
Advances in a Dag-Scheduling Theory for

Internet-Based Computing

Gennaro Cordasco∗

Univ. of Salerno

Grzegorz Malewicz†

Univ. of Alabama

Arnold L. Rosenberg‡

Univ. of Massachusetts

July 10, 2006

Abstract

Earlier work has developed the underpinnings of a theory of scheduling compu-
tations having intertask dependencies—modeled via dags—for Internet-based com-
puting. The goal of the schedules produced is to render tasks eligible for execution
at the maximum possible rate. This goal aims: (a) to utilize remote clients’ com-
putational resources well, by always having work to allocate to an available client;
(b) to lessen the likelihood of the “gridlock” that ensues when a computation stalls
for lack of eligible tasks. The dags handled by the theory thus far are those that
can be constructed from a given collection of bipartite building-block dags via the
operation of dag-composition. A basic tool in constructing schedules is a relation ⊲,
which allows one to “prioritize” the scheduling of a complex dag’s building blocks.
The current paper extends the existing scheduling theory in two ways: by expanding
the significantly the repertoire of dags that the theory can schedule optimally, and by
allowing one sometimes to shortcut the algorithmic process required to find optimal
schedules. The expansion of repertoire now allows the theory to schedule optimally,
among other dags, a large range of dags that are either “expansive,” in the sense
that they grow outward from their sources, or “reductive,” in the sense that they
grown inward toward their sinks. The algorithmic shortcuts allow one to “read off”
an optimal schedule for a dag from a given optimal schedule for the dags dual, which
is obtained by reversing all arcs (thereby exchanging the roles of sources and sinks).

∗Dip. di Informatica e Applicazioni, Univ. di Salerno, Baronissi (SA) 84081, ITALY,
cordasco@dia.unisa.it

†Dept. of Computer Science, Univ. of Alabama, Tuscaloosa, AL 35487, USA, greg@cs.ua.edu
‡Dept. of Computer Science, Univ. of Massachusetts Amherst, Amherst, MA 01003, USA,

rsnbrg@cs.umass.edu

1

1 Introduction

Earlier work [15, 17, 18] has developed a formal framework for studying the problem
of scheduling computations having intertask dependencies for the several modalities of
Internet-based computing (IC, for short)—including Grid computing (cf. [1, 7, 6]), global
computing (cf. [2]), and Web computing (cf. [12]). The goal is to craft schedules that maxi-
mize the rate at which tasks are rendered eligible for allocation to remote clients (hence for
execution), with the dual aim of: (a) enhancing the effective utilization of remote clients,
by always having work to allocate to an available client; (b) lessening the likelihood of
the “gridlock” that can arise when a computation stalls pending computation of already-
allocated tasks.

The framework of [15, 17, 18] idealizes the problem of scheduling computation-dags1 for IC,
via the assumption that tasks are executed in the order of their allocation. (This assumption
idealizes the hope that the monitoring of clients’ past behaviors and current capabilities
prescribed in, say, [1, 11, 19] can render the desired order likely, if not certain.) Building on
the case studies of [17, 18], in [15] we developed what we hope will be the underpinnings of
a theory of scheduling computation-dags for IC. The development in [15] begins with any
collection of building-block dags that we know how to schedule optimally. It develops two
conceptual/algorithmic notions that allow us to schedule complex computation-dags built
from these building blocks.

1. The priority relation ⊲ on pairs of dags. The assertion “G1 ⊲ G2” asserts that the
schedule Σ that entirely executes G1 and then entirely executes G2 is at least as good
(relative to our quality metric) as any other schedule that executes both G1 and G2.

2. The operation of composition on pairs of dags. If one uses composition to construct a
complex computation-dag G from a set of building blocks that are pairwise comparable
under the relation ⊲, then we can often compute an optimal schedule for G from
optimal schedules for the building blocks.

Fig. 1 depicts four familiar dags that yield to the algorithmic framework of [15]. The current
paper extends the algorithmic scheduling theory of that source in two ways.

(1) In Section 3, we significantly augment the repertoire of building-block dags that the
scheduling algorithms of [15] can accommodate when seeking optimal schedules. This
augmentation allows the theory to schedule optimally, inter alia, a large range of dags
that are either “expansive,” in the sense that they grow outward from their sources, or
“reductive,” in the sense that they grown inward toward their sinks; some structurally
uniform such dags are exemplified in Fig. 1. The algorithms can also now handle a large
range of compositions of “expansive” dags with “reductive” dags, as exemplified in Fig. 2.

1All technical terms are defined in Section 2.2.

2

3,0 2,1 1,2 0,3

0,21,12,0

1,0 0,1

0,0 λ

0

01

1

111000

001

0001

100

1010

101

1011

000

0000

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

1,0

2,0

3,0 2,1

0,0

1,1

0,1

1,2

0,2

0,3

Figure 1: (Top) “expansive” dags: a 2-dimensional mesh and a binary tree. (Bottom)
“reductive” dags: a binary tree and a 2-dimensional mesh.

Figure 2: Three composite dags that our expanded framework can schedule optimally; all
edges represent arcs that point upward. Only the middle of these dags could be scheduled
optimally using the framework of [15].

(2) In Section 4, we show how to “read off” two algorithmically significant features of a

dag G from analogous features for G’s dual dag G̃—which is obtained by reversing all of G’s
arcs (thereby exchanging the roles of sources and sinks). Specifically: (a) In Section 4.1,
we show how to “read off” an optimal schedule for G from a given optimal schedule (if one

exists)2 for G̃. This allows one, for instance, to “read off” an optimal schedule for either
an “expansive” or a “reductive” dag from a given optimal schedule for the other. (b) In
Section 4.2, we show how to “read off” ⊲-priorities among a collection of dags from known
⊲-priorities among the dags’ duals.

Thus, in this paper, we expand the repertoire of dags that the embryonic theory of [15]

2It is shown in [15] that many dags do not admit any schedule that is optimal according to our metric.

3

can schedule optimally, and we provide tools that often allow one to avoid the low-degree
polynomial, yet not-insignificant suite of algorithms used in [15] to find optimal schedules.

