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Abstract

A key challenge when scheduling computations over the Internet is temporal un-

predictability: remote “workers” arrive and depart at unpredictable times and often

provide unpredictable computational resources; the time for communication over the

Internet is impossible to predict accurately. In response, earlier research has devel-

oped the underpinnings of a theory of how to schedule computations having intertask

dependencies in a way that renders tasks eligible for execution at the maximum

possible rate. Simulation studies suggest that such scheduling: (a) utilizes resource

providers’ computational resources well, by enhancing the likelihood of having work

to allocate to an available client; (b) lessens the likelihood of a computation’s stalling

for lack of tasks that are eligible for execution. The applicability of the current ver-

sion of the theory is limited by its demands on the structure of the dag that models

the computation being scheduled—namely, that the dag be decomposable into con-

nected bipartite “building-block” dags. The current paper extends the theory by

developing the Sweep Algorithm, which takes a significant step toward removing this

restriction. The resulting augmented suite of scheduling algorithms allows one to

craft optimal schedules for a large range of dags that the earlier framework could not

handle. Most of the newly optimally scheduled dags presented here are artificial but

“close” in structure to dags that arise in real computations; one of the new dags is

a component of a large dag that arises in a functional Magnetic Resonance Imaging

application.

Keywords. IC-scheduling, IC-scheduling Theory, Internet-based computing, Grid

computing, Global computing, Scheduling dags, Theory.
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1 Introduction

Earlier work [28, 29] has developed the concept of IC-scheduling, a formal framework for

studying the problem of scheduling computations that have intertask dependencies, for the

several modalities of Internet-based computing (IC, for short). These modalities include Vol-

unteer computing [23], Peer-to-Peer computing (P2P) [32], Global computing [7] and Grid

computing [6, 12, 13]. Acknowledging the temporal unpredictability of IC—communication

is over the Internet, and resource providers are usually not dedicated to the computation

being scheduled—IC-scheduling strives to craft schedules that maximize the rate at which

tasks are rendered eligible for allocation to remote clients (hence for execution), with the

dual aim of: (a) enhancing the effective utilization of resource providers’ computational

resources, by always having work to allocate to an available client; (b) lessening the like-

lihood of a computation’s stalling pending completion of already-allocated tasks. Two

simulation studies—[24], which focuses on scheduling a small number of real scientific com-

putations, and [17], which derives eligibility-enhancing schedules for hundreds of artificially

generated computations—suggest that schedules produced under IC-scheduling often have

marked computational benefits over schedules produced by a variety of common heuristics

(including FIFO scheduling).

Inspired by the case studies of [28, 29], the study in [26] turned IC-scheduling from a collec-

tion of ad hoc optimal schedules for specific computation-dags to an algorithmic framework

that provides optimal schedules for a broad class of dags for IC. The development in [26]

begins with any collection of building-block dags that we know how to schedule optimally.

It develops two algorithmic notions that allow us to schedule complex computation-dags

built from these building blocks. (Section 2.2 provides technical details.)

1. The priority relation ⊲ on pairs of dags. The assertion “G1 ⊲ G2” asserts that the

schedule Σ that entirely executes G1 and then entirely executes G2 is at least as good

(relative to our quality metric) as any other schedule that executes both G1 and G2.

2. The operation of composition on pairs of dags. If one uses composition to construct
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a complex computation-dag G from a set of building blocks that are pairwise com-

parable under the relation ⊲, then we can often compute an optimal schedule for G

from optimal schedules for the building blocks.
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Figure 1: Data-dependency dags for five familiar computations: (left to right) recursive

matrix multiplication, a wavefront computation, the Fast-Fourier Transform (FFT), the

discrete Laplace transform, a divide-and-conquer computation.

The development of IC-scheduling is a work in progress, aimed at providing theoretical

underpinnings that will ultimately enable the design of systems that can speed up the

performance of IC platforms. In its current state, IC-scheduling already produces optimal

schedules for dags that arise within a large variety of disparate, important computations;

Fig. 1 depicts five such dags whose optimal schedules are derived in [9, 26, 28, 29]. Fig. 2

presents three artificial dags that are also scheduled optimally using the algorithmic frame-

work of [8, 26]; these dags illustrate that IC-scheduling does not demand the high degree

of structural uniformity observed in the dags of Fig. 1. The results of the simulation-

based studies of [24, 17] suggest that there would be significant practical benefits to using

a scheduler based on IC-scheduling to schedule important computations that are reused

frequently. Moreover, implementing the simulations in the studies has suggested that using

such a scheduler would not be computationally onerous.

The successes of the current version of IC-scheduling notwithstanding, there remain many

significant computation-dags that admit optimal schedules (via ad hoc analyses) that the

current framework cannot develop optimal schedules for. Fig. 3 presents three such dags.

The top two dags in the figure are artificial ones that we consider here because of their

superficial structural similarities to dags such as those in Figs. 1 and 2. The bottom dag
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Figure 2: Three composite dags that the framework of [8, 26] can schedule optimally.

Figure 3: Three dags that the framework of [8, 26] cannot schedule optimally, while our

extended framework can: (top) two artificial dags; (bottom) a disconnected dag inspired

by a functional MRI application.

is a replicated version of a component of a large functional Magnetic Resonance Imaging

computation-dag; see [24] for a more detailed description of this dag. (While only a single

instance of this last dag appears in the fMRI computation-dag, similar dags appear

multiple times, so the replicated version of this dag is consistent with the spirit of the

complete computation-dag.)

Clarification: It is easy to produce locally optimal schedules for dags such

as these. What was lacking prior to the current study were globally optimal

schedules.

The reason that the current version of IC-scheduling cannot produce optimal schedules for

dags such as those in Fig. 3 is that, as we demonstrate in Section 5, every optimal schedule

for these dags must interleave the execution of each dag’s building blocks—and the current

version of IC-scheduling is unable to produce schedules that perform such interleaving.
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The current paper adds to the scheduling framework of [8, 26] an algorithmic tool (see

Section 3) that significantly expands the repertoire of dags that IC-scheduling can schedule

optimally. This new tool results from algorithms that allow one: (a) to craft schedules that

interleave the execution of subdags that have no interdependencies, (b) to schedule using

bipartite building-block dags that need not be connected. In particular, the new framework

can schedule the three dags of Fig. 3 optimally. We remark that the new tool does not

change the order of complexity of the IC-scheduling framework. The tool is executed once,

to generate a large number of (possibly disconnected) building blocks that can be used

for every dag decomposition; the tool is, thus, particularly important for computations

(such as linear-algebraic ones) that will be performed many times. Moreove, as we show in

Section 5.2, the Sweep Algorithm can sometimes even speed up the IC-scheduling process.

