dependen
ies modeled by the dag's ar
s|represents the
hanging(
omputational) status of the dag's task-nodes.Our study is based on the Internet-Computing (IC, for short) Pebble Game of [15℄, whosestru
ture derives from the \no re
omputation allowed" pebble game of [16℄. Argumentsare presented in [15, 17℄ (q.v.) that justify studying a simpli�ed form of the Game in whi
htask-exe
ution order follows task-allo
ation order. As we remark in the Introdu
tion, whilewe re
ognize that this assumption will never be
ompletely realized in pra
ti
e, one hopesthat
areful monitoring of
lients' past behaviors and
urrent
apabilities, as pres
ribed in,say, [2, 11, 18℄,
an enhan
e the likelihood, if not the
ertainty, of the desired order.2.2.1 The rules of the Game. The IC Pebble Game on a
omputation-dag G involves oneplayer S, the Server, who has a

ess to unlimited supplies of two types of pebbles: eligiblepebbles, whose presen
e indi
ates a task's eligibility for exe
ution, and exe
uted pebbles,whose presen
e indi
ates a task's having been exe
uted. We now present the rules of oursimpli�ed version of the IC Pebble Game of [15, 17℄.8

The Rules of the IC Pebble Game� S begins by pla
ing an eligible pebble on ea
h unpebbled sour
e of G./*Unexe
uted sour
es are always eligible for exe
ution, having no parents whose priorexe
ution they depend on.*/� At ea
h step, S{ sele
ts a node that
ontains an eligible pebble,{ repla
es that pebble by an exe
uted pebble,{ pla
es an eligible pebble on ea
h unpebbled node of G all of whose parents
ontain exe
uted pebbles.� S's goal is to allo
ate nodes in su
h a way that every node v of G eventually
ontainsan exe
uted pebble./*This modest goal is ne
essitated by the possibility that G is in�nite.*/Note. The (idealized) IC Pebble Game on a dag G exe
utes one task/node of G per step.The reader should not infer that we are assuming a repertoire of tasks that are uniformly
omputable in unit time. On
e we adopt the simplifying assumption that task-exe
utionorder follows task-allo
ation order, we
an begin to measure time in an event-driven way,i.e., per task, rather than
hronologi
ally, i.e., per unit time. Therefore, our model allowstasks to be quite heterogeneous in
omplexity, as long as the Server
an mat
h tasks'
omplexities with
lients' resour
es (via the monitoring alluded to earlier).A s
hedule for the IC Pebble Game on a dag G is a rule for sele
ting whi
h eligiblepebble to exe
ute at ea
h step of a play of the Game. For brevity, we hen
eforth
all anode eligible (resp., exe
uted) when it
ontains an eligible (resp., an exe
uted)pebble. For uniformity, we hen
eforth talk about exe
uting nodes rather than tasks.9

2.2.2 IC quality. The goal in the IC Pebble Game is to play the Game in a way thatmaximizes the number of eligible nodes at every step t. For ea
h step t of a play ofthe Game on a dag G under a s
hedule �: bE�(t) denotes the number of nodes of G thatare eligible at step t, and E�(t) the number of eligible nonsour
e nodes. (Note thatE�(0) = 0.)We measure the IC quality of a play of the IC Pebble Game on a dag G by the size ofbE�(t) at ea
h step t of the play|the bigger bE�(t) is, the better. Our goal is an IC-optimals
hedule �, in whi
h, for all steps t, bE�(t) is as big as possible.It is not a priori
lear that IC-optimal s
hedules ever exist! The property demands thatthere be a single s
hedule � for dag G su
h that, at every step of the
omputation, �maximizes the number of eligible nodes a
ross all s
hedules for G. In prin
iple, it
ouldbe that every s
hedule that maximizes the number of eligible nodes at step t requiresthat a
ertain set of t nodes has been exe
uted, while every analogous s
hedule for step t+1requires that a di�erent set of t+1 nodes has been exe
uted. Indeed, we see in Se
tion 3.4that there exist dags that do not admit any IC-optimal s
hedule. Surprisingly, though, thestrong requirement of IC optimality
an be a
hieved for large families of dags|even onesof quite
omplex stru
ture.The signi�
an
e of IC quality|hen
e of IC optimality|stems from the following intuitives
enarios. (1) S
hedules that produ
e eligible nodes maximally fast may redu
e the
han
e of a
omputation's \stalling" be
ause no new tasks
an be allo
ated pending thereturn of already assigned ones. (2) If the Server re
eives a bat
h of requests for tasks at(roughly) the same time, then an IC-optimal s
hedule ensures that maximally many tasksare eligible at that time, so that maximally many requests
an be satis�ed. See [15, 17℄for more elaborate dis
ussions of IC quality.
10

3 The Rudiments of IC-Optimal S
hedulingWe now lay the groundwork for an algorithmi
 theory of how to devise IC-optimal s
hedules.Beginning with a result that simpli�es the quest for su
h s
hedules, we expose IC-optimals
hedules for the building blo
ks of Se
tion 2.1.2. We then
reate a framework for s
hedulingdisjoint
olle
tions of building blo
ks via a priority relation on dags, and we demonstratethe nonexisten
e of su
h s
hedules for
ertain other
olle
tions.Exe
uting a sink produ
es no eligible nodes, while exe
uting a nonsink may. This simplefa
t allows us to fo
us on s
hedules with the following simple stru
ture.Lemma 1. Let � be a s
hedule for a dag G. If � is altered to exe
ute all of G's nonsinksbefore any of its sinks, then the IC quality of the resulting s
hedule is no less than �'s.When applied to a bipartite dag G, Lemma 1 says that we never diminish IC quality byexe
uting all of G's sour
es before exe
uting any of its sinks.3.1 IC-Optimal S
hedules for Individual Building Blo
ksA s
hedule for any of the very uniform dags of Fig. 3 is IC optimal when it sequen
estask exe
ution sequentially along ea
h level of the dags [15℄. While su
h order is neitherne
essary nor suÆ
ient for IC optimality with the \semi-uniform" dags studied later, it isimportant when s
heduling the building-blo
k dags of Se
tion 2.1.2.Theorem 1. Ea
h of our building-blo
k dags admits an IC-optimal s
hedule that exe
utessour
es from one end to the other; for N-dags, the exe
ution must begin with the an
hor.Proof. The stru
tures of the building blo
ks render the following bounds on E�(t) obvious,
11

