
Toward Understanding Heterogeneity in Computing∗

Arnold L. Rosenberg and Ron C. Chiang
Dept. of Electrical & Computer Engineering

Colorado State University
Fort Collins, CO 80523, USA

{rsnbrg,ron.chiang}@colostate.edu

Abstract

Heterogeneity complicates the efficient use of multicomputer platforms, but does it en-
hance their performance? their cost effectiveness? How can one measure the power of a
heterogeneous assemblage of computers (“cluster,” for short), both in absolute terms (how
powerful is this cluster) and relative terms (which cluster is more powerful)? What makes
one cluster more powerful than another? Is one better off with a cluster that has one super-
fast computer and the rest of “average” speed or with a cluster all of whose computers are
“moderately” fast? If you could replace just one computer in your cluster with a faster one,
which computer would you choose: the fastest? the slowest? How does one even ask ques-
tions such as these in a rigorous, yet tractable manner? A framework is proposed, and some
answers are derived, a few rather surprising. Three highlights: (1) If one can replace only
one computer in a cluster by a faster one, it is provably (almost) always most advantageous to
replace the fastest one. (2) If the computers in two clusters have the same mean speed, then,
empirically, the cluster with the larger variance in speed is (almost) always the faster one. (3)
Heterogeneity can actually lend power to a cluster!

1 Motivation and Background

Modern multicomputer platforms are heterogeneous: their constituent computers vary in compu-
tational powers, and they often intercommunicate over layered networks of varying speeds [12].
One observes substantial heterogeneity in modern platforms such as: clusters [2, 22]; modalities
of Internet-based computing [21] such as grid computing [9, 15], global computing [11], volunteer
computing [17], and cloud computing [10]. The difficulty of scheduling complex computations

∗A portion of this paper appeared at the 24th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS), 2010.

1



on heterogeneous platforms greatly complicates the challenge of high performance computing in
modern environments. In 1994, the first author noted the need for better understanding of the
scheduling implications of heterogeneity via rigorous analyses [24]. There has since been an im-
pressive amount of first-rate work on this topic—focusing largely on collective communication
[3, 4, 8, 16, 18, 23, 26], but also studying important scheduling issues [1, 5, 6, 7, 14, 19]. That
said, sources such as [1] show that there is still much to learn about this important topic—including
the questions in the abstract.

1.1 “Understanding” Heterogeneity

Many sources view heterogeneity as a computational encumbrance that arises from negative fac-
tors such as hardware failure and obsolescence. Thus viewed, heterogeneity is a phenomenon that
must be coped with—but that we would be better off without. In fact, our study illustrates that het-
erogeneity should often be welcomed! We study heterogeneity within the context of the following
formal model.

We have access to n + 1 computers: the server C0 and a cluster C comprising n computers,
C1, . . . , Cn, which may differ dramatically in speed. (We call C a “cluster” for convenience: the
Ci may be geographically dispersed and more diverse in power than that term usually connotes.)
We have a uniform workload, and each Ci can complete one unit of work in ρi time units.1 The
vector 〈ρ1, . . . , ρn〉 is C’s (heterogeneity) profile. For convenience:

• We index the Ci in nonincreasing order of power, so that ρ1 ≥ · · · ≥ ρn.

• We normalize the ρi so that the slowest computer, C1, has ρ-value ρ1 = 1. (This “power
indexing” only identifies computers, so normalization cannot lead to problems.)

We study heterogeneity within the context of the questions in the abstract. How does one deal with
such questions rigorously? When can one say that cluster C1 “outperforms” (or, is more “powerful”
than) cluster C2? We invoke the framework of a remarkable result from [1] that characterizes all
optimal solutions to the cluster-exploitation problem, a simple scheduling problem for node-
heterogeneous clusters solely in terms of clusters’ heterogeneity profiles. We thereby isolate the
heterogeneity of C1 and C2 as the only respect in which they differ: both are performing the same
computation optimally, given their respective resources.

Highlighted results. Among our several results, three stand out. (1) If one can replace only one
computer in a cluster by a faster one, then it is (almost) always most advantageous to replace
the fastest computer. This is always true for “additive” speedups (Theorem 3) and almost always
for “multiplicative” ones (Theorem 4). (2) If the computers in two n-computer clusters have the
same mean speed, then the cluster with the larger variance in computers’ speeds is (almost) always
the faster one (Section 4). This is provably always true for 2-computer clusters; empirically, it is
true 76% of the time for larger clusters—and (also empirically), true 100% of the time when the

1Note that faster computers have smaller ρ-values.