The Sweep Algorithm is just one new “brick” in the edifice of IC-scheduling, but it provides

a significant new scheduling tool. The development of the algorithm and its applications

demands a rather sophisticated analysis, to which this paper is devoted. By expanding

the class of dags that can be scheduled optimally via IC-scheduling, the Algorithm allows

us to capture a larger repertoire of computation-dags, including some computationally

very important ones that appear in practical applications. As suggested by Fig. 3, the

new version of IC-scheduling can optimally schedule a much-broadened class of divide-

and-conquer dags; and the fMRI-inspired dags of the figure are representative of a very

significant class of computations that only now can be scheduled optimally.

Related work. The problem of scheduling a parallel program on a parallel/distributed

computing system, with the goal of minimizing job completion time, has been studied since

the advent of such systems; see, e.g., [19, 30] for many approaches to the problem. IC-

scheduling shares its overall strategy with the myriad approaches that schedule a complex

computation by decomposing it into subcomputations and developing a schedule for the

big computation by “composing” schedules for the smaller ones. Countless heuristics have

been developed for these usually NP-Hard problems, and many studies have attempted to
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analyze and compare such heuristics [15, 16, 20, 27]; a taxonomy of scheduling problems

and approaches appears in [21]. Despite the disparities in approach to scheduling described

in the cited sources, virtually every algorithm/heuristic that predates IC-scheduling shared

one central characteristic: they all relied on knowing (almost) exact times for each com-

puter to execute each subcomputation and to communicate its results with a collaborating

computer. The central premise underlying IC-scheduling is that within the world of IC

computing, one cannot even approach such exact knowledge. This premise is shared by

sources such as [22, 23], whose approaches to scheduling for IC platforms admit margins

of error in time estimates of 50% or more. Indeed, IC-scheduling is an analytically based

proposal for what to do when accurate estimates are out of the question.

Most closely related to the current study are its companions in developing IC-scheduling.

The topic is introduced in [28, 29], and optimal schedules are characterized for expansive

and reductive trees and meshes and for the FFT dag. We have already described the role

of [26] in beginning to develop IC-scheduling as an algorithmic framework. This framework

is extended significantly in [8], both by allowing one to exploit duality1 as a scheduling

tool and by greatly expanding the repertoire of building blocks accessible to the framework

of [26]. Motivated by the fact that many dags do not admit an optimal schedule in the

sense of IC-scheduling, the study in [25] proposes a batch-oriented scheduling regimen for

IC. Several sources focus on specific challenges encountered when scheduling dags for IC:

one finds in [14] a probabilistic approach to the problem of executing tasks on unreliable

clients; a framework for minimizing makespan when processors proceed asynchronously on

dags with unit-time tasks is studied and illustrated in [3]. Novel approaches to scheduling

computations having no intertask dependencies appear in many sources, including [1, 2,

4, 5]. Finally, the impetus for our study derives from the many exciting systems- and/or

application-oriented studies of IC, in sources such as [6, 7, 12, 13, 22, 23, 31].

1The dual of a dag G is obtained by reversing all of G’s arcs.
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2 A Basis for a Scheduling Theory

2.1 A Scheduling Model for IC

Computation-dags. A2
dag G has a set NG of nodes, each representing a task in a

computation, and a set AG of arcs, each representing an intertask dependency. For arc

(u→ v) ∈ AG:

• task v cannot be executed until task u is;

• u is a parent of v, and v is a child of u in G.

The indegree (resp., outdegree) of u ∈ NG is its number of parents (resp., children). A

parentless node is a source; a childless node is a sink. G is bipartite if NG can be partitioned

into X and Y , and each arc (u→ v) has u ∈ X and v ∈ Y . G is connected if it is so when

one ignores arc orientations. When NG1
∩NG2

= ∅, the sum G1 + G2 of dags G1 and G2 is

the dag with node-set NG1
∪NG2

and arc-set AG1
∪ AG2

.

Schedules and their quality. When one executes a dag G, a node v ∈ NG becomes

eligible (for execution) as soon as all of its parents have been executed. (Hence, sources

are always eligible.) We do not allow recomputation of nodes, so a node loses its eligi-

bility once it is executed. In compensation, after node v ∈ NG has been executed, new

nodes may be rendered eligible; this occurs when v is their last parent to be executed.

Informally, a schedule for G is a rule for selecting which eligible node to execute at each

step of an execution of G; formally, it is a topological sort of G, i.e., a linearization of NG

under which all arcs point from left to right. (We measure time in an event-driven man-

ner, as the number of nodes that have been executed thus far.) Letting EΣ(t) denote the

number of eligible nonsources on G after the tth node-execution under Σ, we define the

profile associated with schedule Σ for G as follows. For t ∈ [1, |NG|],
3

EΣ = (EΣ(1), EΣ(2), . . . , EΣ(|NG|))

2For brevity, we henceforth refer to “dags,” without the qualifier “computation.”
3[a, b] denotes the set of integers {a, a + 1, . . . , b}.
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We measure Σ’s quality at step t by the size of EΣ(t): the larger, the better. Our goal

is to execute G’s nodes in an order that maximizes quality at every step t ∈ [1, |NG|] of

the execution. Informally, a schedule Σ that achieves this demanding goal is IC-optimal;

formally, Σ is IC-optimal if for each schedule Σ′ for G, EΣ(t) ≥ EΣ′(t) for every t ∈

[1, |NG|]. Note that distinct IC-optimal schedules, Σ1 and Σ2, for G have identical associated

profiles: EΣ1
= EΣ2

.

The significance of IC optimality stems from two scenarios. (1) Schedules that produce

eligible nodes more quickly may reduce the chance of a computation’s stalling because

resource providers are slow—so no new tasks can be allocated pending the return of already

allocated ones. (2) If the IC Server receives several requests for tasks at (roughly) the same

time, then having more eligible tasks available allows the Server to satisfy more requests,

thereby increasing “parallelism.” The simulations in [24, 17] bolster our hope that this

intuition does indeed enhance the speed of IC computations.

2.2 A Framework for Crafting IC-Optimal Schedules

Simplifying the search for schedules. We lose no IC quality by executing all sources

of a bipartite dag before any sinks.

Lemma 2.1 ([26]). If a schedule Σ for a dag G is altered to execute all of G’s nonsinks

before any of its sinks, then the IC quality of the resulting profile is no less than Σ’s.

The priority relation ⊲. For i = 1, 2, let the dag Gi have si nonsinks, and let it admit

the IC-optimal schedule Σi. If the following inequalities hold:

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :

EΣ1
(x) + EΣ2

(y) ≤ EΣ1
(min{s1, x + y}) + EΣ2

(max{0, x + y − s1}),
(2.1)

then G1 has priority over G2, denoted G1 ⊲G2.
4 Informally, one never decreases IC quality

by executing a source of G1 whenever possible. Importantly: relation ⊲ is transitive [26].

4By definition, one can decide in time proportional to s1s2 whether or not G1 ⊲ G2.
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A framework for scheduling complex dags. The operation of composition is defined

inductively as follows.

• Start with a set B of base dags.