Related work. Most closely related to our study are its companions in this nascent
scheduling theory: [15], whose contributions we have just described; [17, 18], which char-
acterize and specify optimal schedules for uniform dags typified by those in Fig. 1; [4],
wherein the algorithmic framework of [15] is extended in several ways. A companion to
these sources, [14]—which is motivated by the fact that many dags do not admit an optimal
schedule in the sense of [15]—pursues an orthogonal regimen for scheduling dags for IC,
in which a server allocates batches of tasks periodically, rather than allocating individual
tasks as soon as they become eligible. Optimality is always possible within the batched
framework, but achieving it may entail a prohibitively complex computation. In less di-
rectly related work, [8] presents a probabilistic approach to the problem of executing tasks
on unreliable clients. Finally, the impetus for our study derives from the many exciting
systems- and/or application-oriented studies of IC, in sources such as [1, 2, 6, 7, 11, 12, 19].

2 A Basis for a Scheduling Theory

2.1 Computation-Dags

A directed graph G is given by a set of nodes NG and a set of arcs (or, directed edges) AG,
each of the form (u → v), where u, v ∈ NG. A path in G is a sequence of arcs that share
adjacent endpoints, as in the following path from node u1 to node un: (u1 → u2), (u2 →
u3), . . . , (un−2 → un−1), (un−1 → un). A dag (directed acyclic graph) G is a directed graph
that has no cycles—so that no path of the preceding form has u1 = un. When a dag G is
used to model a computation, i.e., is a computation-dag:3

• each node v ∈ NG represents a task in the computation;

• an arc (u → v) ∈ AG represents the dependence of task v on task u: v cannot be
executed until u is.

For any arc (u → v) ∈ AG, u is a parent of v, and v is a child of u in G. The indegree (resp.,
outdegree) of node u is its number of parents (resp., children). A parentless node of G is a
source, and a childless node is a sink. G is connected if, when one ignores the orientation
of its arcs, there is a path connecting every pair of distinct nodes; G is bipartite if NG

consists entirely of sources and sinks4; we refer to a connected bipartite dag as a CBBB,
for Connected Bipartite Building Block (a term whose origins will become clear later).

3For brevity, we henceforth refer to “dags,” without the qualifier “computation.”
4Perforce, all arcs go from a source to a sink.

4

Let the dags G1 and G2 be disjoint, in the sense that NG1
∩NG2

= ∅. The sum (or, disjoint
union) of G1 and G2, denoted G1 + G2, is the dag whose node-set is NG1

∪ NG2
and whose

arc-set is AG1
∪ AG2

.

2.2 A Model for Executing Dags on the Internet

“Pebble games” on dags have yielded elegant formalizations of a variety of problems related
to scheduling dags. Such games use tokens, pebbles, to model the progress of a computa-
tion on a dag: the placement or removal of the various available types of pebbles—which is
constrained by the dependencies modeled by the dag’s arcs—represents the changing (com-
putational) status of the dag’s task-nodes. Our study is based on the Internet-Computing
(IC, for short) Pebble Game of [17]. Based on studies of IC in, e.g., [1, 11, 19], arguments
are presented in [17, 18] (q.v.) that justify the simplified form of the Game that we study.

A. The rules of the Game. The IC Pebble Game on a dag G involves one player S, the
Server, who has access to unlimited supplies of two types of pebbles: eligible pebbles,
whose presence indicates a task’s eligibility for execution, and executed pebbles, whose
presence indicates a task’s having been executed. The Game is played as follows.

The IC Pebble Game

• S begins by placing an eligible pebble on each unpebbled source of G.
/*Unexecuted sources are always eligible for execution, having no parents whose prior
execution they depend on.*/

• At each step, S
– selects a node that contains an eligible pebble,

– replaces that pebble by an executed pebble,

– places an eligible pebble on each unpebbled node of G all of whose parents contain
executed pebbles.

• S’s goal is to allocate nodes in such a way that every node v of G eventually contains an
executed pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

A schedule for the IC Pebble Game is a rule for selecting which eligible pebble to execute
at each step of a play of the Game. For brevity, we henceforth call a node eligible (resp.,
executed) when it contains an eligible (resp., an executed) pebble. For uniformity,
we henceforth talk about executing nodes rather than tasks.

5

B. The quality of a play of the Game. Our goal is to play the IC Pebble Game in
a way that maximizes the production rate of eligible pebbles. When G is bipartite, it
suffices to focus on maximizing the production rate of eligible sinks. For each step t of a
play of the Game on a dag G under a schedule Σ, let EΣ(t) denote the number of eligible

pebbles on G’s nonsource nodes at step t.

We measure the IC quality of a play of the IC Pebble Game on a dag G by the size of
EΣ(t) at each step t of the play—the bigger, the better. Our goal is an IC-optimal schedule
Σ, in which EΣ(t) is as big as possible for all steps t.

The significance of IC quality—hence of IC optimality—stems from the following scenarios.
(1) Schedules that produce eligible nodes more quickly may reduce the chance of the
“gridlock” that could occur when remote clients are slow—so that new tasks cannot be
allocated pending the return of already allocated ones. (2) If the IC Server receives a batch
of requests for tasks at (roughly) the same time, then having more eligible tasks available
allows the Server to satisfy more requests.

2.3 A Framework for Crafting IC-Optimal Schedules

The priority relation ⊲. For i = 1, 2, let the dag Gi have ni nonsinks, and let it admit
the IC-optimal schedule Σi. If the following inequalities hold:5

(∀x ∈ [0, n1]) (∀y ∈ [0, n2]) :
EΣ1

(x) + EΣ2
(y) ≤ EΣ1

(min{n1, x + y}) + EΣ2
(max{0, x + y − n1}),

(2.1)

then G1 has priority over G2, denoted G1 ⊲ G2. Informally, one never decreases IC quality
by executing a nonsink of G1 whenever possible.

A framework for scheduling complex dags. The operation of composition is defined
inductively as follows.

• Start with a set B of base dags.6

• One composes dags G1,G2 ∈ B—which could be the same dag with nodes renamed
to achieve disjointness—to obtain a composite dag G, as follows.

– Let G begin as the sum G1 +G2, with nodes renamed if necessary to ensure that
NG ∩ (NG1

∪ NG2
) = ∅.

– Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an
equal-size set S2 of sources from the copy of G2 in the sum.

5[a, b] denotes the set of integers {a, a + 1, . . . , b}.
6Continuing the practice of [15], our base dags here will be CBBBs.