2



difference in variances is sufficiently large (≥ 0.167). (3) Heterogeneity can actually lend power
to a cluster! (Corollary 1).

1.2 The Cluster-Exploitation Problem

C0 has W units of work consisting of mutually independent tasks of equal sizes and complex-
ities.2 (Such workloads arise in diverse applications such as data smoothing, pattern matching,
ray tracing, Monte-Carlo simulations, chromosome mapping [17, 20, 27].) The tasks’ (common)
complexity can be an arbitrary function of their (common) size. C0 must distribute a “package” of
work to each Ci ∈ C, in a single message. Each unit of work produces δ ≤ 1 units of results; each
Ci must return the results from its work, in one “package,” to C0. These activities must be orches-
trated so that at most one intercomputer message is in transit at a time. Consider the following
simple computational problem.

The Cluster-Exploitation Problem (CEP).3 C0 must complete as many units of work as possible
on cluster C within a lifespan of L time units.

A unit of work is “complete” once C0 has transmitted it to a Ci, and Ci has computed the unit and
transmitted its results to C0. We call a schedule for the CEP a worksharing protocol.

The main focus of this paper is on deriving insights into the nature of heterogeneity in computing,
using mathematical analyses, simulations that illustrate and elucidate the analytical results, and
simulation-based experiments that study problems that have thus far eluded analysis (especially in
Section 4).

2 Worksharing Protocols and Work Production

2.1 The Architectural Model [12]

We assume that C’s computers are (architecturally) balanced in the following sense: if ρi < ρj ,
then every one of Ci’s subsystems (memory, I/O, etc.) is faster, by the factor ρj/ρi, than the cor-
responding subsystem of Cj . Computers intercommunicate over networks with a uniform transit
rate of τ time units to send one unit of work from any Ci to any Cj . Before injecting a message
M into the network, Ci packages M (e.g., packetizes, compresses, encodes) at a rate of πi time
units per work unit. When Cj receives M, it unpackages it, also at a rate of πj time units per work
unit.4 We ignore the fixed costs associated with transmitting M—the end-to-end latency of the

2“Size” refers to specification length; “complexity” refers to computation time.
3It is shown in [1] that an optimal solution to the CEP can be converted efficiently into an optimal solution to the

CEP’s dual, the Cluster-Rental Problem: C0 must complete W units of work on cluster C in as few time units as
possible.

4We equate packaging and unpackaging times; this is consistent with most actual architectures.

3



first packet and the per-message set-up overhead—because their impacts fade over long lifespans
L. Recall that at most one intercomputer message can be in transit at any moment.

We thus envisage an environment (workload plus platform) in which several linear relationships
hold. The cost of transmitting work grows linearly with the total amount of work performed:
formally, there are constants κ and κ′ such that transmitting w units of work takes κw time units,
and receiving the results from that work takes κ′w time units. These relationships allow us to
measure both time and message-length in the same units as work.

Note. A linear relationship between task-size and task-complexity does not limit tasks’ (common)
complexity as a function of their (common) size: κ is just the ratio of the fixed task size to the
complexity of a task of that size.

Table 1 provides intuition about the sizes of the model’s parameters and provides us with definite
values for our simulations.

Parameter Wall-Clock Time/Rate
Transit rate (pipelined): τ 1 µsec per work unit
Packaging rate: π 10 µsec per work unit
Result-size rate: δ 1 work unit per work unit

Table 1: Sample parameter values for perspective (used in simulations).

2.2 Worksharing Protocols [1]

One remote computer. C0 shares w units of work with a single Ci via the process summarized in
the action/time diagram of Fig. 1:

C0 packages work is Ci receives Ci computes Ci packages results are C0 receives
work for Ci in transit the work the work its results in transit the results

π0w τw πiw ρiw πiδw τδw π0δw

Figure 1: Worksharing with one remote computer (not to scale).

Many remote computers. A pair of ordinal-indexing schemes for C’s computers (to comple-
ment the power-indexing) helps us orchestrate communications while solving the CEP. The
startup indexing specifies the order in which C0 transmits work within C; it labels the computers
Cs1 , . . . , Csn , to indicate that Csi

receives work—hence, begins working—before Csi+1
. Dually,

the finishing indexing labels the computers Cf1 , . . . , Cfn , to specify the order in which they return
their results to C0. Protocols proceed as follows.