(The base dags considered in [8, 26] are connected bipartite dags. We term each

such base dag a CBBB, for “Connected Bipartite Building Block.”)

• One composes dags G1,G2 ∈ B—which could be the same dag with nodes renamed

to achieve disjointness—to obtain a composite dag G, as follows.

– Let G begin as the sum (or, disjoint union), G1+G2, of the dags G1,G2. Rename

nodes to ensure that NG is disjoint from NG1
and NG2

.

– Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an

equal-size set S2 of sources from the copy of G2 in the sum.

– Pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some way. The

resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.5

• Add the dag G thus obtained to the base set B.

We denote the composition operation by ⇑ and say that G is composite of type [G1 ⇑ G2].

Clearly, the composition operation is associative; i.e., G is composite of type [[G1 ⇑ G2] ⇑ G3]

if, and only if, it is composite of type [G1 ⇑ [G2 ⇑ G3]].

The dag G is a ⊲-linear composition of the connected bipartite dags G1, . . . ,Gn if: (a) G

is composite of type G1 ⇑ · · · ⇑ Gn; (b) Gi ⊲ Gi+1, for all i ∈ [1, n− 1].

Theorem 2.1 ([26]). Let G be a ⊲-linear composition of G1, . . . ,Gn, where each Gi admits

an IC-optimal schedule Σi. The schedule Σ for G that proceeds as follows is IC optimal.

1. For i = 1, . . . , n, in turn, Σ executes the nodes of G that correspond to nonsinks of Gi,

in the order mandated by Σi.

2. Σ finally executes all sinks of G in any order.

5An arc (u→ v) is induced if {u, v} ⊆ NG .
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One finds in [26] a suite of algorithms that determine whether or not a given dag G can be

decomposed into a set of CBBBs Gi that satisfy Theorem 2.1. In summary, the algorithms

operate as follows on a given dag G.

1. The first algorithm, borrowed from [18], “prunes” G to remove every arc a = (u, v)

that is a shortcut, in the sense that there is a path from u to v that does not use arc

a. It is shown in [26] that the resulting “skeleton” dag G ′ shares all of its IC-optimal

schedules (if any exist) with G.

2. The second algorithm “parses” G′ into CBBBs G1, . . . ,Gn, such that G′ is composite

of type G1 ⇑ · · · ⇑ Gn, or it determines that no such “parsing” is possible.

3. The third algorithm replaces G′ by its super-dag G′′. The nodes of G ′′ are the CBBBs

G1, . . . ,Gn; its arcs form a blueprint of the sequence of compositions that created G ′.

Specifically, if G ′ was formed by identifying some of the sinks of Gi with some of the

sources of Gj , then there is an arc from supernode Gi to supernode Gj in G′′.

4. The final algorithm determines whether or not there is an ⊲-linearization of the

CBBBs G1, . . . ,Gn that is consistent with the topological dependencies within G′′.

This means that if some Gi precedes some Gj in a topological sort of G ′′, then Gi ⊲Gj

in the ⊲-linearization.

The early success of [26] in scheduling significant dags (including those in Figs. 1 and 2)

leads to the current challenge of expanding the range of dags that we can schedule IC

optimally, especially dags that occur in practical applications.
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3 The IC-Sweep Algorithm

3.1 Overview

Throughout this section, focus on a sequence6 of p ≥ 2 disjoint dags, G1, . . . ,Gp, that have,

respectively, n1, . . . , np nonsinks, and that all admit IC-optimal schedules. This section

develops Algorithm IC-Sweep, an algorithm that efficiently accomplishes several tasks that

play an essential role in advancing the dag-scheduling framework of Section 2.2.

IC-optimal scheduling. Algorithm IC-Sweep can enable one either to craft an IC-optimal

schedule for a sum-dag G = G1 + · · ·+Gp or to prove that no such schedule exists. Notably,

the algorithm thereby gives one access to IC-optimal schedules that cannot be derived

from the framework provided by Theorem 2.1. One can now develop IC-optimal schedules

for many dags whose building blocks must be executed in an interleaved fashion in any

IC-optimal schedule. Indeed, the dags’ building blocks need no longer always be CBBBs:

they can now also be sums of CBBBs. The earlier framework required CBBB building

blocks that were executed without interleaving.

Speeding up certain scheduling procedures. Algorithm IC-Sweep can significantly

accelerate certain procedures that allow one to schedule in a divide-and-conquer manner.

An example of this benefit appears in Section 5.2.

Deciding ⊲-priorities. Algorithm IC-Sweep provides a nicely structured, efficient mech-

anism for determining whether or not the dags G1, . . . ,Gp form a ⊲-priority chain; i.e., do

we have G1 ⊲ · · ·⊲ Gp or not?

Timing. Our references to Algorithm IC-Sweep’s efficiency mean specifically that, when

given IC-optimal schedules Σ1, . . . , Σp for G1, . . . ,Gp (respectively), and their associated

6The order in which the dags are presented is significant.

12



profiles, EΣ1
, . . . , EΣp

, the algorithm operates on the sum G within time7

O

(

∑

1≤i<j≤p

ninj

)

= O
(

(n1 + · · ·+ np)
2
)

. (3.1)

3.2 Algorithm IC-Sweep

We begin to develop Algorithm IC-Sweep by simplifying the search space within which the

algorithm seeks an IC-optimal schedule for the sum G = G1 + · · ·+ Gp.

Lemma 3.1. If the sum G = G1 + · · ·+Gp admits an IC-optimal schedule Σ, then, for each

i ∈ [1, p], Σ must execute the nonsinks of G that come from Gi in the same order as some

IC-optimal schedule Σi for Gi.

Proof. We simplify exposition while conveying all relevant ideas by focusing on the case

p = 2. Let Σ be an arbitrary IC-optimal schedule for G = G1 + G2 that honors Lemma 2.1,

by executing all nonsinks before any sinks. For each t ∈ [1, n1 + n2], by step t, Σ will

have executed some k ≤ t nonsinks that come from G1 and t− k nonsinks that come from

G2. The total number of eligible nodes at step t will be the sum of the numbers of

nodes of G1 and G2 that are rendered eligible by executing those nonsinks. This sum

can, by definition, not decrease if the k nonsinks from G1 are those that some IC-optimal

schedule Σ1 for G1 would have executed, and the t − k nonsinks from G2 are those that

some IC-optimal schedule Σ2 for G2 would have executed.

Lemma 3.1 indicates that the secret to finding IC-optimal schedules for sums of dags that

individually admit IC-optimal schedules is to discover how to interleave the executions of

the nodes of the individual dags.

Focus henceforth on the IC-optimal schedules Σ1, . . . , Σp for G1, . . . ,Gp, respectively

7All uses of asymptotic notation (big O, big Ω) allow all specified variables to grow without bound.
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3.2.1 Algorithm IC-Sweep on two dags

To simplify exposition, we first describe Algorithm 2-IC-Sweep, the two-dag version of

Algorithm IC-Sweep (i.e., the case p = 2.)