6

– Pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some way. The
resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.7

• Add the dag G thus obtained to the base set B.

We denote the composition operation by ⇑ and say that G is composite of type [G1 ⇑ G2].

The dag G is a ⊲-linear composition of the CBBBs G1, . . . ,Gn if: (a) G is composite of type
G1 ⇑ · · · ⇑ Gn; (b) each Gi ⊲ Gi+1, for all i ∈ [1, n − 1].

The following lemma enables our central scheduling theorem.

Lemma 2.1 ([15]). (a) If a schedule Σ for a dag G is altered to execute all of G’s nonsinks
before any of its sinks, then the IC quality of the resulting schedule is no less than Σ’s. (b)
The relation ⊲ is transitive. (c) The composition operation is associative.

The following theorem underlies our main scheduling algorithm.

Theorem 2.1 ([15]). Let G be a ⊲-linear composition of G1, . . . ,Gn, where each Gi admits
an IC-optimal schedule Σi. The schedule Σ for G that proceeds as follows is IC optimal.

1. For i = 1, . . . , n, in turn, Σ executes the nodes of G that correspond to nonsinks of Gi,
in the order mandated by Σi.

2. Σ finally executes all sinks of G in any order.

One finds in [15] a suite of algorithms that determine whether or not a given dag G can
be decomposed into a set of CBBBs {Gi} that satisfy Theorem 2.1; they compute an IC-
optimal schedule for G whenever the theorem does apply. We summarize the algorithms to
suggest their low-degree polynomial, yet superlinear complexity.

1. Remove from G all “shortcuts,” i.e., arcs whose removal does not alter connectivity;
cf. [10];

2. Parse G, when possible, into CBBBs via a greedy algorithm;

3. Use the parsing to transform G into a “super-dag” of CBBBs whose arcs denote
compositions;

4. Use a stable sorting algorithm [5] to determine if G is a ⊲-linear composition of its
CBBBs (so that Theorem 2.1 yields an IC-optimal schedule for G).

7An arc (u → v) is induced if {u, v} ⊆ NG .

7

The nascent scheduling theory of [15] is illustrated there via a small repertoire of CBBBs
that lead, via Theorem 2.1, to a rich family of complex dags that we know how to schedule
IC optimally (including the dags in Fig. 1). This early success motivates the challenge
we address in Section 3: to expand the repertoire of CBBBs that the theory can handle.
The complexity of the scheduling algorithms derived in [15] from Theorem 2.1 motivates
the challenge we address in Section 4: to identify situations in which we can bypass those
algorithms by having a dag “inherit” an IC-optimal algorithm from some kindred dag.

3 Expanding the Repertoire of Building Blocks

This section is devoted to expanding the repertoire of CBBBs that the scheduling algorithms
of Section 2.3 have access to in [15]. We focus only on the problem of finding IC-optimal
schedules for the CBBBs we consider, relying on the algorithm developed in [4] to find all
possible ⊲-priorities among these dags.

3.1 W-Strands, M-Strands, and MW-Strands

We strive for an extensive repertoire of CBBBs: (a) that compose into dags that one might
encounter in real computations; (b) that our theory shows how to schedule optimally and
prioritize. Although our main focus is on dags that are either expansive—growing outward
from their sources—or reductive—growing inward toward their sinks (cf. Figs. 1 and 3), we
gain a technical advantage by considering also a CBBB that is a combination of expansive
and reductive. Specifically, by demonstrating how to schedule any such combined CBBB
IC optimally, we demonstrate in one fell swoop how to schedule IC optimally any CBBB
that is either expansive or reductive.

MW-strands. A sequence of positive numbers is zigzagged if it alternates integers and
reciprocals of integers, with all integers exceeding 1. For any zigzagged sequence δ̂, the
δ̂-strand of MW-dags, denoted D[δ̂], is defined inductively as follows; see Fig. 3.

The base cases. For each d > 1:

• D[d] is the (single-source) outdegree-d W-dag W [d], i.e., the bipartite dag that
has one source, d sinks, and d arcs connecting the source to each sink.

• D
[

1

d

]
is the (single-sink) indegree-d M-dag M[d], i.e., the bipartite dag that

has one sink, d sources, and d arcs connecting each source to the sink.

The inductive extensions. For each zigzagged sequence δ̂ and each d > 1:

8

Figure 3: Top: W[4], M[4], M[4, 2, 4, 3], W[4, 2, 4, 3]; bottom: D
[

1

4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2

]
.

Edges represent arcs that point upward.

• If δ̂ ends with a reciprocal, then D[δ̂, d] is obtained by giving d − 1 new sinks
to D[δ̂], with D[δ̂]’s rightmost source as their common parent.

• If δ̂ ends with an integer, then D
[
δ̂, 1

d

]
is obtained by giving d− 1 new sources

to D[δ̂], with D[δ̂]’s rightmost sink as their common child.

W-strands and M-strands. Two classes of MW-strands deserve special mention. For
any sequence of integers, δ̂ = d1, d2, . . . , dk, each > 1: the δ̂-strand of W-dags, denoted
W [δ̂], and the δ̂-strand of M-dags, denoted M[δ̂] are defined as follows.

W [d1, d2, . . . , dk] = D

[
d1,

1

2
, d2,

1

2
, . . . ,

1

2
, dk

]

M[d1, d2, . . . , dk] = D

[
1

d1

, 2,
1

d2

, 2, . . . , 2,
1

dk

]
.

We refer generically to M[δ̂] as an M-strand, to W [δ̂] as a W-strand, and to D[δ̂] as a
MW-strand. Note that every strand is connected, hence has no isolated nodes.

Fig. 1 illustrates why we view W-strands and M-strands as the basic building blocks of
expansive and reductive dags, respectively. The expansive mesh is composite of type W[2] ⇑
W [2, 2] ⇑ W [2, 2, 2]; the expansive tree is composed of seven instances of W [2]. Dually,
the reductive mesh is composite of type M[2, 2, 2] ⇑ M[2, 2] ⇑ M[2]; the reductive tree is
composed of seven instances of M[2]. Fig. 4 illustrates this for the reductive mesh.

3.2 IC-Optimal Schedules for MW-, M-, and W-Strands

The main result of this section is the following.

Theorem 3.1. Every sum of MW-strands admits an IC-optimal schedule.