as t ranges from 0 to the number of sour
es in the given dag.2Ws;d : E�(t) � (d� 1)t+ [t = s℄;N s : E�(t) � t;Ms;d : E�(t) � [t = 0℄ + b(t� 1)=(d� 1)
 ;Cs : E�(t) � t� [t 6= 0℄ + [t = s℄;Qs : E�(t) = s� [t = s℄:The exe
ution orders in the theorem
onvert ea
h of these bounds to an equality.3.2 Exe
ution Priorities for Bipartite DagsWe now de�ne a relation on bipartite dags that often a�ords us an easy avenue towardIC-optimal s
hedules|for
omplex, as well as bipartite, dags.Let the disjoint bipartite dags G1 and G2 have s1 and s2 sour
es and admit the IC-optimals
hedules �1 and �2, respe
tively. If the following inequalities hold,3(8x 2 [0; s1℄) (8y 2 [0; s2℄) :E�1(x) + E�2(y) � E�1(minfs1; x+ yg) + E�2((x + y)�minfs1; x + yg): (1)then we say that G1 has priority over G2, denoted G1 B G2.The inequalities in (1) say that one never de
reases IC quality by exe
uting a sour
e of G1,in preferen
e to a sour
e of G2, whenever possible.The following result is quite important in our algorithmi
 framework.Theorem 2. The relation B on bipartite dags is transitive.Proof. Let G1, G2, G3 be arbitrary bipartite dags su
h that:1. ea
h Gi has si sour
es and admits an IC-optimal s
hedule �i;2For any statement P about t, [P (t)℄ = if P (t) then 1 else 0.3[a; b℄ denotes the set of integers fa; a+ 1; : : : ; bg.12

2. G1 B G2, and G2 B G3.To see that G1 B G3, fo
us on a moment when we have exe
uted x1 < s1 sour
es of G1 andx3 � s3 sour
es of G3 (so E�1(x1) + E�3(x3) sinks are eligible). We
onsider two
ases.Case 1. s1 � x1 � minfs2; x3g. In this
ase, we haveE�1(x1) + E�3(x3) � E�1(x1) + E�2(minfs2; x3g) + E�3(x3 �minfs2; x3g)� E�1(x1 +minfs2; x3g) + E�3(x3 �minfs2; x3g); (2)the �rst inequality follows be
ause G2BG3, the se
ond be
ause G1BG2. We
an iterate thesetransfers until either all sour
es of G1 are exe
uted or no sour
es of G3 are exe
uted.Case 2. s1 � x1 < minfs2; x3g. This
ase is a bit subtler than the pre
eding one. Lety = s3 � x3 and z = (s1 � x1) + (s3 � x3) = (s1 � x1) + y. Then x1 = s1 � (z � y), andx3 = s3� y. (This
hange of notation is useful be
ause it relates x1 and x3 to the numbersof sour
es in G1 and G3.) We note the following useful fa
ts about y and z:� 0 � y � z by de�nition� 0 � z < s3 be
ause s1 � x1 < x3� z � y � s1 be
ause x1 � 0� s1 � x1 = z � y by de�nition� z � y < s2 be
ause s1 � x1 < s2Now we apply these observations to the problem at hand. Be
ause G2BG3 and z�y 2 [0; s2℄and fy; zg � [0; s3℄, we know thatE�2(s2 � (z � y)) + E�3(s3 � y) � E�2(s2) + E�3(s3 � z);so that E�3(s3 � y)� E�3(s3 � z) � E�2(s2)� E�2(s2 � (z � y)): (3)Intuitively: exe
uting the last z�y sour
es of G2 is no worse (in IC quality) than exe
utingthe \intermediate" sour
es s3 � z through s3 � y of G3.13

Similarly, be
ause G1 B G2 and z � y 2 [0;minfs1; s2g℄, we know thatE�1(s1 � (z � y)) + E�2(s2) � E�1(s1) + E�2(s2 � (z � y));so that E�2(s2)� E�2(s2 � (z � y)) � E�1(s1)� E�1(s1 � (z � y)): (4)Intuitively: exe
uting the last z�y sour
es of G1 is no worse (in IC quality) than exe
utingthe last z � y sour
es of G2.By transitivity (of �), inequalities (3, 4) imply thatE�3(s3 � y)� E�3(s3 � z) � E�1(s1)� E�1(s1 � (z � y)):so that E�1(x1) + E�3(x3) = E�1(s1 � (z � y)) + E�3(s3 � y)� E�1(s1) + E�3(s3 � z)= E�1(s1) + E�3(x3 � (s1 � x1)): (5)The pre
eding
ases|parti
ularly, the
hains of inequalities (2, 5)|verify that system (1)always holds for G1 and G3, so that G1 B G3, as was
laimed.Theorem 2 has a
orollary that further exposes the nature of B and that tells us howto s
hedule pairwise B-
omparable bipartite dags IC optimally. Spe
i�
ally, we developtools that extend Theorem 1 to disjoint unions|
alled sums|of building-blo
k dags. LetG1; : : : ;Gn be
onne
ted bipartite dags that are pairwise disjoint, in that NGi \NGj = ; forall distin
t i and j. The sum of these dags, denoted G1+ � � �+Gn, is the bipartite dag whosenode-set and ar
-set are, respe
tively, the unions of the
orresponding sets of G1; : : : ;Gn.Corollary 1. Let G1; : : : ;Gn be pairwise disjoint bipartite dags, with ea
h Gi admitting anIC-optimal s
hedule �i. If G1 B � � �B Gn, then the s
hedule �? for the sum G1 + � � �+ Gnthat exe
utes, in turn, all sour
es of G1 a

ording to �1, all sour
es of G2 a

ording to �2,and so on for all i 2 [1; n℄, and �nally exe
utes all sinks, is IC optimal.14

Proof. By Lemma 1, we lose no generality by fo
using on a step t when the only exe
utednodes are sour
es of the sum-dag. For any indi
es i and j > i, the transitivity of Bguarantees that Gi B Gj. Suppose that some sour
es of Gi are not exe
uted at step t,but at least one sour
e of Gj is exe
uted. Then by the de�nition of B, in (1), we neverde
rease the number of eligible sinks at step t by \transferring" as many sour
e-exe
utionsas possible from Gj to Gi. By repeating su
h \transfers" a �nite number of times, we endup with a \left-aligned" situation at step t, wherein there exists i 2 [1; n℄, su
h that allsour
es of G1; : : : ;Gi�1 are exe
uted, some sour
es of Gi are exe
uted, and no sour
esof Gi+1; : : : ;Gn are exe
uted.One
an a
tually prove Corollary 1 without invoking the transitivity of B, by su

essively\transferring exe
utions" from ea
h Gi to Gi�1.3.3 Priorities among Our Building Blo
ksWe now determine the pairwise priorities among the building-blo
k dags of Se
tion 2.1.2.Theorem 3. We observe the following pairwise priorities among our building-blo
k dags.1. For all s and d, Ws;d B G for the following bipartite dags G:(a) all W-dags Ws0;d0 whenever d0 < d, or whenever d0 = d and s0 � s;(b) all M-dags, N-dags, and Cy
le-dags;(
) Clique-dags Qs0 with s0 � d.2. For all s, N s B G for the following bipartite dags G:(a) all N-dags N s0, for all s0; (b) all M-dags.3. For all s, Cs B G for the following bipartite dags G;(a) Cs; (b) all M-dags. 15