Algorithm 2-IC-Sweep

1. Use the profiles associated with schedules Σ1 and Σ2 to construct an (n1 + 1)× (n2 + 1)

table E such that:

(∀i ∈ [0, n1])(∀j ∈ [0, n2])

E(i, j) is the maximum number of nodes of G1 + G2 that can be rendered eligible by

the execution of i nonsinks of G1 and j nonsinks of G2.

By Lemma 3.1, we can construct E as follows:

(∀i ∈ [0, n1])(∀j ∈ [0, n2]) E(i, j) = EΣ1
(i) + EΣ2

(j).

/*An initial portion of E appears in Table 1. (Recall that EΣ(0) ≡ 0.)*/

2. Perform a left-to-right pass along each diagonal i + j of E in turn, and fill in the (n1 +

1)× (n2 + 1) Verification Table V, as follows.

(a) Initialize all V(i, j) to “NO”

(b) Set V(0, 0) to “YES”

(c) for each t ∈ [1, n1 + n2]:

i. for each V(i, j) with i + j = t:

if V(i− 1, j) = “YES” or V(i, j − 1) = “YES”

and if E(i, j) = maxa+b=t{E(a, b)}

then set V(i, j) to “YES”

/*A rectilinear continuation has been found*/

ii. if no entry V(i, j) with i + j = t has been set to “YES”

then HALT and report “There is no IC-optimal schedule.”

/*A diagonal of “NO” entries precludes a rectilinear path*/

14



(d) HALT and report “There is an IC-optimal schedule.”

E 0 1 · · · n2

0 EΣ1
(0) + EΣ2

(0) EΣ1
(0) + EΣ2

(1) · · · EΣ1
(0) + EΣ2

(n2)

1 EΣ1
(1) + EΣ2

(0) EΣ1
(1) + EΣ2

(1) · · · EΣ1
(1) + EΣ2

(n2)

...
...

...
. . .

...

n1 EΣ1
(n1) + EΣ2

(0) EΣ1
(n1) + EΣ2

(1) · · · EΣ1
(n1) + EΣ2

(n2)

Table 1: An initial portion of the Table E constructed by Algorithm 2-IC-Sweep.

We claim that Algorithm 2-IC-Sweep achieves the claimed goals: the desired decision pro-

cedure for the existence of an IC-optimal schedule for G1 + G2 and for the existence of a

⊲-priority relation between the dags (in either direction).

Theorem 3.1. Let G1 and G2 be disjoint dags that admit, respectively, the IC-optimal

schedules Σ1 and Σ2 and that have, respectively, n1 and n2 nonsinks. Algorithm 2-IC-Sweep

determines, within time O(n1n2), whether or not the sum G1 + G2 admits an IC-optimal

schedule. In the positive case, the Algorithm provides such a schedule.

Proof. By Lemma 3.1, as we determine whether or not G1 + G2 admits an IC-optimal

schedule, we may restrict attention to schedules that execute the nonsinks of G1 in the

same order as does Σ1 and the nonsinks of G2 in the same order as does Σ2. Algorithm 2-

IC-Sweep does precisely this, by using optimal profiles as it constructs Table E .

The requirement that an IC-optimal schedule Σ produce maximally many eligible nodes

at every step t ∈ [1, n1 + n2] is, easily, equivalent to the assertion that Σ’s sequence of

node-executions specify a special type of rectilinear path within Table E , viz., a sequence of

Table entries obtained via a sequence of downward or rightward moves. This special path
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must connect entry E(0, 0) and entry E(n1, n2) while having each entry E(i, j) satisfy

E(i, j) = max
a+b=i+j

{E(a, b)}.

Algorithm 2-IC-Sweep uses the Verification Table V to search for just such a path. Indeed,

any rectilinear path of “YES” entries in successive diagonals of Table V specifies an IC-

optimal schedule for G = G1 + G2. Specifically: a downward move mandates executing the

next nonsink of G1 that is mandated by Σ1; a rightward move mandates executing the next

nonsink of G2 that is mandated by Σ2. Moreover, the absence of such a rectilinear path

indicates that no schedule for G maximizes the number of eligible nodes at every step.

The timing of Algorithm 2-IC-Sweep is obvious because a constant-time computation is

performed at every entry of V. We leave the detailed analysis to the reader.

By Theorem 2.1, one way for G1 + G2 to admit an IC-optimal schedule is if either G1 ⊲ G2,

or G2 ⊲ G1, or both. Algorithm 2-IC-Sweep can be used to detect these special cases:

• G1 ⊲G2 if, and only if, Table V contains a path of “YES” entries from position V(0, 0)

to position V(n1, n2), that is shaped like an uppercase “L,” i.e., that performs n1

downward moves followed by n2 rightward moves.

• G2 ⊲G1 if, and only if, Table V contains a path of “YES” entries from position V(0, 0)

to position V(n1, n2), that is shaped like the digit “7,” i.e., that performs n2 rightward

moves followed by n1 downward moves.

Note. Because all IC-optimal schedules for a dag produce the same profiles, Algorithm 2-

IC-Sweep produces the same tables, hence reaches the same conclusions in the same amount

of time, no matter which IC-optimal schedules one uses for the summand dags G1 and G2.

3.2.2 Algorithm IC-Sweep on multiple dags

A naive extension of Algorithm 2-IC-Sweep that operates on a sum of p > 2 dags, G =

G1 + · · ·+ Gp, would extend the 2-dimensional tables E and V to p-dimensional tables. A
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thus-extended algorithm would operate in time Ω(n1 × · · · × np). We gain efficiency by

rewriting G in the form (· · · ((G1 + G2) + G3) + · · ·+ Gp) and using Algorithm 2-IC-Sweep

iteratively to “sweep-analyze” the dags according to this expression. Thus implemented,

the algorithm operates in the (generally) much-lower time (3.1). This strategy applies

Algorithm 2-IC-Sweep to the components of G seriatim, via the following regimen.

Algorithm IC-Sweep

1. Perform Algorithm 2-IC-Sweep on the sum G1 + G2.

2. For each step k = 2, 3, . . .:

(a) if Step k−1 does not succeed—i.e., the (k−1)th invocation of Algorithm 2-IC-Sweep

halts with the answer “NO”—then HALT and give the answer “NO”

(b) else if Step k−1 succeeds—i.e., the (k−1)th invocation of Algorithm 2-IC-Sweep

halts with the answer “YES”—then perform Algorithm 2-IC-Sweep on the sum

(G1 + · · ·+ Gk) + Gk+1.

Theorem 3.2. Let G1, . . . ,Gp be p ≥ 2 disjoint dags, that admit, respectively, the IC-

optimal schedules Σ1, . . . , Σp and that have, respectively, n1, . . . , np nonsinks. Algorithm IC-

Sweep determines, within time bounded above by (3.1):

1. whether or not the sum G1 + · · ·+ Gp admits an IC-optimal schedule; in the positive

case, the Algorithm provides an optimal schedule;

2. whether or not G1 ⊲ · · ·⊲ Gp.