9

0,0

1,0 0,1

1,0 0,1

2,0 1,1 0,2

3,0 2,1 1,2 0,3

2,0 1,1 0,2

1,0

2,0

3,0 2,1

0,0

1,1

0,1

1,2

0,2

0,3

Figure 4: The reductive mesh of Fig. 1 is composite of type M[2, 2, 2] ⇑ M[2, 2] ⇑ M[2].

Because M-strands and W-strands are special forms of MW-strands, Theorem 3.1 immedi-
ately implies that every sum of M- or of W-strands admits an IC-optimal schedule.

Our proof of Theorem 3.1 in fact proves a stronger assertion, which we develop now.

Focus on an arbitrary sum of MW-strands S. By Lemma 2.1(a), we may restrict attention
to schedules that execute all of S’s sources before any of its sinks. Let Src(S) denote the
set of S’s sources. For any X ⊆ Src(S), denote by e(X;S) the number of sinks of S that
are eligible at the step when the sources in X are precisely those that have been executed.

Focus on a planar drawing of S, strand by strand, so that we can identify its sources, from
left to right, with the integers 1, 2, . . . , n, where n = |Src(S)|. For any u ∈ Src(S) and
any k ∈ [1, n], denote by u[k] the set u[k] = {u, u + 1, . . . , u + k − 1} comprising source u
and the k − 1 sources to its right in the drawing. To simplify exposition, we allow k to
exceed n+1−u, so that u[k] may contain numbers greater than n—but none of these large
integers denotes a node of S. Let Su denote the strand of S that u belongs to, and let
Su = Src(Su). Denote by ek(u) the number ek(u) = e(u[k] ∩ Su; S) of sinks of S that are
rendered eligible when the sources in u[k] are the only executed sources of S. Associate
with each u ∈ Src(S) the n-component eligiblity vector Vu = 〈e1(u), e2(u), . . . , en(u)〉.
Note that, since |Src(S)| = n, if u[k] contains numbers larger than n, then the last u
entries of Vu are identical. Finally, order the vectors V1, V2, . . . , Vn in lexicographic order,
using the notation Vv ≥L Vw to indicate that source v’s vector precedes source w’s vector
lexicographically. We call a source s ∈ Src(S) maximal if Vs ≥L Vs′ for all s′ ∈ Src(S).

A schedule ΣS for the sum of MW-strands S is ≥L-greedy if it operates as follows.

1. ΣS chooses any maximal s ∈ Src(S) as the first source of S to execute.

2. After executing source s, ΣS removes from S source s and all sinks (if any) that
have s as their only parent. This converts S to a new sum of MW-strands S ′ whose

10

constituent strands are as follows.

(a) Each MW-strand of S other than Ss (i.e., each strand that does not contain s)
is a constituent strand of S ′;

(b) Ss contributes to S ′ all of its nodes other than s and all sinks that have s as
their only parent.

The number of constituent strands of S ′ is either one smaller than the number of
constituent strands of S (if s is Ss’s only source), or is the same as that number (if s
is either the leftmost or rightmost source of Ss), or is one greater than that number
(in all other cases).

3. ΣS recursively executes the sum S ′ using the ≥L-greedy schedule ΣS′ .

We prove Theorem 3.1 via the following more detailed result.

Theorem 3.2. For any sum of MW-strands S, every ≥L-greedy schedule ΣS is IC optimal.

(Intuitively the “lookahead” inherent in the eligiblity vectors prevents such an ΣS from
“getting stuck in” local optima that are not globally optimal.)

We prove Theorem 3.2 by induction, in the next two subsections.

3.2.1 ΣS chooses the best first source to execute

We show in this section that any ≥L-greedy schedule starts out by executing a source of S
that is most advantageous (with respect to IC quality).

Lemma 3.1. Let S be an arbitrary sum of MW-strands, and let s be an arbitrary maximal
source of S. For each set X ⊆ Src(S), there is a set X ′ ⊆ Src(S) of equal cardinality such
that: (a) s ∈ X ′, and (b) e(X ′;S) ≥ e(X;S).

Proof. For any maximal source s of S, focus on an arbitrary X ⊆ Src(S) that does not
contain s. Let w ∈ X be any source and ℓ ∈ [1, n] any integer such that w[ℓ] is a maximal
cardinality sequence of consecutive numbers from X ∩ Sw (using the integer names of
sources). The maximality of source s ensures that Vs ≥L Vw; i.e., either Vs = Vw, or
there exists h ∈ [0, n − 1] such that s(1) = w(1), s(2) = w(2), . . . , s(h) = w(h), and
s(h + 1) > w(h + 1).

We now investigate the impact on the number of eligible sinks at step |X| of the execution
of S, of “un-executing” certain sources from set X and executing an equal number of other
sources in their stead. Specifically, we “un-execute” some executed sources near to, and

11

including w, and execute an equal number of un-executed sources near to, and including
s. (This substitution for certain nodes in X will yield the set X ′.)

Focus on the following two quantities.

• h⋆ ∈ [0, n−1] is the largest value such that e1(s) = e1(w), e2(s) = e2(w), . . . , eh⋆(s) =
eh⋆(w). It is, thus, the maximum number of consecutive sources starting from s whose
execution does not improve on the “yield” produced by starting from w.

• k⋆ ∈ [1, ℓ] is the largest value such that s[k⋆] ∩ X = ∅. It is, thus, the maximum
number of consecutive sources starting from s that are not executed at the start of
our modification of X.

We branch on the relative sizes of h⋆ and k⋆.

Case 1: h⋆ < k⋆.
Consider the impact of “unexecuting” the sources in w[h⋆ + 1] and executing, in their
steads, the sources in s[h⋆ +1] (which, in this case, is a subset of Ss). This replaces the set
X by X ′ = (X \ w[h⋆ + 1]) ∪ s[h⋆ + 1]. The “unexecution” loses us at most eh⋆+1(w) + 1
eligible sinks. (The possible extra sink may be lost if the rightmost source in w[h⋆ + 1]
has a righthand neighbor in Sw ∩ X with which it shares a child.) In compensation, the
execution gains us at least eh⋆+1(s) ≥ eh⋆+1(w) + 1 new eligible sinks. We are, thus, not
worse off for the exchange.

Case 2: h⋆ ≥ k⋆. We have two subcases to consider.

2a. ek⋆(w) = eℓ(w).
In this case, we know two significant pieces of information.