4. For all s and d, Ms;d BMs0;d0 whenever d0 > d, or whenever d0 = d and s0 � s.5. For all s, Qs BQs.The proof of Theorem 3 is a long sequen
e of
al
ulations paired with an invo
ation of thetransitivity of B; we relegate it to the Appendix (Se
tion A).3.4 In
ompatible Sums of Building Blo
ksEa
h of our building blo
ks admits an IC-optimal s
hedule, but some of their sums do not.Lemma 2. The following sums of building-blo
k dags admit no IC-optimal s
hedule.1. all sums of the forms Cs1 + Cs2 or Cs1 +Qs2 or Qs1 +Qs2, where s1 6= s2;2. all sums of the form N s1 + Cs2 or N s1 +Qs2;3. all sums of the form Qs1 +Ms2;d, where s1 > s2.Proof. 1. Fo
us on s
hedules for the dag G = Cs1 + Cs2, where s1 6= s2. There is a uniquefamily �1 of s
hedules for whi
h E�(s1) = s1; all of these exe
ute sour
es of Cs1 for the �rsts1 steps. For any other s
hedule �0, E�0(s1) < E�(s1). Similarly, there is a unique family�2 of s
hedules for whi
h E�(s2) = s2; all of these exe
ute sour
es of Cs2 for the �rst s2steps. For any other s
hedule �0, E�0(s2) < E�(s2). Sin
e s1 6= s2, the families �1 and �2are disjoint! Thus, no s
hedule for G maximizes IC quality at both steps s1 and s2; hen
e,G does not admit any IC-optimal s
hedule.Exa
tly the same argument works for the other indi
ated sum-dags of part 1.2. Say, for
ontradi
tion, that there is an IC-optimal s
hedule � for a dag N s1 + Gs2,where Gs2 2 fCs2;Qs2g. The �rst node that � exe
utes must be the an
hor of N s1, foronly this
hoi
e yields E�(1) 6= 0. It follows that � must exe
ute all sour
es of N s1 in the�rst s1 steps, for this would yield E�(t) = t for all t � s1, while any other
hoi
e would16

not maximize IC quality until step s1. We
laim that � does not maximize IC quality atsome step s > 1, hen
e
annot be IC optimal. To wit: If s2 � s1, then �'s de�
ien
y ismanifest at step s1 + 1. A s
hedule �0 that exe
utes all sour
es of Gs2 and then exe
utess1 � s2 + 1 sour
es of N s1 has E�0(s1 + 1) = s1 + 1. But � exe
utes a sour
e of Gs2 forthe �rst time at step s1 + 1, and so E�(s1 + 1) = s1. If s2 > s1, then �'s de�
ien
y ismanifest at step s2. A s
hedule �0 that exe
utes all sour
es of Gs2 during the �rst s2 stepshas E�0(s2) = s2. However, during this period, � exe
utes some x � 1 sour
es of N s1,hen
e only some y � s2 � 1 sour
es of Gs2 . (Note that x + y = s2.) Sin
e s1 < s2, it mustbe that y � 1. But then, by step s2, � will have produ
ed exa
tly x eligible sinks onN s1 and no more than y � 1 eligible sinks on Gs2, so that E�(s2) = x+ y � 1 < s2.3. Assume, for
ontradi
tion that there is an IC-optimal s
hedule � for Qs1 +Ms2;d, wheres1 > s2. Fo
us on the numbers of eligible sinks after s1 and after s2 steps. The �rsts2 nodes that � exe
utes must be nodes of Ms2;d di
tated by an IC-optimal s
hedule forthat dag, for this is the only
hoi
e for whi
h E�(s2) 6= 0. A s
hedule �0 that exe
utesall sour
es of Qs1 during the �rst s1 steps would have E�0(s1) = s1. Consider what �
an have produ
ed by step s1. Sin
e � spends at least one step before step s1 exe
utinga node of Ms2;d, it
annot have rendered any sink of Qs1 eligible by step s1; hen
e,E�(s1) � b(s1 � 1)=(d� 1)
 � s1 � 1. It follows that �
annot be IC optimal.We summarize our priority-related results about sums of building blo
ks in Table 1.4 On S
heduling Compositions of Building Blo
ksWe show now how to devise IC-optimal s
hedules for
omplex dags that are obtained via
omposition from any base set of
onne
ted bipartite dags that
an be related by B. Weillustrate the pro
ess using the building blo
ks of Se
tion 2.1.2 as a base set.We indu
tively de�ne the operation of
omposition on dags.17

G1 B G2 Ws0;d0 N s0 Ms0;d0 Cs0 Qs0Ws;dB d0 < d ord0 = d ands0 � s all s0 all s0; d0 all s0 s0 � delse XN sB all s0 all s0; d0 X XMs;dB d0 > d ord0 = d ands0 � s X for s0 > sCsB X all s0; d0 s0 = selse X X for s0 6= sQsB X X for s > s0 X for s0 6= s s0 = selse XTable 1: The relation B among building-blo
k dags. Entries either list
onditions for pri-ority or indi
ate (via \X") the absen
e of any IC-optimal s
hedule for that pairing.� Start with a base set B of
onne
ted bipartite dags.� Given G1;G2 2 B|whi
h
ould be
opies of the same dag with nodes renamed toa
hieve disjointness|one obtains a
omposite dag G as follows.{ Let G begin as the sum, G1 + G2. Rename nodes to ensure that NG is disjointfrom NG1 and NG2 .{ Sele
t some set S1 of sinks from the
opy of G1 in the sum G1 + G2, and anequal-size set S2 of sour
es from the
opy of G2.{ Pairwise identify (i.e., merge) the nodes in S1 and S2 in some way.4 The resultingset of nodes is NG; the indu
ed set of ar
s is AG.4When S1 = S2 = ;, the
omposite dag is just a sum.18