Proof. We simplify expressions via the following abbreviations: G1,1 = G1, and, inductively,

G1,k = G1,k−1 + Gk. Algorithm IC-Sweep processes, in turn, G1 + G2, then G1,2 + G3, then

G1,3 + G4, and so on, until it has finally processed G
def

= G1,p−1 + Gp = G1 + · · ·+ Gp.

To prove the theorem, let us imagine that we have the p-dimensional analogue, Ep, of the

2-dimensional table E of Algorithm 2-IC-Sweep. Ep is obtained from the optimal profile of
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each dag Gj; in detail, using any IC-optimal schedule Σj for each Gj:

Ep(i1, . . . , ip) = EΣ1
(i1) + EΣ2

(i2) + · · ·+ EΣp
(ip). (3.2)

1. IC-optimality. As in the proof of Theorem 3.1, one shows easily that the sum G

admits an IC-optimal schedule if, and only if, there is an (n1 + · · ·+ np)-entry rectilinear

path in Table Ep that connects entries Ep(0, . . . , 0) and Ep(n1, . . . , np), whose jth element,

for each j ∈ [0, n1 + · · ·+ np], has maximum value within the jth “diagonal hyperplane,”

{〈i1, . . . , ip〉 | i1 + · · ·+ ip = j}. In other words, there is a sequence of table entries each

of whose indices increments precisely one coordinate, and whose jth element is maximum

over all table entries Ep(i1, . . . , ip) with i1 + · · ·+ ip = j.

We verify by induction on p that Algorithm IC-Sweep correctly determines whether or

not G admits an IC-optimal schedule. By Theorem 3.1, Algorithm 2-IC-Sweep makes the

correct 2-dag determination at each step of Algorithm IC-Sweep. This yields the base case,

p = 2, so we need verify only that G admits an IC-optimal schedule if, and only if, for each

k ∈ [2, p− 1], each “prefix” sum G1,k admits an IC-optimal schedule.

We extend the induction by establishing a correspondence between the p-dimensional table

Ep and the 2-dimensional table E created when Algorithm IC-Sweep invokes Algorithm 2-

IC-Sweep on the sum G1,p−1 + Gp. The generic entry, Ep(i1, . . . , ip), of Ep is given in (3.2);

assuming, by induction, that G1,p−1 admits an IC-optimal schedule, Σ1,p−1 and that

E((i1 + . . . + ip−2), ip−1) = EΣ1,p−1
(i1 + . . . + ip−1)

= max
j1+...+jp−2=i1+...+ip−2

Ep−1(j1, . . . , jp−2, ip−1),

the generic entry, E((i1 + . . . + ip−1), ip), of E is given by

E((i1 + . . . + ip−1), ip) = E((i1 + . . . + ip−2), ip−1) + EΣp
(ip).

Since our inductive hypothesis tells us that

E((i1 + . . . + ip−2), ip−1) = EΣ1,p−1
(i1 + · · ·+ ip−1)

= max
j1+...+jp−2=i1+...+ip−2

Ep−1(j1, . . . , jp−2, ip−1),
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we see that

E((i1 + . . . + ip−1), ip) = EΣ1,p−1
(i1 + · · ·+ ip−1) + EΣp

(ip)

= EΣ1,p
(i1 + · · ·+ ip)

= max
j1+...+jp−1=i1+...+ip−1

Ep(j1, . . . , jp−1, ip).

This extends our induction: Algorithm IC-Sweep makes correct decisions about the exis-

tence of IC-optimal schedules. Moreover, it produces such a schedule if one exists. To wit:

after each step k ∈ [2, p− 1], the algorithm provides an IC-optimal schedule for G1,k, if one

exists; hence, after step p, we have an IC-optimal schedule for G1,p = G, if one exists.

2. ⊲-priorities. The ⊲-priority chain, G1 ⊲ · · ·⊲Gp, exists if, and only if, the Verification

table Vp, constructed in the natural way from Ep, contains a dimension-by-dimension path

of “YES” entries, from Vp(0, 0, . . . , 0) to Vp(n1, . . . , nk+1), that covers, in turn,

all dimension-1 entries: Vp(0, 0, . . . , 0), . . . , Vp(n1, 0, . . . , 0),

then all dimension-2 entries: Vp(n1, 0, . . . , 0), . . . , Vp(n1, n2, . . . , 0),
...

...
...

...

then all dimension-p entries: Vp(n1, n2, . . . , 0), . . . , Vp(n1, n2, . . . , np).

Instead of explicitly generating the p-dimensional table Vp and searching for a dimension-

by-dimension path of “YES” entries, Algorithm IC-Sweep constructs a sequence of two-

dimensional tables V
(2)
2 , . . . , V

(p)
2 and, at each stage k ∈ [2, p], checks if V

(k)
2 contains a

path of “YES” entries from V
(k)
2 (0, 0) to V

(k)
2 (n1 + · · · + nk, nk+1), that is shaped like an

uppercase “L.” The presence of the kth such path indicates that Gi,k ⊲ Gk+1. We leave to

the reader the induction on k that invokes the transitivity of ⊲ to establish the following.

Claim. For each k ∈ [2, p], if G1,k ⊲ Gk+1, then G1 ⊲ · · ·⊲ Gk+1.

3. Timing. Our first invocation of Algorithm 2-IC-Sweep sweep-analyzes G1 and G2,

hence takes time T1,2 ≤ αn1n2, for some constant α > 0 that is characteristic of the

algorithm and independent of the sizes of the swept dags . Our second invocation sweep-

analyzes (G1 + G2) and G3, hence takes time T1,3 ≤ α(n1 + n2)n3. Inductively, our kth
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invocation of the algorithm sweep-analyzes (G1 + · · · + Gk−2) and Gk−1, hence takes time

T1,k ≤ α(n1 + · · ·+nk−2)nk−1. Collectively, then, Algorithm IC-Sweep operates within time

p
∑

i=2

T1,i ≤ α
∑

1≤i<j≤p

ninj ,

thus verifying the claimed time (3.1). Note that this timing analysis is independent of the

order in which the dags Gi are sequenced for the sweep.

3.3 Sample Applications of Algorithm IC-Sweep

3.3.1 A sum of dags that requires interleaved scheduling

Consider two CBBBs: B1, which appears in Fig. 4(a), and B2, which appears in Fig. 4(b).

The dags are “swept” in Table 2. One easily discerns the following three facts from the

11 2 2

(a) (b)

Figure 4: Two CBBBs whose sum requires an interleaved schedule: (a) B1; (b) B2.