1. Once having executed nodes w, w + 1, . . . , w + k⋆ − 1, no further sinks were rendered
eligible by executing any source in {w +k⋆, . . . , w + ℓ−1}. (Recall that w[ℓ] ⊆ X.)

2. All of nodes s, s + 1, . . . , s + k⋆ − 1 belong to Ss, and none belongs to X.

This information tells us that “unexecuting” the sources in w[k⋆] loses us exactly ek⋆(w)
eligible sinks, while executing the sources in s[k⋆] gains us at least sk⋆(w) = ek⋆(w) new
eligible sinks. This means that replacing the set X by X ′ = (X \ w[k⋆])∪ s[k⋆] leaves us
with at least as many eligible sinks. As in Case 1, we are not worse off for the exchange.

2b. ek⋆(w) < eℓ(w).
In this case, even having executed nodes w, w + 1, . . . , w + k⋆ − 1, some new sinks are
rendered eligible by executing the sources in {w + k⋆, . . . , w + ℓ − 1}. This means that
s + k⋆ ∈ Ss, i.e., that the integer s + k⋆ is the name of a real source of S. To wit, were this

12

not true, we would have ek⋆+1(s) = ek⋆(s) for all i > 1, so that, in particular, eℓ(s) < eℓ(w).
This would contradict the fact that Vs ≥L Vw.

Let t be the leftmost child of s + k⋆ (using the planar drawing of S to specify “leftmost”).
Since source s + k⋆ − 1 /∈ X, t was not rendered eligible by the execution of the sources
in X. Further, since s+k⋆ /∈ s[k⋆], t will not be rendered eligible by the execution of the
sources in s[k⋆].

We digress to introduce a useful notion. A source (resp., sink) u of a MW-strand is a
backbone source (resp., sink) if u is either extremal in the strand (i.e., leftmost or rightmost),
or u has at least two children (resp., at least two parents). We note the obvious, yet
important, fact that every maximal source is a backbone source. To wit, at least one of the
two neighboring (in the planar drawing) backbone sources of each non-backbone source s
has a lexicographically larger eligibility vector than s.

Our analysis now branches on whether or not s + k⋆ is a backbone source of S.

2b(i). If s + k⋆ is a backbone source, then we know four significant facts.

1. s + k⋆ ∈ X because h⋆ ≥ k⋆;
2. s + k⋆ is a backbone source by assumption;
3. s is a backbone source because it is maximal;
4. s + k⋆ 6∈ w[k⋆] because Vs ≥L Vw and h⋆ ≥ k⋆.

It follows that executing the nodes in X ∪ s[k∗] renders sink t eligible. Therefore, “unex-
ecuting” the sources in w[k⋆] loses us at most ek⋆(w)+ 1 eligible sinks. In compensation,
executing the sources in s[k⋆] gains us at least ek⋆(s)+1 eligible sinks—because t becomes
eligible when source s+k⋆−1 is executed. Thus, replacing X with X ′ = (X \ w[k⋆])∪s[k⋆]
leaves us with at least as many eligible sinks.

2b(ii). If s + k⋆ is not a backbone source, then in order to render sink t eligible, we
must execute not only s + k⋆, but also the set R ⊂ Ss that comprises all of the sources to
s + k⋆’s right (in the drawing), until we reach the next backbone source.

Let j⋆ ∈ [0, n] be the largest integer such that ek⋆(w) = ek⋆+j⋆(w); i.e., ek⋆(w) = ek⋆+1(w) =
ek⋆+2(w) = ek⋆+j⋆(w) < ek⋆+j⋆+1(w). Since the current case is defined by the condition
“ek⋆(w) < eℓ(w),” we know that every element of w[k⋆ + j⋆] belongs to X.

Easily, |R| ≤ j⋆. Were this not the case, then we would have ek⋆+j⋆+1(s) = ek⋆+j⋆(s) =
· · · = ek⋆(s) = ek⋆(w) < ek⋆+j⋆+1(w). This would contradict the fact that Vs ≥L Vw.

Note now that “unexecuting” the k⋆ + j⋆ sources in w[k⋆ + j⋆] would lose us no more
than ek⋆(w) + 1 eligible sinks. In compensation, executing the k⋆ sources in s[k⋆], plus
the at-most j⋆ sources in R gains us at least ek⋆(s) + 1 eligible sinks (because sink
t becomes eligible). Thus, replacing the set X with the (possibly smaller) set X ′ =
(X \ w[k⋆ + j⋆]) ∪ (s[k⋆] ∪ R) leaves us with at least as many eligible sinks.

13

The sequences of cases we have considered have established the following. By executing a
sequence of sources starting with s, instead of a like-numbered sequence starting with w,
we can only increase the total number of eligible sinks. The lemma follows.

3.2.2 ΣS continues to make good choices

Assume, for induction, that every ≥L-greedy schedule is IC optimal for all sums of MW-
strands having n or fewer sources. Lemma 3.1 verifies the (n = 1) case of this assertion.
Focus, therefore, on an arbitrary sums of MW-strands having n + 1 sources. Lemma 3.1
shows that every ≥L-greedy schedule, ΣS , chooses an optimal source s ∈ Src(S) to execute
in its first step. Hence, if we seek a set X ⊆ Src(S) that renders maximally many sinks of
S eligible, among cardinality-|X| subsets of Src(S), we can, with no loss of generality,
choose X to contain s. Let S ′ be the sum of MW-strands obtained by removing from S
source s plus all sinks that have s as their only parent.

Let the yield, Y ld(v), of a source v be the number of sinks that are rendered eligible by
executing just v. Removing s and its single-parent children effectively increases by 1 the
yields of the sources that neighbor s in Ss, if any.

Easily e(X;S) = Y ld(s)+e(X \{s} ; S ′). Since S ′ has fewer sources than S, our inductive
assumption asserts that schedule ΣS′ is IC optimal for S ′. It follows that schedule ΣS , which
executes s and then mimics schedule ΣS′, is IC optimal for S.

This completes the proof of Theorem 3.2, hence, also, of Theorem 3.1.

4 Exploiting Duality when Scheduling Dags

The results in this section apply to arbitrary dags, not just bipartite ones. Indeed, these
results represent a significant step in liberating our scheduling theory from its focus on
dags that are obtained via composition from any particular repertoire of CBBBs.