� Add the dag G thus obtained to the set B.We denote
omposition by * and say that the dag G is
omposite of type [G1 * G2℄.Notes. (a) The roles of G1 and G2 in a
omposition are asymmetri
: G1
ontributes sinks,while G2
ontributes sour
es. (b) G's type indi
ates only that sour
es of G2 were mergedwith sinks of G1; it does not identify whi
h nodes were merged. (
) The dags G1 and/or G2
ould themselves be
omposite.
(c)(b)(a)Figure 5: Dags of the following types: (a) [[W1;5 * W2;4℄ * C3℄; (b) [[[W3;2 * M2;3℄ *M1;2℄ * M1;3℄; (
) [N 3 * [N 3 * N 2℄℄ = [[N 3 * N 3℄ * N 2℄. Ea
h admits an IC-optimals
hedule.Composition is asso
iative, so we do not have to keep tra
k of the order in whi
h dags arein
orporated into a
omposite dag. Fig. 5 illustrates this fa
t, whi
h we verify now.Lemma 3. The
omposition operation on dags is asso
iative. That is, a dag G is
ompositeof type [[G1 * G2℄ * G3℄ if, and only if, it is
omposite of type [G1 * [G2 * G3℄℄.Proof. For simpli
ity, we refer to sinks and sour
es that are merged in a
omposition bytheir names prior to the merge. Context should disambiguate ea
h o

urren
e of a name.Let G be
omposite of type [[G1 * G2℄ * G3℄, i.e., of type [G 0 * G3℄, where G 0 is
ompositeof type [G1 * G2℄. Let T1 and S2
omprise, respe
tively, the sinks of G1 and the sour
es ofG2 that were merged to yield G 0. Note that no node from T1 is a sink of G 0, be
ause these19

nodes have be
ome internal nodes of G 0. Let T 0 and S3
omprise, respe
tively, the sinks ofG 0 and the sour
es of G3 that were merged to yield G. Ea
h sink of G 0
orresponds eitherto a sink of G1 that is not in T1 or to a sink of G2. Hen
e, T 0
an be partitioned into thesets T 01, whose nodes are sinks of G1, and T 02, whose nodes are sinks of G2. Let S 01 and S 02
omprise the sour
es of G3 that were merged with, respe
tively, nodes of T 01 and nodes ofT 02. Now, G
an be obtained by �rst merging the sour
es of S 02 with the sinks of T 02 andthen merging the sour
es of the resulting dag, S 01 [S2, with the sinks, T 01[T1, of G1. Thus,G is also
omposite of type [G1 * [G2 * G3℄℄. The
onverse yields to similar reasoning.We
an now illustrate the natural
orresponden
e between the node-set of a
omposite dagand those of its building blo
ks, via Fig. 3:� The evolving 2-dimensional mesh is
omposite of type W1;2 * W2;2 * W3;2 * � � � .� A binary redu
tion-tree is obtained by pairwise
omposing many instan
es of M1;2(seven instan
es in the �gure).� The 5-level 2-dimensional redu
tion-mesh is
omposite of typeM5;2 *M4;2 *M3;2 *M2;2 *M1;2.� The FFT dag is obtained by pairwise
omposing many instan
es of C2 = Q2 (twelveinstan
es in the �gure).Dag G is a B-linear
omposition of the
onne
ted bipartite dags G1;G2; : : : ;Gn if:1. G is
omposite of type G1 * G2 * � � � * Gn;2. ea
h Gi B Gi+1, for all i 2 [1; n� 1℄.Dags that are B-linear
ompositions admit simple IC-optimal s
hedules.Theorem 4. Let G be a B-linear
omposition of G1;G2; : : : ;Gn, where ea
h Gi admits anIC-optimal s
hedule �i. The s
hedule � for G that pro
eeds as follows is IC optimal.20

1. � exe
utes the nodes of G that
orrespond to sour
es of G1, in the order mandatedby �1, then the nodes that
orrespond to sour
es of G2, in the order mandated by �2,and so on, for all i 2 [1; n℄.2. � �nally exe
utes all sinks of G in any order.Proof. Let �0 be a s
hedule for G that has maximum E�0(x) for some x, and let X
omprisethe �rst x nodes that �0 exe
uted. By Lemma 1, we may assume that either1. X
ontains all nonsinks of G (and perhaps some sinks), or2. X is a proper subset of the nonsinks of G.In situation 1, E�(x) is maximal by hypothesis. We therefore assume that situation 2holds and show that E�(x) � E�0(x). When X
ontains only nonsinks of G, ea
h node ofX
orresponds to a spe
i�
 sour
e of one spe
i�
 Gi. Let us fo
us, for ea
h i 2 [1; n℄, onthe set of sour
es of Gi that
orrespond to nodes in X;
all this set Xi. We
laim that:The number of eligible nodes in G at step x, denoted e(X), is jSj � jXj +Pmi=1 ei(Xi),where S is the set of sour
es of G, and ei(Xi) is the number of sinks of Gi that are eligiblewhen only sour
es Xi of Gi are exe
uted.To verify this
laim, imagine that we exe
ute nodes of G and the
orresponding nodes of itsbuilding blo
k Gi in tandem, using the terminology of the IC Pebble Game for
onvenien
e.The main
ompli
ation arises when we pebble an internal node v of G, sin
e we thensimultaneously pebble a sink vi of some Gi and a sour
e vj of some Gj. At ea
h step t ofthe Game: if node v of G be
omes eligible, then we pla
e an eligible pebble on vi andleave vj unpebbled; if v be
omes exe
uted, then we pla
e an exe
uted pebble on vjand an eligible pebble on vi. An exe
uted pebble on a sink of G is repla
ed with aneligible pebble. No other pebbles
hange.
21