B1 B2 → 0 1 2

↓

0 0 3 5

1 4 7 9

2 6 9 11

Table 2: The Table E constructed by Algorithm 2-IC-Sweep for the CBBBs B1 and B2 of

Fig. 4. The boxed entries indicate an IC-optimal schedule for B1 + B2.

rectilinear paths between entries E(0, 0) and E(2, 2) in Table 2.
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1. Neither B1 ⊲ B2 nor B2 ⊲ B1.

No path shaped like an “L” or a “7” describes an IC-optimal schedule.

2. The sum B1 + B2 admits an IC-optimal schedule.

The highlighted path contains only diagonal-maximizing entries.

3. Both IC-optimal schedules for B1 + B2 (corresponding to the two rectilinear paths in

Table E) execute node 1 of B1 in the first step and node 1 of B2 in the second step.

We thus see that the sum B1 + B2 admits an IC-optimal schedule—but only an inter-

leaved one. This verifies that Algorithm IC-Sweep gives us algorithmic access to IC-optimal

schedules that IC-scheduling, as presented in Section 2.2 cannot produce. In Section 4,

we incorporate Algorithm IC-Sweep into IC-scheduling, thereby affording one access to

interleaved IC-optimal schedules.

3.3.2 dags that admit no IC-optimal schedule

One can use Algorithm 2-IC-Sweep to show that the dag G3 of Fig. 5(a) does not admit an

7

0
0

(b)

(L) (R)

(a)

(L) (R)

2 3
1

6

2 3 4 5
1

Figure 5: Two dags that cannot be scheduled IC optimally: (a) G3; (b) G4.

IC-optimal schedule. To wit, every execution of G3 must begin by executing node 0, G3’s

only source. Having executed node 0, one is left with the challenge of optimally executing
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the sum-dag G
(L)
3 +G

(R)
3 , where G

(L)
3 (resp., G

(R)
3 ) is the sub-dag of G3 within the lefthand

(resp., the righthand) dashed box in Fig. 5(a). One sees in Table 3 that G
(L)
3 +G

(R)
3 does not

admit an IC-optimal schedule. Informally, in order to maximize the number of eligible

G
(L)
3 G

(R)
3 → 0 1 2

↓

0 0 0 2

1 1 1 3

Table 3: The Table E constructed by Algorithm 2-IC-Sweep for the left and right sub-dags

of G3; cf. Fig. 5(a). Boxed entries indicate maxima along diagonals.

nonsources at step 1 of an execution of G
(L)
3 + G

(R)
3 , node 1 (in the figure) must be the

first-executed node. However, in order to maximize the analogous number at step 2, nodes

2 and 3 (in the figure) must be the first two executed nodes.

A more complicated application of Algorithm 2-IC-Sweep, which employs the same reason-

ing as we just employed with G3, shows that the dag G4 of Fig. 5(b) does not admit an

IC-optimal schedule. Assume, for contradiction that it did admit the IC-optimal schedule

Σ. Easily, Σ would execute node 0, G4’s unique source, first. From that point on, Σ would

have to craft an IC-optimal schedule for the sum-dag G
(L)
4 +G

(R)
4 .8 Now, every IC-optimal

schedule for G
(L)
4 executes nodes 1, 2 (in either order) and then executes node 6; similarly,

every IC-optimal schedule for G
(R)
4 executes nodes 3, 4, 5 (in some order) and then exe-

cutes node 7. We can, therefore, use Algorithm 2-IC-Sweep to determine whether or not

G
(L)
4 + G

(R)
4 admits an IC-optimal schedule—and we do so in Table 4. Easily, the Table

shows that the sum does not admit an IC-optimal schedule.

8G
(L)
4 (resp., G

(R)
4 ) is the sub-dag of G4 within the lefthand (resp., righthand) dashed box in Fig. 5(b).
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G
(L)
4 G

(R)
4 → 0 1 2 3 4

↓

0 0 0 0 1 3

1 0 0 0 1 3

2 1 1 1 2 4

3 2 2 2 3 5

Table 4: The Table E constructed by Algorithm 2-IC-Sweep for the left and right boxed

subdags of G4; cf. Fig. 5(b). Boxed entries indicate maxima along diagonals.

4 Scheduling DAGs Using Algorithm IC-Sweep

Algorithm IC-Sweep advances IC-scheduling theory by taking a major step toward liberating

the theory from its dependence on connected building blocks (the only type appearing in

[8, 26]). One can often now employ interleaved schedules for sums of CBBBs. This section

is devoted to developing this extended capability.

4.1 The Enabling Theorem

One can often infer ⊲-priorities between sums of dags, even if one does not have such

priorities among the dags within each sum.

Theorem 4.1. Let us be given p + 1 dags, G1, . . . ,Gp, and G′ such that:

• for each i ∈ [1, p], Gi has ni nonsinks and admits the IC-optimal schedule Σi; let

n = n1 + · · ·+ np;

• G′ has n′ nonsinks and admits the IC-optimal schedule Σ′;

• the sum G
def

= G1 + · · ·+ Gp admits the IC-optimal schedule Σ.

If Gi ⊲ G ′ for all i ∈ [1, p], then G ⊲ G′.
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Proof. By Lemma 3.1, we may assume that Σ honors the order of nonsink-executions of

Σ1, . . . , Σp. Consider a regimen for executing the nonsinks of both G and G′, using Σ for

the former and Σ′ for the latter. Focus on a step t when

• For each i ∈ [1, p], Σ has executed xi nonsinks from Gi; let x
def

= x1 + · · ·+ xp.

• Σ′ has executed y nonsinks from G′.

Clearly, t = x + y. The posited ⊲-priorities among the Gi’s and G′ allow us to derive the

following chain of (in)equalities, which holds whenever y > 0 and xi < ni for all i ∈ [1, p].

EΣ(x) + EΣ′(y) = EΣ(x1 + · · ·+ xp) + EΣ′(y)

=
(

EΣ1
(x1) + · · ·+ EΣp

(xp)
)

+ EΣ′(y)

≤ EΣ

(

x +

p
∑

i=1

(min{ni, xi + y} − xi)

)

+ EΣ′

(

p
∑

i=1

max{0, xi + y − ni}

)

.

We iterate the transfer of nonsink-executions from G′ to G for as long as possible, i.e., as

long as y > 0 and, for some i ∈ [1, p], xi < ni. Since Gi ⊲ G′ for all i ∈ [1, p], once this

process has terminated, we shall either have reduced y to 0, having thereby increased x to

x + y, or we shall have increased x to n1 + · · · + np, at which point no further transfers

are possible. Thereby, we shall have transformed the sum EΣ(x) + EΣ′(y) to the sum

EΣ(min{n, x+y})+EΣ′(max{0, x+y−n′}). Because the described process never decreases

the then-current value of the sum EΣ(x) + EΣ′(y), we infer that G ⊲ G ′, as claimed.

An induction that repeatedly invokes the transitivity of ⊲ yields the following, which

ensures that our expanded scheduling algorithm subsumes the algorithm of [26].

