
On Batch-Scheduling Dags for Internet-Based

Computing

September 19, 2006

Grzegorz Malewicz Arnold L. Rosenberg
Dept. of Computer Science Dept. of Computer Science

University of Alabama University of Massachusetts Amherst
Tuscaloosa, AL 35487, USA Amherst, MA 01003, USA

greg@cs.ua.edu rsnbrg@cs.umass.edu

Abstract

The process of scheduling computations for Internet-based computing presents
challenges not encountered with more traditional platforms for parallel and dis-
tributed computing. The looser coupling among participating computers makes it
harder to utilize remote clients well and also raise the specter of a kind of “grid-
lock” that ensues when a computation stalls because no new tasks are eligible for
execution. This paper studies the problem of scheduling computation-dags in a
manner that renders tasks eligible for allocation to remote clients (hence for execu-
tion) at the maximum possible rate. Earlier work has developed a framework for
studying this problem when a new task is allocated to a remote client as soon as
it returns the results from an earlier-allocated task. The proof in that work that
many dags cannot be scheduled optimally within this scheduling paradigm demon-
strated the need for a companion scheduling theory that addresses the scheduling
problem for all computation-dags. A new, batched, scheduling paradigm for Internet-
Computing is developed in this work. Although optimal batched schedules exist for
every computation-dag, computing (successive steps of) such a schedule is shown
to be NP-Hard, even for bipartite dags. In response, a polynomial-time algorithm
is developed for producing optimal batched schedules for a rich family of dags that
are constructed by “composing” tree-structured building-block dags. Finally, a fast
heuristic schedule is developed for a class of “expansive” dags

1

1 Introduction

Earlier work [10, 12, 14] has developed the Internet-Computing (IC, for short) Pebble
Game, a variant of the classical pebble games of [4, 11, 13], that abstracts the prob-
lem of scheduling computations having intertask dependencies for the several modalities
of Internet-based computing—including Grid computing (cf. [1, 5, 6]), global computing
(cf. [2]), and Web computing (cf. [9]). This Game was developed with the goal of formaliz-
ing the process of scheduling computations with intertask dependencies for Internet-based
computing. The scheduling paradigm studied in [10, 12, 14] is that the IC-server allocates
a task of the dag being computed to a remote client as soon as the task becomes eligible
for allocation and the client becomes available for computation. The quality metric for
schedules was to maximize the rate at which tasks were rendered eligible for allocation
to remote clients, with the dual aim of (a) maximizing the utilization of available remote
clients and (b) minimizing the likelihood of the “gridlock” that can arise when a compu-
tation stalls pending computation of already-allocated tasks. These three sources develop
the conceptual framework of a theory of IC scheduling based on this scheduling paradigm.

The present study is motivated by the demonstration in [10] that there are simple computation-
dags that do not admit any optimal IC schedule. (Intuitively, for such dags, any sequence
of tasks that optimizes the number of eligible tasks after the first t steps of the compu-
tation is incompatible with every sequence that optimizes the number of eligible tasks
after the first t′ steps.) We respond in this paper by developing a companion scheduling
theory (Section 2.2) in which every computation-dag admits an optimal schedule. This
new theory is based on a batched scheduling paradigm, which relieves the Server from the
chore of selecting a new task for allocation whenever a remote client becomes available for
computation. Instead, we now assume that the Server collects requests for new tasks and
then (either periodically or based on some trigger) allocates tasks for the collected requests
in a batch. (This mode of operation may be inevitable if, say, tasks take extremely long
to compute and enable many other tasks once completed.) The goal for the Server is to
satisfy this batch of requests with a set of tasks whose execution will produce a maximal
number of new eligible tasks. In contrast to the quality metric of [10, 12, 14], this new
step-by-step metric can always be satisfied optimally. Moderating the news that optimal-
ity can always be achieved in the batched paradigm is our demonstration (in Section 3)
that finding such a schedule for an arbitrary computation-dag—even a bipartite one—is
NP-Hard, hence likely computationally intractable. We respond to this probable compu-
tational intractability (in Section 5) with a polynomial-time optimal algorithm for a rich
family of dags that are constructed by “composing” certain tree-structured building-block
dags. Since the preceding timing polynomial has high degree, we also develop (in Sec-
tion 6) a fast heuristic schedule for a more restricted family of “expansive” dags, whose
eligible-task production rate is within a factor of 4 of optimal.

2

Related work. The work most closely related to the present study appears in [7, 10, 12,
14]. The IC Pebble Game is introduced in [12, 14], and optimal schedules are identified
for the structurally uniform computation-dags of Fig. 1. The framework for a theory of

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

3,0 2,1 1,2 0,3

0,21,12,0

1,0 0,1

0,0

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

3

1

2

0

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4

Figure 1: Clockwise from upper left: an evolving (2-dimensional) mesh, a (binary)
reduction-tree dag, the 5-level (2-dimensional) reduction-mesh, the 4-level FFT-dag.

scheduling for IC is developed in [10], building on the principles that enable the optimal
schedules of [12, 14]. Central to this framework are a formal method for composing simple
computation-dags into complex composite ones, together with a relation that allows one
to prioritize the execution order of the constituent building-block dags of a composite dag.
The study in [7] develops an alternative direction, using a probabilistic pebble game to
study the problem of executing tasks on unreliable clients. Our proof of the NP-Hardness
of our batch-scheduling problem builds on tools developed in [7].