The dual of a dag G is the dag G̃ that is obtained by reversing all of G’s arcs. Clearly, the
sources of G are the sinks of G̃, and the sinks of G are the sources of G̃.

Note that the dual of an MW-strand is another MW-strand; the dual of an M-
strand is a W-strand; the dual of a W-strand is an M-strand. Specifically, for all

alternations of integers and reciprocals, D̂ [d1, d2, . . . , dn] = D
[

1

d1
, 1

d2
, . . . , 1

dn

]
.

In this section, we demonstrate that, for any dag G:

14

• one can easily “read off” an IC-optimal schedule for either of G or G̃ from an IC-
optimal schedule for the other (Section 4.1);

• one can easily determine ⊲-priority relationships of either G or G̃ from ⊲-priority
relationships of the other (Section 4.2).

Although the results in this section do not depend in any way on the composite-dag frame-
work of Theorem 2.1 (and the resulting scheduling algorithms of [15]), they do imply that

the theorem always applies to an arbitrary dag G and its dual, G̃, simultaneously. (See
Corollary 5.1 for a formal verification.)

4.1 Scheduling-Based Duality

Let G be a dag that has n nonsinks, comprising the set U = {u1, u2, . . . , un}, and N
nonsourcess, comprising the set {v1, v2, . . . , vN}. Let Σ be a schedule for G that executes
G’s nonsinks in the order

uk1
, uk2

, . . . , ukn−1
, ukn

(4.1)

(after which, Σ executes all of G’s sinks). Each node-execution of a nonsink, say ukj
, renders

eligible a (possibly empty) “packet” of nonsources, Pj = {vj,1, . . . , vj,ij} of G. (Clearly, G
must have an arc from ukj

to each node in Pj .) Thus, Σ renders G’s nonsources eligible

in a sequence of such “packets:”

P1 = {v1,1, . . . , v1,i1}, P2 = {v2,1, . . . , v2,i2}, . . . , Pn = {vn,1, . . . , vn,in}. (4.2)

A schedule Σ̃ for G’s dual dag, G̃, is dual to Σ if it executes G̃’s nonsinks—which, recall,
are G’s nonsources—in an order of the form

[[vn,1, . . . , vn,in]], [[vn−1,1, . . . , vn−1,in−1
]], . . . , [[v1,1, . . . , v1,i1]], (4.3)

where [[a, b, . . . , c]] denotes a fixed, but unspecified, permutation of the set {a, b, . . . , c}

(after which, Σ̃ executes all of G̃’s sinks). Note that G̃ will generally admit many schedules

that are dual to Σ. Note also that both Σ and Σ̃ honor Lemma 2.1(a).

Theorem 4.1. Let the dag G admit the IC-optimal schedule ΣG. Any schedule for G̃ that
is dual to ΣG is IC optimal.

Proof. Let ΣG execute G’s nonsinks in the order (4.1) and render G’s nonsources eligible

according to the partial order specified implicitly by (4.2). It follows that every schedule

for G̃ that is dual to ΣG executes G̃’s N nonsinks in an order of the form (4.3).

15

Assume now, for contradiction, that some schedule for G̃, call it, ΣeG
, is dual to ΣG but is

not IC optimal. There must then be a schedule Σ′
eG

for G̃ and a step t ∈ [1, N − 1] such

that EΣ′
eG

(t) > EΣ eG
(t). We show now that the existence of schedule Σ′

eG
refutes the alleged

IC optimality of schedule ΣG.

Let s ∈ [1, n] be the smallest number of nonsinks of G that schedule ΣG needs to execute
in order to render ≥ N − t nonsources of G eligible. In other words, EΣG

(s) ≥ N − t, but
EΣG

(s′) < N − t for all s′ < s. We claim that

EΣ eG
(t) ≥ n − s. (4.4)

To verify this inequality, note that, as ΣG executes nonsinks uk1
, uk2

, . . . , uks
of G during its

first s steps, it renders eligible the nonsources of G in the set P1 ∪ P2 ∪ · · · ∪ Ps; cf. (4.1,

4.2). Since EΣG
(s) ≥ N − t, it follows that t′

def

= |Ps+1 ∪ Ps+2 ∪ · · · ∪ Pn| ≤ t.

Since ΣeG
is dual to ΣG, during its first t′ steps, ΣeG

executes precisely the t′ nonsinks of

G̃ in the set Ps+1 ∪ Ps+2 ∪ · · · ∪ Pn. Because schedule ΣG is IC optimal, each node in
{uk1

, uk2
, . . . , uks

} must have—in G—an arc to one or more nodes in P1 ∪ P2 ∪ · · · ∪ Ps.
Were this not the case, ΣG could render ≥ N − t sinks of G eligible by executing (at

most) s− 1 nonsinks of G. It thus follows that the set of nonsources of G̃ that are rendered
eligible by ΣeG

’s first t′ node-executions is precisely the set {uks+1
, uks+2

, . . . , ukn
}, so that

EΣ eG
(t′) = n − s. Since t ≥ t′, this verifies inequality (4.4).

Recall now that, by hypothesis, EΣ′
eG

(t) > EΣ eG
(t). There must, then, be a set V =

{v1, v2, . . . , vt} of t nonsinks of G̃ that schedule Σ′
eG

executes during its first t steps, thereby

rendering eligible a set S comprising at least n− s + 1 nonsources of G̃. Clearly, there is
no arc in G̃ from any node of V to any node of S. It follows that any schedule Σ′

G for G that
executes the s′ ≤ s− 1 nonsinks of G in the set S during its first s′ steps renders eligible

all of the nonsources of G in the set V . But these nonsources are at least N − t in number!
It follows that EΣ′

G
(s − 1) > EΣG

(s − 1), which contradicts the alleged IC optimality of
schedule ΣG.

We conclude that schedule Σ′
eG

cannot exist, whence the (arbitrary dual) schedule ΣeG
is IC

optimal for G̃, as was claimed.

The following corollary of Theorem 4.1 is immediate from the fact that
˜̃
G = G.

Corollary 4.1. A dag G admits an IC-optimal schedule if, and only if, its dual, G̃, does.

4.2 Priority-Based Duality

We now derive ⊲-priorities between two dags, G1 and G2, from ⊲-priorities between their
dual dags, G̃1 and G̃2, respectively. For this purpose, it is convenient to supplement the

16

system of inequalities (2.1) that defines ⊲-priority with a dual formulation of the relation.