Corollary 4.1. Say that each of the p + q dags, G1, . . . ,Gp and G′1, . . . ,G
′
q, admits an

IC-optimal schedule.

If G1 ⊲ · · ·⊲ Gp ⊲ G′1 ⊲ · · ·⊲ G′q

then (G1 + · · ·+ Gp) ⊲ (G′1 + · · ·+ G′q).
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4.2 The Scheduling Consequences of Theorem 4.1

In the light of Theorem 4.1, Algorithm IC-Sweep allows us to expand the algorithmic suite

of Section 2.2 and, thereby, to greatly expand the range of dags that we know how to

schedule IC optimally. Our new scheduling regimen proceeds as follows.

1. Invoke the first three algorithms of Section 2.2 to produce, in succession:

(a) the “pruned,” shortcut-free dag G′,

(b) the constituent CBBBs B1, . . . ,Bn of G′, each admitting an IC-optimal schedule

(whenever possible),

(c) the super-dag G′′ whose nodes are B1, . . . ,Bn and whose arcs indicate composi-

tions thereof.

2. If the super-dag G′′ cannot be generated—because some constituent subalgorithm or

condition fails—then the new strategy does not produce a schedule for G.

3. We seek to decompose G′′ into CBBBs, or sums thereof, that witness a ⊲-linearization

of G′′. We start with:

• G ′′, as the current remnant super-dag R,

• an empty list L, as our current progress toward a ⊲-linearization of G′′.

Let RB denote the R obtained by removing source-CBBB B from the current R.

(a) If some source-CBBB Bi ofR satisfies: for each source-CBBB Bj ofRBi
, Bi⊲Bj ,

then delete Bi from R (i.e., R← RBi
) and append it to list L. Go to step (a).

(b) If R is empty, then we are done: L is the desired ⊲-linearization of G′′.

(c) Say that we reach a point where, for each source-CBBB Bi of R, there is a

source-CBBB Bj of RBi
such that Bi 6 ⊲Bj . Then we attempt to extend L via

Theorem 4.1—since we cannot just append a new source-CBBB. To this end:

i. Assemble all source-CBBBs, B′
1, . . . ,B

′
k of R.
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ii. Say that (A) B′ = B′
1 + · · ·+B′

k admits an IC-optimal schedule; (B) B′
i ⊲Bj

for all i ∈ [1, k], and for each source-CBBB Bj of RB′ .9 Then we invoke

Theorem 4.1 to infer that B′
⊲Bj for each source-CBBB Bj of RB′; we can,

therefore append B′ to list L. We then return to step (a).

iii. If the source-CBBBs do not satisfy conditions (A) and (B), then stop, declar-

ing that no linearization could be found.

The preceding procedure is validated via the following invariant, which is verified using the

transitivity of ⊲-priority.

If the described procedure succeeds, then every CBBB or sum of CBBBs that is

added to list L has ⊲-priority over every CBBB in the remnant super-dag.

L thus converges to a ⊲-linearization of G ′′, whose components are CBBBs or sums thereof.

5 The Benefits of the Sweep Algorithm

Algorithm IC-Sweep advances the basic algorithmic framework of IC-scheduling, as devel-

oped in [8, 26], along two major fronts. Most importantly, the algorithm allows us to

develop IC-optimal schedules for a large class of dags that did not yield to the earlier

framework. Less obviously, the algorithm speeds up certain procedures required by the

framework. We illustrate the former benefit in Section 5.1 and the latter in Section 5.2.

5.1 DAGs That Can Now Be Scheduled IC Optimally

We illustrate our extended IC-scheduling framework by finding IC-optimal schedules for

the three dags of Fig. 3. We begin with the following schematic scheduling problem. Let

9Note that both conditions, (A) and (B), are checked efficiently using Algorithm IC-Sweep.
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us be given a dag G with p + 1 levels of nodes; i.e., NG is the disjoint union N0 ∪ · · · ∪Np,

and, for each arc (u→ v) ∈ AG, there is an i ∈ [0, p−1] such that u ∈ Ni and v ∈ Ni+1. Say

moreover that for each i ∈ [0, p− 1], the induced subgraph of G on the node-set Ni ∪Ni+1

is a sum of CBBBs: Gi = Bi,1 + · · ·+ Bi,pi
. Say finally that:

• each CBBB Bi,j admits an IC-optimal schedule;

• each sum-dag Gi = Bi,1 + · · ·+ Bi,pi
admits an IC-optimal schedule;

• for all i ∈ [0, p− 1], j ∈ [1, pi], and k ∈ [1, pi+1], we have Bi,j ⊲ Bi+1,k.

Under these circumstances, our extension of IC-scheduling guarantees the IC optimality

of the schedule that executes each sum G1, . . . ,Gp in turn. This optimality is verified via

repeated invocation of Corollary 4.1.

We instantiate the preceding schematic scheduling problem with two specific ones. We

show how our extension of IC-scheduling finds IC-optimal schedules for the two dags

on the top level of Fig. 3, neither of which could be scheduled IC optimally within the

framework of [26]. While both of these illustrative dags are artificial ones, their structures

are reminiscent of dags arising in actual computations, several of which appear in [9]. Thus

these are significant examples of the power added by our extended framework.

1. We turn first to the intransigent top-lefthand dag G of Fig. 3. We begin by parsing G,

using the algorithm of [26], into its seven constituent CBBBs, call them B1, . . . , B7. The

3 4

1 2

5 6

7

Figure 6: The super-dag formed from the dag G of Fig. 3 using the new algorithm.

27



resulting super-dag appears in Fig. 6, with each CBBB Bi in a dashed box labeled i. Next,

we test all inter-CBBB ⊲-priorities. We noted in Table 2 that neither of B1 nor B2 has

⊲-priority over the other; but each other pairing of the CBBBs does admit a ⊲-priority, as

indicated by the highlighted entries in the subtables of Table 5.

B1 (B3 = B4)→ 0 1 2

↓

0 0 0 1

1 4 4 5

2 6 6 7

B2 (B3 = B4)→ 0 1 2

↓

0 0 0 1

1 3 3 4

2 5 5 6

B4 B6 → 0 1 2 3

↓

0 0 0 0 1

1 0 0 0 1

2 1 1 1 2

B6 B5 → 0 1 2 3 4

↓

0 0 0 0 0 1

1 0 0 0 0 1

2 0 0 0 0 1

3 1 1 1 1 2

Table 5: The Tables E constructed by Algorithm 2-IC-Sweep on pairings of the constituent

CBBBs of the dag G of Fig. 3.

Specifically, the subtables in Table 5 show explicitly that:

[B1 ⊲ (B3 = B4)] and [B2 ⊲ (B3 = B4)] and [(B3 = B4) ⊲ B6 ⊲ (B5 = B7)].

By transitivity, then, for all i ∈ [3, 6], B1 ⊲ Bi and B2 ⊲ Bi. Therefore, by Theorem 4.1:

(B1 + B2) ⊲ B3 ⊲ B4 ⊲ B6 ⊲ B5 ⊲ B7.