Fo
us on an arbitrary Gi. Note that the sour
es of Gi that are exe
uted
omprise pre
iselythe set Xi. The sinks of Gi that are eligible
omprise pre
isely the set Yi of sinks all ofwhose parents are exe
uted; hen
e, jYij = ei(Xi). The
umulative number of sour
es ofthe dags Gi that are eligible is jSj � p, where p is the number of sour
es of G that areexe
uted. It follows that the
umulative number of eligible pebbles on the dags Gi ise1(X1) + � � �+ en(Xn) + jSj � p. We now
al
ulate the surfeit of eligible pebbles on thedags Gi over the eligible pebbles on G. Extra eligible pebbles get
reated when G isde
omposed, in only two
ases: (1) when an internal node of G be
omes exe
uted, (2)when we pro
ess a sink of G that is exe
uted. The number of former
ases is jX1j+ � � �+jXnj�p. Denoting the number of latter
ases by q, we note that q+ jX1j+ � � �+ jXnj = jXj.The
laim is thus veri�ed, be
ause the number of eligible nodes in G ise(X) = (e1(X1) + � � �+ en(Xn) + jSj � p) � (jX1j+ � � �+ jXnj � p+ q):Be
ause of the priority relations among the dags Gi, Corollary 1 implies that e(X) =Pni=1E�i(x0i), where x0i is a \low-index-loaded" exe
ution of the Gi. Be
ause of the way thedags Gi are
omposed, the sour
es of ea
h Gj
ould have been merged only with sinks oflower-index dags, namely, G1; : : : ;Gj�1. Thus a \low-index-loaded" exe
ution
orrespondsto a set X 0 of x exe
uted nodes of G that satisfy pre
eden
e
onstraints. Thus, there is as
hedule|namely �|that exe
utes nodes of G that
orrespond to the dags G1;G2; : : : ;Gn,in turn, and this s
hedule is IC optimal.5 IC-Optimal S
hedules via Dag-De
ompositionSe
tion 4 des
ribes how to build
omplex dags that admit IC-optimal s
hedules. Of
ourse,the \real" problem is not to build a dag but rather to exe
ute a given one. We now
raftan algorithmi
 framework that
onverts the syntheti
 setting of Se
tion 4 to an analyti
alsetting. We present a suite of algorithms that take a given dag G and:22

1. simplify G's stru
ture in a way that preserves the IC quality of its s
hedules;2. de
ompose (the simpli�ed) G into its \
onstituents" (when it is, indeed,
omposite);3. determine when (the simpli�ed) G is a B-linear
omposition of its \
onstituents".When this program su

eeds, we invoke Theorem 4 to s
hedule G IC optimally, bottom-up,from the de
omposition. We now develop the advertised algorithmi
 setting.5.1 \Skeletonizing" a Complex DagThe word \simpli�ed" is needed in the pre
eding paragraph be
ause a dag
an fail to be
omposite just be
ause it
ontains \short
ut" ar
s that do not impa
t inter-task depen-den
ies. Often, removing all short
uts renders a dag
omposite, hen
e sus
eptible to ours
heduling strategy. (Easily, not every short
ut-free dag is
omposite.)For any dag G and nodes u; v 2 NG, we write u G v to indi
ate that there is a path fromu to v in G. An ar
 (u ! v) 2 AG is a short
ut if there is a path u G v that does notin
lude the ar
. The reader
an show easily that:Lemma 4. Composite dags
ontain no short
uts.Fortunately, one
an eÆ
iently remove all short
uts from a dag without
hanging its set ofIC-optimal s
hedules. A (transitive) skeleton (or, minimum equivalent digraph) G 0 of dagG is a smallest subdag of G that shares G's node-set and transitive
losure [4℄.Lemma 5 ([10℄). Every dag G has a unique transitive skeleton, �(G), whi
h
an be foundin polynomial time.We
an
raft an IC-optimal s
hedule for a dag G automati
ally by
rafting su
h a s
hedulefor �(G). A spe
ial
ase of the following result appears in [15℄.23

Theorem 5. A s
hedule � has the same IC quality when it exe
utes a dag G as when itexe
utes �(G). In parti
ular, if � is IC optimal for �(G), then it is IC optimal for G.Proof. Say that, under s
hedule �, a node u be
omes eligible at step t of the IC PebbleGame on �(G). This means that at step t, all of u's an
estors in �(G)|its parents, itsparents' parents, et
.|are exe
uted. Be
ause �(G) and G have the same transitive
losure, node u has pre
isely the same an
estors in G as it does in �(G). Hen
e, unders
hedule �, u be
omes eligible at step t of the IC Pebble Game on G.By Lemma 4, a dag
annot be
omposite unless it is transitively skeletonized. By Theo-rem 5, on
e having s
heduled �(G) IC optimally, we have also s
heduled G IC optimally.Therefore, this se
tion paves the way for our de
omposition-based s
heduling strategy.5.2 De
omposing a Composite DagEvery dag G that is
omposed from
onne
ted bipartite dags
an be de
omposed to exposethe dags and how they
ombine to yield G. We des
ribe this pro
ess in detail and illustrateit with the dags of Fig. 3.A
onne
ted bipartite dag H is a
onstituent of G just when:1. H is an indu
ed subdag of G: NH � NG, and AH
omprises all ar
s (u ! v) 2 AGsu
h that fu; vg � NH.2. H is maximal: the indu
ed subdag of G on any superset of H's nodes|i.e., any set Ssu
h that NH � S � NG|is not
onne
ted and bipartite.Sele
ting a
onstituent. We sele
t any
onstituent of G all of whose sour
es are alsosour
es of G, if possible; we
all the sele
ted
onstituent B1 (the notation emphasizing thatB1 is bipartite). 24

In Fig. 3: Every
andidate B1 for the FFT dag is a
opy of C2 in
luded in levels2 and 3; every
andidate for the redu
tion-tree is a
opy of M1;2; the unique
andidate for the redu
tion-mesh is M4;2.Deta
hing a
onstituent. We \deta
h" B1 from G by deleting the nodes of G that
orrespond to sour
es of B1, all in
ident ar
s, and all resulting isolated sinks. We therebyrepla
e G with a pair of dags hB1;G 0i, where G 0 is the remnant of G after B1 is deta
hed.If G 0 is not empty, then the pro
ess of sele
tion and deta
hment
ontinues, produ
ing asequen
e of the formG =) hB1;G 0i =) hB1; hB2;G 00ii =) hB1; hB2; hB3;G000iii =) � � � ;leading ultimately to a sequen
e of
onne
ted bipartite dags: B1;B2; : : : ;Bn.We
laim that the des
ribed pro
ess re
ognizes whether or not G is
omposite, and, if so, itprodu
es the dags from whi
h G is
omposed (possibly in a di�erent order from the original
omposition). If G is not
omposite then the pro
ess fails.Theorem 6. Let the dag G be
omposite of type G1 * � � � * Gn. The de
omposition pro
essprodu
es a sequen
e B1; : : : ;Bn of
onne
ted bipartite dags su
h that:� G is
omposite of type B1 * � � � * Bn;� fB1; : : : ;Bng = fG1; : : : ;Gng.Proof. The result is trivial when n = 1, as G is then a
onne
ted bipartite dag. Assume,therefore, that the result holds for all n < m, and let G be
omposite of type G1 *� � � * Gm. In this
ase, G1 is a
onstituent of G all of whose sour
es are sour
es of G.(Other Gi's may share this property.) There is, therefore, a dag B1 for our pro
ess todeta
h. Sin
e any
onstituent of G all of whose sour
es are sour
es of G must be oneof the Gi, we know that B1 is one of these dags. It follows that G is
omposite of type25