Although the goals and methodology of our study differ significantly from those of [4, 11,
13], we owe an intellectual debt to those pioneering studies of pebbling-based scheduling
models.

Finally, the impetus for our study derives from the many exciting systems- and/or application-
oriented studies of Internet-based computing, in sources such as [1, 2, 5, 6, 8, 9, 15].

3

2 A Model for Executing Dags on the Internet

2.1 Computation-Dags

2.1.1 Basic definitions

A directed graph G is given by a set of nodes NG and a set of arcs (or, directed edges)
AG, each having the form (u → v), where u, v ∈ NG. A path in G is a sequence of
arcs that share adjacent endpoints, as in the following path from node u1 to node un:
(u1 → u2), (u2 → u3), . . . , (un−2 → un−1), (un−1 → un). A dag (directed acyclic graph)
G is a directed graph that has no cycles; i.e., in a dag, no path of the preceding form has
u1 = un. When a dag G is used to model a computation, i.e., is a computation-dag:

• each node v ∈ NG represents a task in the computation;

• an arc (u → v) ∈ AG represents the dependence of task v on task u: v cannot be
executed until u is.

Given an arc (u→ v) ∈ AG, we call u a parent of v and v a child of u in G. Each parentless
node of G is called a source (node), and each childless node is called a sink (node); all other
nodes are internal. A dag G is bipartite if:

1. NG can be partitioned into subsets X and Y such that, for every arc (u→ v) ∈ AG,
u ∈ X and v ∈ Y ;

2. each node of G is incident to some arc of G, i.e., is either the node u or the node v of
some arc (u → v) ∈ AG. (It is convenient, but not necessary, to prohibit “isolated”
nodes.)

The special class of bipartite dags that are sums of other bipartite dags plays a major role
in our study. Let G1,G2, . . . ,Gn be bipartite dags that are pairwise disjoint, in the sense
that NGi

∩ NGj
= ∅ for all distinct indices i and j. The sum of G1,G2, . . . ,Gn, denoted

G1 + G2 + · · · + Gn, is the bipartite dag whose node-set and arc-set are, respectively, the
unions of the corresponding sets of G1,G2, . . . ,Gn.

We say that a dag is connected if, when one ignores the orientation of its arcs, then the
resulting undirected graph is connected—i.e., there is an undirected path between any two
distinct nodes. Every dag in Fig. 2 is connected; every bipartite dag is a sum of connected
bipartite dags.

4

2.1.2 A sampler of building-block dags

The current study focuses on computation-dags that are built out of the following bipartite
building-block dags by the operation of composition (defined in Section 2.1.3). We now
present a sampler of building blocks that one can use to illustrate the theory we begin to
develop in this study; see Fig. 2.

A Bipartite Expansive−Dag:

(1,3)−M: (2,3)−M:(2,4)−W:(1,4)−W:

A Bipartite Tree−Dag:

Figure 2: Some bipartite building-block-dags.

Bipartite tree-dags. Each such dag T is a bipartite dag such that, if one ignores the
orientations of T ’s arcs, then the resulting graph is a tree.

The following two special classes of tree-dags generate important families of complex dags.

W-dags. For each integer d > 1, the (1, d)-W-dag W1,d has one source node and d sink
nodes; its d arcs connect the source to each sink. Inductively, for positive integers a, b, the
(a+ b, d)-W-dag Wa+b,d is obtained from the (a, d)-W-dag Wa,d and the (b, d)-W-dag Wb,d

by identifying (or, merging) the rightmost sink of the former dag with the leftmost sink of
the latter. W-dags epitomize “expansive” computations.

M-dags. For each integer d > 1, the (1, d) M-dag M1,d has d source nodes and 1 sink
node; its d arcs connect each source to the sink. Inductively, for positive integers a, b,
the (a + b, d)-M-dag Ma+b,d is obtained from the (a, d)-M-dag Ma,d and the (b, d)-M-dag
Mb,d by identifying (or, merging) the rightmost source of the former dag with the leftmost
source of the latter. M-dags epitomize “contractive” (or, “reductive”) computations.

A large variety of significant computation-dags are compositions of W-dags and M-dags.
Included are most of the computation-dags (all but the FFT dag) studied in [12, 14],

5

which are illustrated in Fig. 1: The evolving mesh is constructed from its source outward
by “composing” a (1, 2)-W-dag with a (2, 2)-W-dag, then a (3, 2)-W-dag, then a (4, 2)-W-
dag, and so on; the reduction-mesh is similarly constructed from its sources upward, using
(k, 2)-M-dags for successively decreasing values of k; the reduction-tree is constructed from
its sources/leaves upward by “concatenating” independent collections of (1, 2)-M-dags.
One can, in polynomial time, craft optimal batched schedules for any such compositions.

The following additional class of building-block dags will be highlighted in Section 6, where
we develop our heuristic that quickly produces “approximately optimal” batched schedules.

Bipartite expansive-dags. Each such dag E is a bipartite dag wherein each source v
has an associated number ϕv ≥ 2 such that: v has ϕv children that have no parent other
than v and at most ϕv other children. Expansive-dags epitomize computations that are
“expansive” but may have complex interdependencies.

One notes from Fig. 2 that bipartite expansive-dags need not be tree-dags.