4



1. Transmit work. C0 prepares and transmits ws1 units of work for Cs1 . It immediately prepares
and sends ws2 units of work to Cs2 via the same process. Continuing thus, C0 supplies each
Csi

with wsi
units of work seriatim—with no intervening gaps: it starts processing Csi+1

’s
work immediately after finishing Csi

’s.

2. Compute. As soon as Ci receives its work from C0, it unpackages and performs the work.

3. Transmit results. As soon as Ci completes its work, it packages its results and transmits
them to C0.

We choose work-allocations wi so that, with no gaps, C’s computers:

• receive work and compute in the startup order Σ = 〈s1, . . . , sn〉;
• complete work and transmit results in the finishing order Φ = 〈f1, . . . , fn〉;
• complete all work and communications by time L.

The described protocol is summarized in Fig. 2. Note that in this figure, Σ and Φ coincide:
(∀i)[fi = si]. This is not true in general—cf. [1]—but protocols that share this coincidence are
quite special within the context of the CEP.

C0 sends sends sends
work to C1 work to C2 work to C3

(π0 + τ)w1 (π0 + τ)w2 (π0 + τ)w3

C1 waits processes results
(π1 + ρ1)w1 (π1 + τ)δw1

C2 waits waits processes results
(π2 + ρ2)w2 (π2 + τ)δw2

C3 waits waits waits processes results
(π3 + ρ3)w3 (π3 + τ)δw3

Figure 2: Worksharing with three remote computers (not to scale).

2.3 Solving the CEP Optimally: the FIFO Protocol

The FIFO protocol is defined by coincident startup and finishing indexings (Σ = Φ), as in Fig. 2.

As long as L is large enough, FIFO protocols solve the CEP optimally [1].

5



Theorem 1 ([1]). Over any sufficiently long lifespan L, for any heterogeneous cluster C—no mat-
ter what its heterogeneity profile:

1. FIFO worksharing protocols provide optimal solutions to the CEP.

2. C is equally productive under every FIFO protocol, i.e., under all startup indexings.

Because FIFO protocols solve the CEP optimally, and because their work production depends only
on a cluster’s heterogeneity profile, we use these solutions as our vehicle for studying clusters’
heterogeneity.

2.4 Two Ways to Measure a Cluster’s Computing Power

The X-measure and work production. The obvious way of using the CEP to measure a cluster
C’s computing power is to determine how much work C completes in L time units. The coda of
Theorem 1 in [1] does this via an explicit expression. To simplify expressions, let A = π + τ and
B = 1 + (1 + δ)π; see Table 2.

Sample Values for Perspective
Quantity Wall-Clock Time/Rate

A = π + τ : 11 µsec per work unit
B = 1 + (1 + δ)π (per-task time) +11× 10−6 sec per work unit
B with coarse (1 sec/task) tasks 1.000011 sec per work unit
B with finer (0.1 sec/task) tasks 0.100011 sec per work unit

Table 2: Sample parameter values for perspective.

Theorem 2 ([1]). Let C have profile P = 〈ρ1, . . . , ρn〉. Letting

X(P) =
n∑

i=1

1

Bρi + A
·

i−1∏
j=1

Bρj + τδ

Bρj + A
, (1)

the asymptotic work completed by C under the FIFO protocol is W (L; P) =
1

τδ + 1/X(P)
· L.

Because X(P) “tracks” W (L; P), in that X(P1) ≥ X(P2) if and only if W (L; P1) ≥ W (L; P2),
we use X(P) as our primary measure of C’s computing power.

The Homogeneous-Equivalent Computing Rate. X(P) is a viable and tractable measure but
not very perspicuous. We therefore employ the following alternative measure for a heterogeneous

6



cluster C with profile P = 〈ρ1, . . . , ρn〉. Consider a homogeneous cluster C(ρ), with profile P(ρ) =
〈ρ, . . . , ρ〉 for some ρ ≤ 1. C’s homogeneous-equivalent computing rate (HECR), ρC , is the
largest ρ such that X(P(ρC)) ≥ X(P).5

Proposition 1. The HECR of cluster C is

ρC =
A− τδ

B −
(
1− (A− τδ)X(P)

)1/n

B

− A

B

Proof. By (1),

X(P(ρ)) =
1

A− τδ

(
1 −

(
Bρ+ τδ

Bρ+ A

)n)
. (2)

By (2), then,
Bρ+ τδ

Bρ+ A
=

(
1− (A− τδ)X(P(ρ))