B1 * (G1 * � � � * Gi�1 * Gi+1 * � � � * Gm); moreover, the dag G 0 resulting after deta
hing B1is
omposite of type G1 * � � � * Gi�1 * Gi+1 * � � � * Gm, be
ause the deta
hment pro
essdoes not a�e
t any sour
es of G other than those it shares with B1. By indu
tive hypothesis,then, G 0
an be de
omposed as indi
ated in the theorem. We now invoke Lemma 3.5.3 The Super-Dag Obtained by De
omposing GThe next step in our strategy is to abstra
t the stru
ture of G exposed by its de
ompositioninto B1; : : : ;Bn in an algorithmi
ally advantageous way. Thereby, we shift fo
us from thede
omposition to G's asso
iated super-dag SG def= S(B1 * � � � * Bn), whi
h is
onstru
ted asfollows. Ea
h node of SG|whi
h we
all a supernode to prevent ambiguity|is one of theBi's. There is an ar
 in SG from supernode u to supernode v just when some sink(s) of u areidenti�ed with some sour
e(s) of v when one
omposes the Bi's to produ
e G. Figs. 6 and 7present two examples; in both, supernodes appear in dashed boxes and are inter
onne
tedby dashed ar
s.

Figure 6: The
omposition of dags of Fig. 5(b), and its asso
iated superdag.In terms of super-dags, the question of whether or not Theorem 4 applies to dag G redu
esto the question of whether or not SG admits a topologi
al sort [4℄ whose linearization ofsupernodes is
onsistent with the relation B. For instan
e, one derives an IC-optimal26

000 001

000 001

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000

000

000

000

100

010 011 100 101 110 111

010 011 101 110 111

010 001 011 100 110 101 111

010 001 011 100 110 101 111

100 001 101 010 110 011 111

100 001 101 010 110 011 111

Figure 7: The 3-dimensional FFT dag and its asso
iated superdag.s
hedule for the dag G of Fig. 5(b) (whi
h is de
omposed in Fig. 6) by noting that G is
omposite of typeW3;2 * M1;2 * M2;3 *M1;3 and thatW3;2BM1;2BM2;3BM1;3. Indeed,G points out the
hallenge in determining if Theorem 4 applies, sin
e it is also
ompositeof type W3;2 * M2;3 * M1;2 * M1;3, but M2;3 6BM1;2. We leave to the reader the easyveri�
ation that the linearization B1; : : : ;Bn is a topologi
al sort of S(B1 * � � � * Bn).5.4 On Exploiting Priorities among ConstituentsOur remaining
hallenge is to devise a topologi
al sort of SG that linearizes the supernodesin an order that honors relation B. We now present suÆ
ient
onditions for this to o

ur,veri�ed via a linearization algorithm.Theorem 7. Say that the dag G is
omposite of type B1 * � � � * Bn and that, for ea
hpair of
onstituents, Bi, Bj with i 6= j, either Bi B Bj or Bj B Bi. Then G is a B-linear
omposition whenever the following holds.Whenever Bj is a
hild of Bi in S(B1 * � � � * Bn), we have Bi B Bj. (6)Proof. We begin with an arbitrary topologi
al sort, bB def= B�(1); : : : ;B�(n), of the superdagSG. We invoke the hypothesis that B is a (weak) order on the Bi's to reorder bB a

ording27

to B, using a stable5
omparison sort. Let ~B def= B�(1)B � � �BB�(n) be the linearization of SGprodu
ed by the sort. We
laim that ~B is also a topologi
al sort of SG. To wit, pi
k any Biand Bj su
h that Bj is Bi's
hild in SG. By de�nition of topologi
al sort, Bi pre
edes Bj inbB. We
laim that, be
ause Bi B Bj (by (6)), Bi pre
edes Bj also in ~B. On the one hand, ifBj 6BBi, then the sort ne
essarily pla
es Bi before Bj in ~B. On the other hand, if Bj B Bi,then sin
e the sort is stable, Bi pre
edes Bj in ~B be
ause it pre
edes Bj in bB. Thus, ~B is,indeed, a topologi
al sort of SG, so that G is
omposite of type B�(1) * � � � * B�(n). In otherwords, G is the desired B-linear
omposition of B�(1); : : : ;B�(n).We
an �nally apply Theorem 4 to �nd an IC-optimal s
hedule for the dag G.6 Con
lusions and Proje
tionsWe have developed three notions that form the basis for a theory of s
heduling
omplex
omputation-dags for Internet-based
omputing: the priority relation B on bipartite dags(Se
tion 3.2), the operation of
omposition of dags (Se
tion 4), and the operation of de-
omposition of dags (Se
tion 5). We have established a way of
ombining these notions toprodu
e s
hedules for a large
lass of
omplex
omputation-dags, that maximize the num-ber of tasks that are eligible for allo
ation to remote
lients at every step of the s
hedule(Theorems 4, 7). We have used our notions to progress beyond the stru
turally uniform
omputation-dags studied in [15, 17℄ to families that are built in stru
tured, yet
exible,ways from a repertoire of bipartite building-blo
k dags. The
omposite dags that we
annow s
hedule optimally en
ompass not only those studied in [15, 17℄, but, as illustrated inFig. 5, also dags that have rather
omplex stru
tures, in
luding nodes of varying degreesand non-leveled global stru
ture.One dire
tion for future work is to extend the repertoire of building-blo
k dags that form5That is, if Bi B Bj and Bj B Bi, then the sort maintains the original relative order of Bi and Bj .28

the raw material for our
omposite dags. In parti
ular, we want building blo
ks of more
omplex stru
tures than those of Se
tion 2.1.2, in
luding less-uniform bipartite dags andnon-bipartite dags. We expe
t the
omputational
omplexity of our s
heduling algorithmsto in
rease with the stru
tural
omplexity of our building blo
ks. Along these lines, wehave thus far been unsu