2.1.3 Composing simple dags to build complex ones

Figure 3: A dag of type [[M2,3 ⇑ M1,2] ⇑ M1,3].

The following inductive mechanism for composing a collection of connected bipartite dags
to build complex dags is introduced in [10]; cf. Fig. 3.

• Start with a set B of connected bipartite dags; these will serve as a base set for the
composition.

• Given dags G1,G2 ∈ B—which could be copies of the same dag with nodes renamed
to achieve disjointness—one obtains a composite dag G as follows.

– Let the composite dag G begin as the sum, G1 +G2, of the dags G1,G2. Rename
nodes to ensure that NG is disjoint from NG1

and NG2
.

– Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an
equal-size set S2 of sources from the copy of G2 in the sum. (If S1 = ∅, then the
composition operation degenerates to the operation of forming a sum dag.)

6

– Pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some way. The
resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.

• Add the dag G thus obtained to the base set B.

Note the asymmetry of the composition operation: the first-named dag, G1, contributes
some of its sinks, while the second-named dag, G2, contributes some of its sources. The
reader should note the natural correspondence between the node-set of G and the node-sets
of G1 and G2.

We denote the composition operation by ⇑ and refer to the resulting dag G as a composite
dag of type [G1 ⇑ G2]. The following lemma is of algorithmic importance, in that it allows
one to ignore the order in which compositions are performed.

Lemma 2.1 ([10]). The composition operation on dags is associative. That is, for all dags
G1, G2, G3, a dag is composite of type [[G1 ⇑ G2] ⇑ G3] if, and only if, it is composite of
type [G1 ⇑ [G2 ⇑ G3]].

2.2 The Batched Idealized Internet-Computing Pebble Game

A number of so-called pebble games on dags have been shown, over the course of several
decades, to yield elegant formal analogues of a variety of problems related to scheduling
computation-dags. Such games use tokens called pebbles to model the progress of a compu-
tation on a dag: the placement or removal of the various available types of pebbles—which
is constrained by the dependencies modeled by the dag’s arcs—represents the changing
(computational) status of the dag’s task-nodes.

Our study is based on the Internet-Computing (IC, for short) Pebble Game of [12], whose
structure derives from the “no recomputation allowed” pebble game of [13]. Based on
studies of Internet-based computing in, for instance, [1, 8, 15], arguments are presented
in [12, 14] that justify studying an idealized, simplified form of the Game. We refer
the reader to the preceding sources for both the original IC Pebble Game and for the
arguments justifying its simplification. We study the following idealized form of the Game
here, adapted to a batched mode of computing.

2.2.1 The rules of the Game

The Batched IC Pebble Game on a computation-dag G involves one player S, the Server,
who has access to unlimited supplies of two types of pebbles: eligible pebbles, whose
presence indicates a task’s eligibility for execution, and executed pebbles, whose presence

7

indicates a task’s having been executed. We now present the rules of the Game, which
simplify those of the original IC Pebble Game of [12, 14].

The Rules of the Batch-IC Pebble Game

• S begins by placing an eligible pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents whose
prior execution they depend on.*/

• At each step t—when there is some number, say et, of eligible pebbles on G’s
nodes—S is approached by some number, say rt, of Clients, requesting tasks. In
response, S:

– selects min{et, rt} tasks that contain eligible pebbles,

– replaces those pebbles by executed pebbles,

– places eligible pebbles on each unpebbled node of G all of whose parents
contain executed pebbles.

• S’s goal is to allocate nodes in such a way that every node v of G eventually contains
an executed pebble.
/*This modest goal is necessitated by the possibility that G may be infinite.*/

For brevity, we henceforth call a node eligible (resp., executed) when it contains
an eligible (resp., an executed) pebble. For uniformity, we henceforth talk about
executing nodes rather than tasks.

2.2.2 The Batch-IC Scheduling (BICSO) Problem

Our goal is to play the Batch-IC Pebble Game in a way that maximizes the number of
eligible pebbles on G after every move by the Server S. In other words: for each step t
of a play of the Game on a dag G under a schedule Σ, if there are currently et eligible

tasks, and if rt Clients request tasks, then we want the Server to select a set of min{et, rt}
eligible tasks to execute that will result in the largest possible number of eligible tasks
at step t+ 1. We thus arrive at the following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)

Instance: I = 〈G, X,E; r〉, where:
• G is a computation-dag;
• X and E are disjoint subsets of NG that satisfy the following;

8

There is a step of some play of the Batched IC Pebble Game on G in which
X is the set of executed nodes and E the set of eligible nodes on G.

• r is in the set1 [1, |E|].

Problem: Find a set R ⊆ E of cardinality r that maximizes the number of eligible

nodes on G after executing the nodes in R, given that the nodes in X are already
executed.

Note that the process of solving BICSO automatically carries with it a guarantee of opti-
mality.

The significance of BICSO—as with the IC-Scheduling Problem of [10, 12, 14]—stems
from the following intuitive scenarios. (1) Schedules that produce eligible tasks fast
may reduce the chance of the “gridlock” that could occur when remote clients are slow
in returning the results of their allocated tasks—so that new tasks cannot be allocated
pending the return of already assigned ones. (2) If the IC Server receives a batch of requests
for tasks at (roughly) the same time, then a Batched IC-optimal schedule ensures that there
are maximally many tasks that are eligible at that time, hence maximally many requests
can be satisfied. This enhances the exploitation of clients’ available resources. See [12, 14]
for more elaborate discussions of these scheduling criteria.