These priorities collectively yield an IC-optimal schedule for G, using Theorem 2.1.

2. We next consider the top-righthand dag G′ of Fig. 3. Having discussed the preceding

dag G in detail, the reader should be prepared for us to be a bit sketchier with G′. We
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first parse G′, using the algorithm of [26], into its three constituent CBBBs, B0, B1, and

B2. (B1 and B2 retain their names from Section 3.3.1.) Note that any execution of G′ must

begin with its single source, after whose execution, we are left with the chore of executing

the sum B1 +B2, which we discuss in detail in Section 3.3.1. The reader can now derive the

super-dag of G′ depicted in Fig. 7, from which we readily derive an IC-optimal schedule

for G′: execute the source; then execute the IC-optimal schedule derived from Table 2.

0

1 2

Figure 7: The super-dag formed from the righthand dag G′ of Fig. 3 via the new algorithm.

3. We deal finally with a small, but typical, version of the bottom sum-dag of Fig. 3

depicted in Fig. 8. Easily, the lefthand summand-dag, call it G(L) (resp., the righthand

A B C D E F

Figure 8: A small version, G(L) + G(R), of the fMRI sum-dag at the bottom of Fig. 3.

summand-dag, call it G(R)) admits the IC-optimal schedule that executes sources in the

order C, B, A (resp., F, D, E) and then executes the sinks in some order that is not

relevant to IC quality. Accordingly, we cleave to these orders of source-executions as we

use Algorithm 2-IC-Sweep to schedule the sum-dag G(L) + G(R). The result appears in

Table 6. The highlighted entries in the table provide several IC-optimal schedules for the

sum-dag, while indicating all of them are interleaved schedules.
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G(L) G(R) → 0 1 2 3

↓

0 0 3 4 5

1 3 6 7 8

2 4 7 8 9

3 5 8 9 10

Table 6: The table constructed by Algorithm 2-IC-Sweep on the summand dags of Fig. 8.

5.2 Speeding Up Scheduling Procedures

A sequence of positive numbers is zigzagged if it alternates integers and reciprocals of

integers, with all integers exceeding 1. For any zigzagged sequence δ̂, the δ̂-Planar Bipartite

Tree (PBT, for short), denoted P[δ̂], is defined inductively as follows; see Fig. 9.

Figure 9: The PBT P
[

1
4
, 3, 1

3
, 3, 1

2
, 2, 1

4
, 3, 1

2
, 4
]

.

The base cases. For each d > 1:

• P [d] has one source, d sinks, and d arcs connecting the source to each sink.

• P
[

1
d

]

has one sink, d sources, and d arcs connecting each source to the sink.

The inductive extensions. For each zigzagged sequence δ̂ and each d > 1:

• If δ̂ ends with a reciprocal, then P [δ̂, d] is obtained by giving d − 1 new sinks

to P[δ̂], with P [δ̂]’s rightmost source as their common parent.

• If δ̂ ends with an integer, then P
[

δ̂, 1
d

]

is obtained by giving d− 1 new sources

to P[δ̂], with P [δ̂]’s rightmost sink as their common child.

One finds in [8] a recursive algorithm that produces an IC-optimal schedule for any s-source

PBT P in time Θ(s3); this timing does not vary with P’s structure. The overall flow of the
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algorithm is the repeated discovery, in time Θ(s2), for various sub-PBTs of P , of a source

that is maximal under a specified partial order. Algorithm IC-Sweep yields an alternative

scheduling algorithm for PBTs, that, in expectation, is faster by a factor of O(s). This

new algorithm, call it A, is also built upon the core task of finding maximal sources of

sub-PBTs, but it exploits each PBT’s structure to accelerate its search for an IC-optimal

schedule. A proceeds as follows. Let T (s) denote the expected time for A to find an IC-

optimal schedule for PBT P , given that all s-source PBTs are equally likely to occur, so

that all of P’s sources are equally likely to be maximal.

1. A invokes the procedure from [8] to find a maximal source v of P . Via the analysis

in that paper, this process takes time Θ(s2).

Because P is planar, if v has outdegree k, then removing it (by executing it) partitions

P into sub-PBTs, P1 and P2, having, respectively, s1 ∈ [0, s−1] and s−s1−1 sources.

2. In time T (s1) + T (s − s1 − 1), A recursively finds IC-optimal schedules for P1 and

P2.

3. A uses Algorithm IC-Sweep to combine these IC-optimal schedules into an IC-optimal

schedule for P. By Theorem 3.2, this process takes time Θ(s2).

Because expectations add, and because all sources of P are equally likely to be maximal,

we can add up the preceding contributions to T (s). We let a > 0 be the constant promised

by the big-Θ notation, such that

T (s) ≤
1

s

s−1
∑

q=0

(T (q) + T (s− q − 1)) + as2 ≤
2

s

s−1
∑

q=0

T (q) + as2. (5.1)

Assume, for induction, that there exists a constant b > 0 such that T (m) ≤ bm2 for all

m < s. We then have from (5.1):

T (s) ≤
2b

s

s−1
∑

q=0

q2 + as2 ≤

(

a +
2b

3

)

s2 + l.o.t.

Clearly, if b > 3a, then T (s) ≤ bs2, which extends the induction.
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We thus have a procedure that takes cubic time via a naive implementation, which can be

sped up to quadratic expected time by using Algorithm IC-Sweep.

6 Where We Are, and Where We’re Going

Conclusions. We have made a major extension to IC Scheduling by devising Algorithm IC-

Sweep and incorporating it into the algorithmic scheduling framework of [8, 26]. The thus-

extended framework can produce IC-optimal schedules for a much broader range of dags,

including ones that abstract simplified versions of real scientific computations. Much of the

added power of the extension comes from the new ability to craft schedules that interleave

the execution of sub-dags. An additional dividend of Algorithm IC-Sweep, that enhances

this extension, is that the algorithm efficiently detects ⊲-priority chains for arbitrary se-

quences of dags and—even more importantly—it decides of dags G1, . . . , Gp that admit

IC-optimal schedules, whether or not their sum, G1 + · · ·+Gp, admits such a schedule. An

unexpected dividend is that Algorithm IC-Sweep sometimes accelerates certain procedures

mandated by the framework of [8, 26].

Projections. We are expanding IC Scheduling theory in several directions.

1. We are seeking a rigorous framework for devising schedules that are “approximately”

IC optimal. This thrust is important for computational reasons—a computationally

simple heuristic may be “almost as good” as a more arduously derived IC-optimal

schedule—and because many dags do not admit IC-optimal schedules.

2. We are working to extend our theory so that it can optimally schedule composite

dags whose building blocks are not necessarily bipartite.

In addition to these theoretical initiatives, we are planning experiments using both WAN

simulators and small-scale IC platforms that will help us gauge the implications of our

idealized algorithmic framework for real IC.
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