essful in determining the
omplexity of the problem of de
iding ifa given
omputation-dag admits an IC-optimal s
hedule, but we
ontinue to probe in thisdire
tion. (The s
heduling problem
ould well be
o-NP-Complete be
ause of its underlyinguniversal quanti�
ation.) Finally, we are working to extend Theorems 4 and 7 to loosenthe stri
t requirement that the
omposite dag be a B-linear
omposition.A
knowledgments. A portion of the resear
h of G. Malewi
z was done while visiting theTAPADS Group at the Univ. of Massa
husetts Amherst. The resear
h of A. Rosenbergand M. Yurkewy
h was supported in part by NSF Grant CCF-0342417.Referen
es[1℄ J. Annis, Y. Zhao, J. Voe
kler, M. Wilde, S. Kent, I. Foster (2002): Applying ChimeraVirtual Data Con
epts to
luster �nding in the Sloan Sky Survey. 15th Conf. on HighPerforman
e Networking and Computing, 56.[2℄ R. Buyya, D. Abramson, J. Giddy (2001): A
ase for e
onomy Grid ar
hite
ture forservi
e oriented Grid
omputing. 10th Heterogeneous Computing Wkshp.[3℄ W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering
lusters intoa meta
omputer. 13th Intl. Parallel Pro
essing Symp., 160{166.[4℄ T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (2001): Introdu
tion to Algorithms(2nd ed.). MIT Press, Cambridge, MA.
29

[5℄ I. Foster and C. Kesselman [eds.℄ (2004): The Grid: Blueprint for a New ComputingInfrastru
ture (2nd ed.). Morgan-Kaufmann, San Fran
is
o, CA.[6℄ I. Foster, C. Kesselman, S. Tue
ke (2001): The anatomy of the Grid: enabling s
alablevirtual organizations. Intl. J. High Performan
e Computing Appli
ations 15, 200{222.[7℄ L. Gao and G. Malewi
z (2004): Internet
omputing of tasks with dependen
ies usingunreliable workers. 8th Intl. Conf. on Prin
iples of Distributed Systems, 315{325.[8℄ A. Gerasoulis and T. Yang (1992): A
omparison of
lustering heuristi
s for s
hedulingdags on multipro
essors. J. Parallel Distr. Comput. 16, 276{291.[9℄ L. He, Z. Han, H. Jin, L. Pan, S. Li (2000): DAG-based parallel real time task s
hedul-ing algorithm on a
luster. Intl. Conf. on Parallel and Distr. Pro
essing Te
hniquesand Appli
ations, 437{443.[10℄ H.T. Hsu (1975): An algorithm for �nding a minimal equivalent graph of a digraph.J. ACM 22, 11{16.[11℄ D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and s
heduling me
h-anisms for global
omputing appli
ations. Intl. Parallel and Distr. Pro
essing Symp.,79.[12℄ E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI�home:massively distributed
omputing for SETI. In Computing in S
ien
e and Engineering(P.F. Dubois, Ed.) IEEE Computer So
. Press, Los Alamitos, CA.[13℄ G. Malewi
z (2005): Parallel s
heduling of
omplex dags under un
ertainty. 17th ACMSymp. on Parallelism in Algorithms and Ar
hite
tures, to appear.[14℄ G. Malewi
z and A.L. Rosenberg (2005): On bat
h-s
heduling dags for Internet-based
omputing. 11th European Conf. on Parallel Pro
essing, to appear.30

[15℄ A.L. Rosenberg (2004): On s
heduling mesh-stru
tured
omputations for Internet-based
omputing. IEEE Trans. Comput. 53, 1176{1186.[16℄ A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing31, 115{139.[17℄ A.L. Rosenberg and M. Yurkewy
h (2005): Guidelines for s
heduling some
ommon
omputation-dags for Internet-based
omputing. IEEE Trans. Comput. 54, 428{438.[18℄ X.-H. Sun and M. Wu (2003): Grid Harvest Servi
e: a system for long-term,appli
ation-level task s
heduling. IEEE Intl. Parallel and Distributed Pro
essingSymp., 25.[19℄ D. Thain, T. Tannenbaum, M. Livny (2005): Distributed
omputing in pra
ti
e: theCondor experien
e. Con
urren
y and Computation: Pra
ti
e and Experien
e.A Proof of Theorem 3We now verify the positive assertions in Table 1|by dire
tly verifying that G1 B G2 forvarious pairs of building blo
ks and invoking the transitivity of B for all others.Say that Gi, for i = 1; 2, has size parameter si and admits an IC-optimal s
hedule �i.We split
ondition (1) into two
ases: (1) s1 � x + y; (2) s1 < x + y, for x 2 [0; s1℄ andy 2 [1; s2℄. (The
ase y = 0 is trivial.)A.1 When W-dags have priority. In this se
tion, G1 =Ws1;d.(i): G2 =Ws2;d where s2 � s1. With this pairing, we have:E�1(x) + E�2(y) = (d� 1)x+ bx=s1
 + (d� 1)y + by=s2
 :For
ase (1): E�1(x) + E�2(y) � (d� 1)(x+ y) + b(x+ y)=s1
 = E�1(x+ y) + E�2(0);31

for
ase (2): sin
e bx=s1
 + by=s2
 � 1 + b(x+ y � s1)=s2
 in our setting,E�1(x) + E�2(y) = (d� 1)s1 + (d� 1)(x+ y � s1) + bx=s1
+ by=s2
� (d� 1)s1 + 1 + (d� 1)(x+ y � s1) + b(x+ y � s1)=s2
= E�1(s1) + E�2(x + y � s1):(ii): G2 =Ws2;d0 where d0 < d. With this pairing, we have:E�1(x) + E�2(y) = (d� 1)x+ bx=s1
+ (d0 � 1)y + by=s2
 :For
ase (1): sin
e (d0 � 1)y + 1 � (d� 1)y,E�1(x) + E�2(y) � (d� 1)(x + y) + b(x + y)=s1
 = E�1(x + y) + E�2(0);for
ase (2): sin
e d0 < d, and bx=s1
+ by=s2
 � 1 + b(x + y � s1)=s2
 in our setting,E�1(x) + E�2(y) � (d� 1)s1 + (d0 � 1)(x + y � s1) + bx=s1
+ by=s2
� E�1(s1) + E�2(x + y � s1):(iii): G2 = N s2 . With this pairing, we have E�1(x) + E�2(y) = (d� 1)x+ bx=s1
+ y.For
ase (1): E�1(x) + E�2(y) � (d� 1)(x+ y) + b(x+ y)=s1
 = E�1(x+ y) + E�2(0);for
ase (2): E�1(x) + E�2(y) = (d� 1)s1 + bx=s1
+ (d� 1)(x� s1) + y� E�1(s1) + E�2(x + y � s1).(iv) G2 = Cs2. Cy
le-dags yield to almost the same
al
ulations as N-dags. When y > 0,we have E�1(x) + E�2(y) = (d� 1)x + bx=s1
+ y � 1 + by=s2
.For
ase (1): E�1(x) + E�2(y) � (d� 1)(x+ y) + b(x+ y)=s1
 + by=s2
 � 1� E�1(x + y) + E�2(0);for
ase (2): sin
e bx=s1
 + by=s2
 = 2 when x = s1 and y = s2, and is � 1 otherwise,E�1(x) + E�2(y) � (d� 1)s1 + (x+ y � s1) + b(x+ y � s1)=s2
= E�1(s1) + E�2(x + y � s1):32