3 The General Intractability of BICSO Optimality

In this section, we show that BICSO is NP-hard even for bipartite dags. The nature of
the theory of NP-Completeness demands that we focus on a decision-based reformulation
of the Problem.

Batched IC-Scheduling (Decision version) (BICSD)

Instance: I = 〈G, X,E; r, e〉, where:
• G is a computation-dag;
• X and E are disjoint subsets of NG that satisfy the following;

There is a step of some play of the Batched IC Pebble Game on G in which
X is the set of executed nodes and E the set of eligible nodes on G.

• r and e are integers, with r ≤ |E|.

1[a, b] = {a, a + 1, . . . , b}.

9

Problem: Is there a subset R ⊆ E of cardinality r such that, if one executes the nodes in
R, given that all nodes in X are already executed, then there are at least e+ |E|
eligible nodes on G?

We use the following auxiliary problem for our reduction.

Many Subsets with Small Union (MSSU).

Instance: Nonempty subsets S1, S2, . . . , Sn of [1, n] whose union is [1, n]; integers m ≤ n
and b ≤ n.

Problem: Can one select m of these subsets whose union has cardinality at most b?

We invoke the following auxiliary results. The first tells us that the MSSU Problem can
help us with the goal of the section.

Lemma 3.1 ([7]). The Many Subsets with Small Union Problem is NP-Complete.

The second result, which allows us to focus on a restricted class of schedules, is easily
adapted from a result of [10].

Lemma 3.2 ([10]). Let Σ be a schedule for a dag G. If Σ is altered to execute all of
G’s non-sinks before any of its sinks, then the number of eligible nodes produced by the
resulting schedule is no smaller than Σ’s.

Theorem 3.1. BICSO is NP-hard, even when restricted to bipartite dags.

Proof. BICSD is in NP, by a simple argument which we leave to the reader. We concen-
trate, therefore, only on the Problem’s NP-Hardness. To this end, we reduce MSSU to
BICSD restricted to bipartite dags.

Let I = 〈S1, S2, . . . , Sn;m, b〉 be an arbitrary instance of MSSU. We associate with I the
following bipartite dag GI which has n sources and n sinks. GI ’s sources correspond to,
and are named by, the n elements of [1, n]; its sinks correspond to, and are named by, the
n subsets S1, . . . , Sn of instance I. GI has an arc from source i to sink j just when i ∈ Sj .
Note that:

• each sink is connected to at least one source because each Si is nonempty;
• each source is connected to at least one sink because S1 ∪ · · · ∪ Sn = [1, n].

We claim that I is a positive instance of MSSU—i.e., one can select m of the Si whose union
has cardinality at most b—if, and only if, there is a schedule for executing GI that produces
at least m+ n− b eligible nodes (sources and sinks) after executing b nodes. Verifying

10

this claim will reduce MSSU to BICSD, thus demonstrating the NP-Completeness of the
latter problem.

Assume first that I is a positive instance of MSSU. This means that in GI there is a set S of
b sources that collectively connect to some set T of m sinks. Say that one executes precisely
the b sources of GI that correspond to the set S: since sources start the Pebble Game being
eligible, one can always execute such a set. Then the resulting set of eligible nodes of
GI include:

• the n− b sources that have not been executed,
• the m sinks that are rendered eligible by executing the chosen b sources

(3.1)

(as well as possibly other sinks). This yields a total of at least m+ n− b eligible nodes
after executing the chosen b nodes.

Conversely, say that there is a set of b ≤ n nodes of GI after whose execution there are at
least m+n− b eligible nodes, for some integer m ≤ n. The proof of Lemma 3.2 (in [10])
shows that we lose no generality by assuming that the b executed nodes are, in fact,
sources of GI . (In short: replacing an executed sink by an executed source can only
increase the resulting number of eligible nodes.) The resulting snapshot of GI is, thus,
b executed sources, n− b eligible sources, and a total of at least m− n− b eligible

nodes. Thus, there are at least m eligible sinks. Given the way we constructed GI from
instance I of MSSU, the preceding snapshot of GI betokens a set of (at least) m subsets
chosen from the Si whose union has cardinality b.

Since BICSD is, thus, NP-Complete, it follows that BICSO (the optimization version) is
NP-Hard.

4 Scheduling Composite Dags via Bipartite Dags

The computational intractability of solving BICSO (assuming, of course, that P 6= NP) is
a mandate for seeking significant special classes of dags for which one can solve BICSO in
polynomial time. Our experience is that this goal is achievable for many classes of bipartite
dags. While this is not a structural restriction of inherent interest, it turns out that we can
sometimes use the operation of composition of dags to construct significant complex dags
from bipartite building blocks. In this section, we show how to craft efficient solutions to
BICSO for compositions of bipartite dags from efficient solutions to BICSO for bipartite
dags obtained from the components.

Let us focus on a dag G that is a composition of the bipartite dags G1,G2, . . . ,Gm. This
section is devoted to observations that help us solve BICSO for G, given solutions to various
subproblems for the Gi.