Let G be a dag that has N nonsources, and let Σ be a schedule for G. For any e ∈ [0, N],
let XΣ(e) be the smallest number of nonsinks of G that must be executed in order to render
at least e nonsources of G eligible. Let G1 and G2 be disjoint dags that, respectively,
have N1 and N2 nonsources and admit IC-optimal schedules Σ1 and Σ2. If the following
inequalities hold:

(∀e ∈ [0, N1]) (∀f ∈ [0, N2]) :
XΣ1

(e) + XΣ2
(f) ≥ XΣ1

(min{e + f, N1}) + XΣ2
(max{0, e + f − N1}),

(4.5)

then G1 has dual priority over G2, denoted G1⊲̃G2. Clearly, the relations ⊲̃ and ⊲ are
equivalent: the former relation strives to minimize the number of executed nonsinks
for a given number of eligible nonsources; the latter strives to maximize the number of
eligible nonsources for a given number of executed nonsinks. Stated formally,

Lemma 4.1. If the dags G1 and G2 admit IC-optimal schedules Σ1 and Σ2, respectively,
then G1 ⊲ G2 if, and only if, G1⊲̃G2.

Lemma 4.1 affords us easy access to the following result. (Note the reversal of indices.)

Theorem 4.2. For all dags G1 and G2: G1 ⊲ G2 if, and only if, G̃2 ⊲ G̃1.

Proof. For i = 1, 2, let Gi have ni nonsinks and Ni nonsources, and let it admit the IC-
optimal schedule Σi. Theorem 4.1 tells us how to construct, from Σi an IC-optimal schedule
Σ̃i for G̃i. Moreover, the proof of that theorem gives us valuable information about how Σi

and Σ̃i operate. Specifically (using the notation of the proof), recall that, in order to render

N−j nonsources of G̃ eligible, we must execute j nonsinks in packets Pj+1, Pj+2, . . . , PN—

or, equivalently, in order to render j nonsources of G̃ eligible, we must execute j nonsinks
in packets PN−j+1, PN−j+2, . . . , PN . Moreover, executing j nonsinks of G renders eligible

exactly the nonsources of packets P1, P2, . . . , Pj. Hence, for all e ∈ [0, ni],

XeΣi
(e) = |Pni−e+1 ∪ Pni−e+2 ∪ · · · ∪ Pni

|

= Ni − |P1 ∪ P2 ∪ · · · ∪ Pni−e|

= Ni − EΣi
(ni − e).

Thus, for any e ∈ [0, n1] and f ∈ [0, n2], we have

XeΣ1
(e) + XeΣ2

(f) = (N1 + N2) − EΣ1
(n1 − e) − EΣ2

(n2 − f). (4.6)

Say now that G1 ⊲ G2. By system (2.1), we then have

EΣ1
(n1 − e) + EΣ2

(n2 − f) ≤ EΣ1
(min{n1, n1 + n2 − e − f}) + EΣ2

(max{0, n2 − e − f}).

17

Combining this inequality with (4.6), we find that

XeΣ1
(e) + XeΣ2

(f) ≥ (N1 + N2) − EΣ1
(min{n1, n1 + n2 − e − f})

−EΣ2
(max{0, n2 − e − f})

= XeΣ1
(n1 − min{n1, n1 + n2 − e − f})

+XeΣ2
(n2 − max{0, n2 − e − f})

= XeΣ1
(max{0, e + f − n2}) + XeΣ2

(min{n2, e + f}).

This last inequality means that G̃2⊲̃G̃1, so that, by Lemma 4.1, G̃2 ⊲ G̃1, as claimed. The
converse follows “by running the argument backwards.”

5 Where We Are, and Where We’re Going

5.1 Conclusions

The results in this paper significantly expand, via two avenues, the range of dags that the
algorithmic theory of [15] can schedule IC optimally.

Expanding the repertoire of building blocks. In addition to the structurally uniform
dags of Fig. 1 and the simple composite dags of [15], we are now able to schedule IC
optimally any sequence of sums of MW-strands that is linearly ordered under ⊲-priority:
D1 ⊲ D2 ⊲ · · · ⊲ Dn. As but one significant illustration, we are now able to schedule IC
optimally the following three classes of dags, which are reminiscent of the dags encountered
in a variety of scientific computations. Let us be given:

• any sequence of sums of W-strands that is linearly ordered under ⊲-priority: S̆1 ⊲

S̆2 ⊲ · · ·⊲ S̆n;

• any sequence of sums of M-strands that is linearly ordered under ⊲-priority: S̃1 ⊲

S̃2 ⊲ · · ·⊲ S̃m.

Then any composite dag of one of the following three types admits the IC-optimal schedule
dictated by Theorem 2.1:

(1) S̆1 ⇑ · · · ⇑ S̆n, (2) S̃1 ⇑ · · · ⇑ S̃m, (3) S̆1 ⇑ · · · ⇑ S̆n ⇑ S̃1 ⇑ · · · ⇑ S̃m.

Informally, we now have scheduling control over a broad family of dags that are expansive,
reductive, and expansive-reductive (in the way that, e.g., many series-parallel [16] or fork-
join dags are). Fig. 5 exhibits two simple dags (constructed from those in Fig. 3) that

18

exemplify the expanded repertoire of dags that we can schedule IC optimally because of
our expanded repertoire of building blocks. In the figure: the lefthand dag is composite
of type W[4] ⇑ W[4, 2, 4, 3] ⇑ M[4, 2, 4, 3] ⇑ M[4], and the righthand dag is composite

of type W[5] ⇑ D̃
[

1

4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2

]
⇑ D

[
1

4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2

]
⇑ M[6]; straightforward

calculations using (2.1) show that W [4]⊲W [4, 2, 4, 3]⊲M[4, 2, 4, 3]⊲M[4] and that W [5]⊲

D̃
[

1

4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2

]
⊲ D

[
1

4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2

]
⊲ M[6].

Figure 5: Two dags that can now be scheduled IC optimally. Edges represent arcs that point
upward.