(v) G2 = Qs2 for s2 � d. We
onsider only the
ase s2 = y, sin
e other
ases are trivial.With this pairing, we have E�1(x) + E�2(y) = (d� 1)x + bx=s1
+ s2.For
ase (1): E�1(x)+E�2(s2) � (d� 1)(x+ s2)+ b(x + s2)=s1
 = E�1(x+ s2)+E�2(0);for
ase (2): it suÆ
es to
onsider the
ase x < s1, wherein, sin
e s2 � d,E�1(x) + E�2(s2) = (d� 1)s1 + (d� 1)(x� s1) + s2� (d� 1)s1 + 1 + s2 � b(x + s2 � s1)=s2
 = E�1(s1) + E�2(x + s2 � s1):A.2 When N-dags have priority. In this se
tion, G1 = N s1.All N-dags are \equivalent" in priority, so N-dags in a sum
an be exe
uted in any order.Also, an IC-optimal s
hedule for an N-dag produ
es exa
tly one eligible sink per sour
e-exe
ution, whereas any IC-optimal s
hedule for an M-dag produ
es at most one eligiblesink per sour
e-exe
ution.A.3 When Cy
le-dags have priority. In this se
tion, G1 = Cs1.(i): G2 = Cs1. If x = 0, then E�1(0) + E�2(y) = y � 1 + by=s1
 = E�1(y) + E�2(0).When x; y > 0, E�1(x) + E�2(y) = x� 1 + bx=s1
+ y � 1 + by=s1
.For
ase (1): E�1(x) + E�2(y) � (x+ y)� 1 + b(x + y)=s1
 = E�1(x + y) + E�2(0);for
ase (2): E�1(x) + E�2(y) � x+ y � 2 + b(x + y)=s1
= s1 + (x+ y � s1)� 1 + b(x + y � s1)=s1
 = E�1(s1) + E�2(x + y � s1).(ii): G2 =Ms0;d0 . Say that y > 0. If x = 0, then E�1(0) + E�2(y) = b(y � 1)=(d0 � 1)
 :For
ase (1), E�1(0) + E�2(y) � y � 1 � E�1(y) + E�2(0);for
ase (2): E�1(0) + E�2(y) = bs1=(d0 � 1) + (y � s1 � 1)=(d0 � 1)
� s1 + b(y � s1 � 1)=(d0 � 1)
 = E�1(s1) + E�2(y � s1).Finally when x > 0, E�1(x) + E�2(y) = x� 1 + bx=s1
 + b(y � 1)=(d0 � 1)
.33

For
ase (1): E�1(x) + E�2(y) � (x+ y)� 1 + b(x + y)=s1
 = E�1(x + y) + E�2(0);for
ase (2): sin
e d0 > 1 and x� s1 � 0,E�1(x) + E�2(y) � s1 + (x� s1) + b(y � 1)=(d0 � 1)
� s1 + b(x+ y � s1 � 1)=(d0 � 1)
 = E�1(s1) + E�2(x + y � s1):A.4 When M-dags have priority. In this se
tion, G1 =Ms;d.(i): G2 = Ms0;d where s0 � s. Here, G1 has s1 = (d � 1)s + 1 sour
es, and G2 hass2 = (d� 1)s0 + 1 sour
es. If x = 0, then sin
e s1 � s2, E�1(z) = E�2(z) for all x 2 [0; s2℄,so E�1(0) + E�2(y) = E�1(y) + E�2(0).When x; y > 0, E�1(x) + E�2(y) = b(x� 1)=(d� 1)
+ b(y � 1)=(d� 1)
.For
ase (1): E�1(x) + E�2(y) � b(x+ y � 1)=(d� 1)
 = E�1(x + y) + E�2(0);for
ase (2): E�1(x) + E�2(y) � s+ (1� s1)=(d� 1) + b(x + y � 2)=(d� 1)
= s+ b(x + y � s1 � 1)=(d� 1)
 = E�1(s1) + E�2(x + y � s1).The se
ond equality follows sin
e (1�s1)=(d�1) is an integer, the third sin
e x+y�s1 > 0.(ii): G2 = Ms0;d0 where d0 > d. Here, G1 has s1 = (d � 1)s + 1 sour
es, and G2 hass2 = (d0 � 1)s0 + 1 sour
es.First, when x = 0: E�1(0) + E�2(y) = b(y � 1)=(d0 � 1)
.For
ase (1): E�1(0) + E�2(y) � b(y � 1)=(d� 1)
 = E�1(y) + E�2(0);for
ase (2): E�1(0) + E�2(y) = bs1=(d0 � 1) + (y � s1 � 1)=(d0 � 1)
� b(s1 � 1)=(d� 1) + (y � s1 � 1)=(d0 � 1)
 = E�1(s1) + E�2(y � s1).Finally, when x > 0, E�1(x) + E�2(y) = b(x� 1)=(d� 1)
 + b(y � 1)=(d0 � 1)
.For
ase (1): E�1(x) + E�2(y) � b(x+ y � 1)=(d� 1)
 = E�1(x + y) + E�2(0);
34

for
ase (2): sin
e x� s1 � 0, and d0 > d,E�1(x) + E�2(y) = s+ (1� s1)=(d� 1) + b(x� 1)=(d� 1)
+ b(y � 1)=(d0 � 1)
� s+ b(x� s1)=(d0 � 1)
+ b(y � 1)=(d0 � 1)
� E�1(s1) + E�2(x + y � s1):A.5 When Clique-dags have priority. In this se
tion, G1 = Qs1.Let G2 = Qs1. With this pairing, we have:E�1(x) + E�2(y) = s1 � bx=s1
 + s1 � by=s1
 :For
ase (1): E�1(x) + E�2(y) � s1 � b(x+ y)=s1
 = E�1(x + y) + E�2(0);for
ase (2): E�1(x) + E�2(y) = s1 + s1 � (bx=s1
+ by=s1
 � 1)� s1 + (s1 � b(x+ y � s1)=s1
) = E�1(s1) + E�2(x + y � s1).

35