11

We introduce a useful notion that delimits the “creation of bonuses” due to interdepen-
dencies in a bipartite dag. Given a bipartite dag Gi, an induced connected bipartite subdag
of the dag is an induced subdag2 of Gi that is a connected bipartite dag. The utility of this
notion is the following. It turns out that when searching for a solution to BICSO for a dag
G, it suffices to use solutions to a restricted version of BICSO for certain bipartite subdags
of G. In this restricted version—call it RBISCO—the bipartite subdags are connected,
and all of their sources are eligible, so the set E (of the instance of BICSO) comprises
all sources of the subdag, and the set X is empty. The goal is to find an r-element subset
of sources that maximizes the number of eligible sinks. This goal is equivalent to solving
BICSO for the restricted problem.

The following theorem states that if we can solve RBICSO for induced connected bipartite
subdags of G, then we can solve BICSO for G.

Theorem 4.1. Let the dag G be a composition of bipartite dags G1,G2, . . . ,Gm, and let
ΣDi

, where Di an induced connected bipartite subdag of Gi, be a polynomial-time algorithm
that solves RBICSO for Di. There is a polynomial-time algorithm Σ, that solves BICSO
for G, using the ΣDi

’s as subprocedures,

Before proceeding with the proof of the theorem, we present an auxiliary algorithm that
will help us develop Σ from the subprocedures ΣDi

. Fig. 4 presents a major building
block of Σ, Procedure BBDP, which allows one to extend an efficient procedure for solving
RBICSO for individual connected bipartite dags to an efficient procedure for solving BICSO
for the composite dag G. From a technical perspective, Procedure BBDP efficiently finds
maxima on hyperplanes, as detailed in the following lemma.

Lemma 4.1. Let us be given functions fi : {mi, . . . , ni} → Z, for i ∈ [1, k], where each
mi ≤ ni. In time O(k(n−m+1)2) and space O(k(n−m+1)), Procedure BBDP determines,
for all r ∈ [m1+· · ·+mk, n1+· · ·+nk], the maximum value of

∑k

i=1 fi(ri) over all sequences
r1, . . . , rk such that r1 + · · ·+ rk = r, and each ri ∈ [mi, ni].

It is a clerical matter to add extra bookkeeping to Procedure BBDP, that finds the values
of ri’s that achieve the maximum.

Proof of Theorem 4.1. Let us be given an instance I = 〈G, X,E; r〉 of BICSO, where G
is as described in the theorem. Since we never jeopardize the number of eligible nodes
produced by a schedule by executing the sinks of G only after having executed all non-sinks
(Lemma 3.2), let us focus on the modified goal of finding R among G’s non-sinks; that is,
we assume that E contains non-sinks only.

As the first step toward our goal, for each i ∈ [1, m]:

2A subdag H of G is induced if (a) NH ⊆ NG ; (b) AH comprises all arcs of G that have both endpoints
in NH.

12

Procedure BBDP(k, f1, . . . , fk, m1, . . . , mk, n1, . . . , nk)

01. local variables: integer array B[1, . . . , k][
∑k

j=1mj , . . . ,
∑k

j=1 nj];

integers i, r, ra, rb, max
02. for r := m1 to n1

03. B[1][r] := f1(r)
04. for i := 2 to k
05. for r := m1 + · · · +mi to n1 + · · ·+ ni

06. max := −∞
07. for rb := mi to ni

08. ra := r − rb

09. if m1 + · · · +mi−1 ≤ ra ≤ n1 + · · · + ni−1

10. then if B[i− 1][ra] + fi(rb) > max
11. max := B[i− 1][ra] + fi(rb)
12. B[i][r] := max
13. return vector B[k]

Figure 4: A building-block dynamic program used by Algorithm ΣDP.

• let Xi (resp., Ei) be the sources of Gi that correspond (in the natural manner emerg-
ing from the definition of composition) to the set X (resp., the set E);

• restate the goal of finding the set R as the goal of finding m sets Ri, where each
Ri ⊆ Ei and |R1| + |R2| + · · ·+ |Rm| = r.

Since after composing the Gi to form G, all sources of the Gi become non-sinks of G, our
simplification honors Lemma 3.2. Moreover, by restating a lemma of [10], we can calculate
the number of eligible nodes on G by looking at the numbers of eligible sinks of the
Gi, when the sources Xi of Gi are its only executed nodes.

Lemma 4.2 ([10]). G has |S| − |X| +
∑m

i=1 ei(Xi) eligible nodes, where:

• S is the set of sources of G;

• ei(Xi) is the number of sinks of Gi that are eligible when the only executed nodes
of Gi are the sources Xi.

Lemma 4.2 suggests a simplification of BICSO’s goal of finding the set R. Since the sets
Ei consist entirely of sources, the sets Ri ⊆ Ei consist of non-sinks. Since the nodes of
each Ri correspond to nodes of R, the latter set also consists of non-sinks; hence, we can
so restrict our search for R.

13

A second simplification emerges by noting that, when any Ei is empty, the corresponding
Ri is also empty, so that ei(Xi ∪Ri) = ei(Xi). In this case, Gi can be ignored in our quest
for R; hence, we can henceforth restrict attention to Gi for which Ei 6= ∅.