Exploiting duality to schedule dags optimally. We have shown how to “read off” an
IC-optimal schedule for an arbitrary dag G from an IC-optimal schedule for G’s dual. We
have also shown how to “read off” ⊲-priorities among a collection of dgas from ⊲-priorities
among their dual dags. This allows one to shortcut the algorithmic suite from [15] and its
upcoming sequel [4] when dealing with dags whose duals have previously been dealt with.
Alternatively, one can actually incorporate duality into the algorithmic suite, as suggested
by the following corollary to Theorems 4.1 and 4.2.

Corollary 5.1. If the dag G admits an IC-optimal schedule via Theorem 2.1, then so also
does its dual dag G̃.

Proof. The premise of the corollary implies that the dag G is composite of type G1 ⇑
G2 ⇑ · · · ⇑ Gn for some bipartite dags G1,G2, . . . ,Gn that admit IC-optimal schedules,
Σ1, Σ2, . . . , Σn, respectively, and that form a linear chain of ⊲-priorities, G1 ⊲ G2 ⊲ · · · ⊲
Gn. Consider the bipartite dags G̃1, G̃2, . . . , G̃n that are, respectively, dual to the dags
G1,G2, . . . ,Gn.

We note first that the dag G̃ that is dual to G is composite of type G̃n ⇑ G̃n−1 ⇑ · · · ⇑ G̃1.
We leave the verification of this easy fact to the reader.

Next, by Theorem 4.1, we know that, for each i ∈ [1, n], the dag G̃i admits an IC-optimal
schedule—specifically, one that is dual to the IC-optimal schedule Σi of Gi.

Finally, by Theorem 4.2, the dags G̃1, G̃2, . . . , G̃n form a linear chain of ⊲-priorities, G̃n ⊲

G̃n−1 ⊲ · · ·⊲ G̃1.

19

In summation, G’s dual dag G̃ satisfies the conditions of Theorem 2.1 whenever G does,
hence admits an IC-optimal schedule via the formula of that theorem.

5.2 Projections

Our work on this project proceeds in several directions.

Theory. We are engaged in investigations aimed at extending the scope of the theory of
[15] in a number of ways.

1. We are expanding the scheduling component of our theory to move further beyond
its current dependence on ⊲-linear compositions of building blocks. Our new work
focuses on (IC-optimal) schedules that allow the interleaved execution of building
blocks. Preliminary results appear in [4].

2. We are seeking a rigorous framework for devising schedules that are “approximately”
IC optimal. This thrust is important for computational reasons—a computationally
simple heuristic may be “almost as good” as a more arduously derived IC-optimal
schedule—and because many dags do not admit IC-optimal schedules.

3. We are working to extend our theory so that it can optimally schedule composite
dags whose building blocks are not necessarily bipartite.

Simulations and experiments. We are engaged in a suite of simulation experiments
that seek to determine the extent to which our scheduling algorithms actually enhance the
efficiency of Internet-based computations. A report on simulations involving real scientific
dags appears in [13]; a report on artificially generated ones is being prepared [9].

Integration with grid schedulers. Our most ambitious non-theoretical endeavor in-
volves incorporating our suite of scheduling algorithms into a real scheduling tool, the
Condor DAGMan tool [3]. Coauthor G. Malewicz developed a tool [13] for prioritizing the
jobs of a DAGMan file, while visiting Argonne National Lab.

Acknowledgments. A portion of the research of G. Cordasco and G. Malewicz was
done while visiting the Univ. of Massachusetts Amherst. A portion of the research of
G. Malewicz was done while visiting the Mathematics and Computer Science Division
of Argonne National Lab. The research of G. Malewicz was supported in part by NSF
Grant ITR-800864. The research of A. Rosenberg was supported in part by NSF Grant
CCF-0342417. The authors are grateful to Matt Yurkewych (UMass) and Michael Wilde
(Argonne) for valuable conversations at several stages of the research reported here.

20

References

[1] R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for
service oriented Grid computing. 10th Heterogeneous Computing Wkshp.

[2] W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into
a metacomputer. 13th Intl. Parallel Processing Symp., 160–166.

[3] Condor Project, University of Wisconsin. http://www.cs.wisc.edu/condor

[4] G. Cordasco, G. Malewicz, A.L. Rosenberg (2006): An enhanced dag-scheduling theory
for Internet-based computing. Typescript, Univ. Massachusetts.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to Algorithms
(2nd Edition). MIT Press, Cambridge, Mass.

[6] I. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing
Infrastructure (2nd Edition). Morgan-Kaufmann, San Francisco.

[7] I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable
virtual organizations. Intl. J. Supercomputer Applications.

[8] L. Gao and G. Malewicz (2006): Toward maximizing the quality of results of de-
pendent tasks computed unreliably. Theory of Computing Systs., to appear. See also,
Intl. Conf. on Principles of Distributed Systems, 2004.

[9] R. Hall, A.L. Rosenberg, A. Venkataramani (2006): A comparison of dag-scheduling
strategies for Internet-based computing. Typescript, Univ. Massachusetts.

[10] H.T. Hsu (1975): An algorithm for finding a minimal equivalent graph of a digraph.
J. ACM 22, 11–16.

[11] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling mecha-
nisms for global computing applications. Intl. Parallel and Distr. Processing Symp.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home:
massively distributed computing for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press, Los Alamitos, CA.

[13] G. Malewicz, I. Foster, A.L. Rosenberg, M. Wilde (2006): A tool for prioritizing DAG-
Man jobs and its evaluation.” 15th IEEE Intl. Symp. on High-Performance Distributed
Computing, 156–167.

21

[14] G. Malewicz and A.L. Rosenberg (2005): On batch-scheduling dags for Internet-based
computing. Euro-Par 2005. In Lecture Notes in Computer Science 3648, Springer-
Verlag, Berlin, 262–271.

[15] G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006): Toward a theory for scheduling
dags in Internet-based computing. IEEE Trans. Comput. 55, 757–768.

[16] M. Mitchell (2004): Creating minimal vertex series parallel graphs from directed
acyclic graphs. Australasian Symp. on Information Visualisation. In Conferences in
Research and Practice in Information Technology 35 (N. Churcher and C. Churcher,
Eds.) ACS Press, pp. 133-139.

[17] A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-
based computing. IEEE Trans. Comput. 53, 1176–1186.

[18] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428–438.

[19] X.-H. Sun and M. Wu (2003): GHS: A performance prediction and node scheduling
system for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

22