A subtler simplification emerges from the demonstration that, when calculating ei(Xi∪Ri),
we may restrict attention to a certain induced subdag of Gi, which is isolated as follows.
Let Si be the sources and Ti the sinks of Gi. The set Ti can be partitioned into:

1. the set T
(X)
i of sinks all of whose parents are executed; these sinks are eligible;

2. the set T
(E,X)
i of sinks all of whose parents are either eligible or executed and at

least one of whose parents is eligible; these sinks are not eligible (but they may
become so when we execute the nodes of the R that we choose);

3. the set Ti \ (T
(X)
i ∪ T

(E,X)
i) of sinks that have at least one parent that is neither

executed nor eligible; these sinks are not eligible (and will not become so
when the nodes of R are executed).

The subdag of each Gi—call it S i—that is induced by the sources Ei and the sinks T
(E,X)
i

is of special interest to us. We treat S i as though its node-set is disjoint from NGi
(which

can be achieved via renaming), but we retain the natural correspondence between the

nodes of Gi and S i. Note that each u ∈ NSi
that corresponds to a node of T

(E,X)
i is a

child of a v ∈ NSi
that corresponds to a node of Ei; however, the converse may be false:

there may be childless nodes. Thus, each Si is a sum of (possibly zero) isolated nodes that
correspond to sources of Gi and (possibly zero) connected bipartite dags S i,1,S i,2, . . . ,Si,hi

.
Let Ji be the set of these isolated nodes, and let si be the aggregate number of sources in
these connected bipartite dags.

Each Si helps simplify our calculation of ei(Xi ∪ Ri). If we execute a set Ri ⊆ Ei of
nodes of Gi, then some sinks of Gi may become eligible. The parents of any such sink
v must come either from Xi or from Ri; at least one parent must come from Ri. Thus,
v ∈ T

(E,X)
i , hence corresponds to a sink of Si; moreover, v became eligible when sources

of Si that correspond to Ri were executed. Importantly, now the converse is also true!
If we execute any subset Ri of sources of S i, and a sink v becomes eligible, then the
corresponding sink in Gi also becomes eligible when sources that correspond to Ri are
executed (in addition, of course, to sources of Xi that are already executed.) Therefore,
ei(Xi ∪Ri) = ei(Xi) +

∑hi

j=1 ei,j(Ri,j), where:

• Ri,j comprises the sources of S i,j that correspond to nodes from Ri;

• ei,j(Ri,j) is the number of sinks of Si,j that are eligible when only the sources of
S i,j from the set Ri,j are executed.

14

The preceding discussion implies that, in order to find a set R that maximizes e(X ∪ R),
it is sufficient to consider two cases.

Case 1. If r ≥ s1 + s2 + · · · + sm, the we maximize the number of eligible nodes by
executing:

• the nodes of G that correspond to all sources of the Si,j , and

• r− (s1 + s2 + · · ·+ sm) nodes that correspond to arbitrary nodes from the “isolated-
node” sets J1 through Jm.

Case 2. If r < s1 + s2 + · · · + sm, then we maximize the number of eligible nodes by
executing the r nodes of G that correspond to the r sources of the S i,j that maximize the
number of eligible sinks on the Si,j .

In the former case, we can trivially solve BICSO. In the latter case, since each Si,j is an
induced connected bipartite subdag of Gi, we can use Procedure ΣSi,j

to determine the
sought maximum, for all possible numbers of executed sources of the S i,j. Then, we use
Procedure BBDP to combine these individual solutions to obtain a solution to BICSO.

5 Tractable BICSO Optimality for Composite Trees

This section develops a polynomial-time algorithm that solves BICSO for the family T of
all computation-dags that are obtained from bipartite tree-dags via composition. Stated
formally:

Theorem 5.1. There is a polynomial-time algorithm Σtree that solves BICSO for any
composite tree-dag T ∈ T.

Proof. It suffices to develop a dynamic programming algorithm ΣDP that solves RBICSO
for any bipartite tree-dag. An invocation of Theorem 4.1 allows us to extend ΣDP to Σtree,
because when the Gi’s of that theorem are bipartite tree-dags, then so also are the S i,j’s.
Our goal of developing ΣDP is stated in the subsequent lemma.

Lemma 5.1. Algorithm ΣDP will, in polynomial time, solve any instance of RBICSO in
which the dag T of the instance is a bipartite tree-dag.

Proof. Any bipartite tree-dag T arises from “folding” a tree T and orienting its edges.
(Note that T is: (a) undirected: its edges lack orientations; (b) unrooted: no node of T
is designated as root.) For convenience of reference, we label the nodes of T as “sources”
and “sinks” according to their roles in the dag T . Clearly each sink of T is adjacent to

15

only sources, and each source to only sinks. The key idea of Algorithm ΣDP is that we can
find the maximum number of eligible sinks for a tree of a given height by appropriately
evaluating maxima for shorter trees.

Our first step in developing ΣDP is to recursively decompose T into subtrees. We choose
some source w of T and let it act as a root for T ; call the resulting rooted tree Tw.
(We prefer rooted trees in this development is that they have heights.) We next perform
a breadth-first traversal of Tw starting from its root w. Each time we descend from a
sink v of Tw to a source u during this traversal, we naturally produce a subtree, call it
Tu, of Tw. (Tu is a copy of the subtree of Tw rooted at u.) Although the node-sets of
Tw and Tu are disjoint, there is a natural correspondence between them, and we refer
to corresponding nodes using the same name. In the manner described, our traversal of
Tw produces a sequence of subtrees (beginning with Tw), such that each subtree includes
a certain number of shorter ones, which occur later in the sequence. ΣDP processes the
subtrees in the reverse order of this sequence, which ensures that certain values that need
to be computed for a subtree, which depend recursively on values for shorter subtrees, can
be computed, because the values for shorter subtrees are already available.

Algorithm ΣDP chooses the nodes to execute by recursively calculating the following func-
tions. Pick any subtree Tu; say that it has s sources.

• For any r ∈ [1, s], let E1(Tu, r) be the maximum number of eligible sinks on Tu

when the root u and some other r − 1 of its sources are executed.

E1(Tu, r) is easy to calculate when Tu has height 0 or 1, for then Tu has only one source,
so that E1(Tu, r) is just the number of sinks that are connected only to u.

• For any r ∈ [0, s − 1], let E0(Tu, r) be the maximum number of eligible sinks on
Tu when the root u is not executed but some r other of its sources are executed.

E0(Tu, r) = 0 when Tu has height 0 or 1. For any r ∈ [0, s], the maximum number of
eligible sinks in Tu when r of its sources are executed can easily be calculated using
E0 and E1. In particular, ΣDP achieves its goal by computing E0(Tw, r) and E1(Tw, r) for
any r in the range 0 ≤ r ≤ (the number of sources in T), as follows. As just noted, the
challenge is to calculate these values for subtrees of heights ≥ 2. We accomplish this by
decomposing trees in the manner depicted in Fig. 5. Focus on a subtree Tu of height ≥ 2;
say that Tu has s sources. Consider all sinks of Tu that are linked to the source u. Now,
some k of these sinks—call them v1, . . . , vk—are also linked to some source other than u,
while some h of these sinks are not. Since Tu has height ≥ 2, we know that k ≥ 1; it is
possible that h = 0. For any i ∈ [1, k], sink vi is connected to some gi ≥ 1 sources other
than u—call them ui,1, . . . , ui,gi

. Consider the subtrees Tui,j
, for i ∈ [1, k] and j ∈ [1, gi];

16

each has height strictly smaller than Tu’s. Let si,j be the number of sources in Tui,j
, so

that s = 1 +
∑k

i=1

∑gi

j=1 si,j. We can calculate the functions E0 and E1 for Tu recursively
from the corresponding functions for the Tui,j

.

Figure 5: Decomposing Tu: shaded nodes are sources; blank nodes are sinks.

We begin with E0, since it is easier to calculate. Pick any r ∈ [0, s − 1]. Since (by
assumption) u is not executed, none of the k + h sinks connected to u is eligible.
Therefore, E0(Tu, r) is just the maximum number of eligible sinks in the subtrees Tui,j

,
when a total of r sources are executed in these trees. Since these trees are shorter
than Tu, ΣDP will have computed the values of E0 and E1 for each of them; hence, using
Procedure BBDP, it can calculate E0(Tu, r).

We decompose the goal of calculating E1 into subgoals. Pick any r ∈ [1, s], and pick the
r sources that include u and that maximize the number of eligible sinks in Tu. Let us
count these sinks. Since one of the r executed sources is u, all h sinks that are connected
only to u are eligible. The remaining r − 1 executed sources belong to the subtrees
Tui,j

connected to sinks v1, . . . , vk. Let ri be the aggregate number of executed sources
within subtrees Tui,1

, . . . , Tui,gi
, so that r−1 = r1+· · ·+rk. These executed sources make

sink vi eligible if, and only if, the sources ui,1, . . . , ui,gi
are executed. It follows that

the number of eligible sinks among sink vi and the sinks in Tui,1
, . . . , Tui,gi

is precisely
the number of eligible sinks in the subtrees, plus:

• 1, if all of ui,1, . . . , ui,gi
are executed;

• 0, if at least one of ui,1, . . . , ui,gi
is not executed.

We thus have k subgoals, the ith being to maximize the number of eligible sinks among
sink vi and the sinks in Tui,1

, . . . , Tui,gi
, under the constraint that ri sources from these

subtrees are executed. If we can calculate this maximum for any ri ∈ [0, si,1+ · · ·+si,gi
],

then ΣDP can use Procedure BBDP here also, to find the value of E1.

17

The desired subgoal can be achieved as the larger of two “sub”-maxima. (1) When all
sources ui,1, . . . , ui,gi

are executed, we use Procedure BBDP, as applied to the functions
E1 for the subtrees Tui,1

, . . . , Tui,gi
, to compute the maximum number of eligible sinks

for all ri ∈ [gi, si,1 + · · ·+si,gi
]. Since then all sources connected to vi are executed, each

maximum gets increased by 1. It follows that the bonus of 1 is properly accounted for.
(2) When at least one of the sources ui,1, . . . , ui,gi

is not executed, we know that sink
vi cannot be eligible. Focusing on the case ri ≤ si,1 + · · · + si,gi

− 1, ΣDP can now use
Procedure BBDP to consider every j ∈ [1, gi]: (i) using the function E0 that was calculated
for subtree Tui,j

; (ii) for the other subtrees, using the function of the maximum number of
eligible sinks as a function of the number of executed sources in this subtree.

This completes the description of Algorithm ΣDP.

We now apply Lemma 5.1 in Theorem 4.1, which completes the proof of Theorem 5.1.

6 Solving BICSO Efficiently for Expansive Dags

Algorithm Σtree is computationally rather inefficient, despite being polynomial-time, since
its timing polynomial has high degree. We therefore have studied the problem of solving
BICSO for nontrivial classes of computation dags approximately optimally as long as they
solve the problem much faster than Σtree. The initial result of our quest is the following
algorithm that approximates a solution to BICSO for the family E of composite expansive
dags.

Algorithm Σexp implements the following natural, fast heuristic for scheduling an expansive
dag E . For each source v of E , say that there are ϕv nodes that have v as their sole parent
and ψv nodes that have other parents in addition to v. (By definition, ϕv ≥ ψv). Say that
E has |E| eligible nodes and that we are requested to execute the best r of these. Σexp

selects the r nodes that have the largest associated integers ϕv. Of course, this greedy
heuristic may deviate from optimality because it ignores the “bonuses” that may arise
when one executes eligible nodes that are siblings in E .

We claim that Algorithm Σexp solves BICSO to within a factor of 4 of optimally for the
family E. Stated formally:

Theorem 6.1. For any instance I = 〈E , X,E; r〉 of BICSO, where E ∈ E, Algorithm
Σexp will, in time O(|E|), find a solution to the Problem, whose increase in the number of
eligible nodes is at least one-fourth the optimal increase.

Proof. Focus on instance I = 〈E , X,E; r〉 of BICSO, where E ∈ E. We consider in turn
the speed of Algorithm Σexp and the quality of the schedule it produces.

18

Timing. It is easy to implement Σexp so that it operates in time O(|E|). One way to
achieve this is the following, referring to algorithms found in, say, [3].

1. Use the linear-time selection algorithm to find the node v⋆ ∈ E whose associated
integer ϕv⋆ is the rth largest.

2. Use the Partition procedure of Quicksort with v⋆ as pivot to identify r nodes of
E that have ϕv ≥ ϕv⋆ .

Quality. Our analysis of Algorithm Σexp considers two cases.

(1) Say first that r is no smaller than the number of non-sinks in E. In this case, Σexp

actually provides a solution to instance I of BICSO. This is because sinks are the only
nodes whose associated integers ϕv are zero, so Σexp will select them last, hence will
maximize its production of eligible nodes.

(2) Say next that r is smaller than the number of non-sinks in E, so that Σexp selects only
non-sinks of E . For any set R ⊆ E that is composed of non-sinks, we can calculate the
impact of set R, denoted ι(R), that is the difference between

Nafter: the number of nodes that are eligible when all nodes in X ∪R are executed;
Nbefore: the number of nodes that are eligible when the nodes in X are executed.

By our prior observations,

ι(R)
def

= Nafter −Nbefore = − |R| +
m∑

i=1

hi∑

j=1

ei,j(Ri,j).

We note that the S i,j of Section 4 are expansive dags and that their associated “isolated”
sets Ji are empty. Let Ropt ⊆ E be a set of nodes that leads to a solution to BICSO for
instance I, and let RΣ be the set selected by Σexp. Observe that, upon execution, each
source v of an S i,j can render no more than ϕv + ψv ≤ 2ϕv new sinks eligible. Thus,
ι(Ropt) ≤ 2

∑
v∈Ropt

ϕv, while

ι(RΣ) ≥ − |RΣ| +
∑

v∈RΣ

ϕv ≥ 1/2
∑

v∈RΣ

ϕv,

the last inequality following since ϕv ≥ 2. Since Σexp selects nodes for execution that have
the largest associated integers ϕv, ι(Ropt) ≤ 4 · ι(RΣ), as claimed in the statement of the
theorem.

Acknowledgment. A portion of the research of G. Malewicz was done while visiting
the Univ. of Massachusetts Amherst. The research of A. Rosenberg was supported in part
by NSF Grant CCF-0342417. The authors thank M. Yurkewych for valuable discussions.

19

References

[1] R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for
service oriented Grid computing. 10th Heterogeneous Computing Wkshp.

[2] W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into
a metacomputer. 13th Intl. Parallel Processing Symp., 160–166.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to Algorithms
(2nd Edition). MIT Press, Cambridge, Mass.

[4] S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9,
308–316.

[5] I. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing
Infrastructure (2nd edition), Morgan-Kaufmann, San Francisco.

[6] I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable
virtual organizations. Intl. J. Supercomputer Applications.

[7] L. Gao and G. Malewicz (2004): Internet computing of tasks with dependencies using
unreliable workers. 8th Intl. Conf. on Principles of Distributed Systems, to appear.

[8] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling mecha-
nisms for global computing applications. Intl. Parallel and Distr. Processing Symp.

[9] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home:
massively distributed computing for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press, Los Alamitos, CA.

[10] G. Malewicz, A. L. Rosenberg, M. Yurkewych (2005): Toward a scheduling theory for
Internet-based computing. IEEE Trans. Comput. 55, 757–768.

[11] M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project MAC
Conf. on Concurrent Systems and Parallel Computation, ACM Press, 119–127.

[12] A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-
based computing. IEEE Trans. Comput. 53, 1176–1186.

[13] A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing
31, 115–139.

[14] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428–438.

20

[15] X.-H. Sun and M. Wu (2003): GHS: A performance prediction and task scheduling
system for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

21