)1/n

Therefore,
Bρ+ τδ = (Bρ+ A)

(
1− (A− τδ)X(P(ρ))

)1/n

so that

Bρ
(
1−

(
1− (A− τδ)X(P(ρ))

)1/n
)

= A
(
1− (A− τδ)X(P(ρ))

)1/n − τδ

and

ρ =
1

B
·
A

(
1− (A− τδ)X(P(ρ))

)1/n − τδ

1− (1− (A− τδ)X(P(ρ)))
1/n

Proposition 1 now follows by considering the following symbolic simplification. For all D,

AD − τδ

1−D
=

A− τδ

1−D
− A.

2.5 The HECR Measure “in Action”

We illustrate HECRs as performance measures by focusing on two n-computer heterogeneous
clusters, which are identified via their profiles.

For any integer function f , denote the sequence 〈f(1), . . . , f(n)〉 by 〈f(i)|ni=1〉.
5Because the value of ρ calibrates a heterogeneous cluster’s power, we must violate our normalizing convention

and allow ρ to assume any value ≤ 1. Recall: a smaller ρ-value means a faster computer.

7



Cluster C1 has profile P
(n)
1 =

〈(
1−(i−1)/n

)∣∣n
i=1

〉
, i.e., each ρi = 1−(i−1)/n; and cluster C2 has

profile P
(n)
2 =

〈(
1/i

)∣∣n
i=1

〉
, i.e., each ρi = 1/i. The speeds of C1’s computers are spread evenly in

the range [1/n, 1], while the speeds of C2’s computers are weighted in the faster half of the range,
namely, [1/n, 1/2]; e.g., when n = 8, P

(8)
1 =

〈
1, 7

8
, . . . , 1

8

〉
, and P

(8)
2 =

〈
1, 1

2
, . . . , 1

8

〉
. Most of C2’s

computers are faster than their counterparts in C1, a fact that should influence the clusters’ HECRs:
C1’s HECR should be larger than C2’s (Prop. 1). Table 3 presents HECRs for three instantiations
of C1 and C2: with 8, 16, and 32 computers/cluster. As expected, C1’s HECR is larger than C2’s
for each cluster size. Additionally, because all but one of C2’s computers have ρ-values ≤ 1/2,
while half of C1’s computers have ρ-values > 1/2, we expect that C2’s work advantage over C1

should increase with cluster size. Table 3 demonstrates this trend: the ratio of C2’s HECR to C1’s
improves from roughly 1.7 for 8 computers/cluster to roughly 2.6 for 16 computers to more than 4
for 32 computers.

Cluster Profile
Number of Computers

8 16 32

C1

〈(
1− (i− 1)/n

)∣∣n
i=1

〉
0.366 0.298 0.251

C2

〈
(1/i)

∣∣n
i=1

〉
0.216 0.116 0.060

Table 3: HECRs for sample heterogeneous clusters

The remainder of the paper is devoted to studying the following question: What determines a
cluster’s power?

3 Speeding up a Cluster Optimally

We study how to speed up a cluster “optimally.” After showing that replacing any of C’s computers
by a faster one always enhances C’s power, we consider which Ci ∈ C is the most advantageous
one to replace. We study both additive speed-ups, wherein a computer with speed ρ is replaced by
one with speed ρ− ϕ, and multiplicative speed-ups, wherein a computer with speed ρ is replaced
by one with speed ψρ. (Of course, 0 < ϕ < ρn and 0 < ψ < 1, so every computer can be “sped
up.”)

3.1 Faster Clusters Complete More Work

Speedups always enhance work production under the FIFO protocol.

Proposition 2. FIFO protocols complete more work on faster clusters; i.e., given profiles P =
〈ρ1, . . . , ρi, . . . , ρn〉 and P′ = 〈ρ1, . . . , ρ

′
i, . . . , ρn〉: if ρ′i < ρi, then for allL,W (L; P′) > W (L; P).

8



Proof. Let profiles P and P′ be as in the statement of the proposition. We use a device from [1] to
show that X(P′) > X(P), so that W (L; P′) > (L; P) for all L.

We begin by refining the expression (1) forX(P) to make explicit the startup order Σ = 〈s1, . . . , sn〉
used by C. (By Theorem 1.2, this has no impact on C’s work production.) As we write X(P; Σ)
to announce the use of Σ, the only impact on (1) is that the occurrence of “ρi” in the expression
becomes “ρsi

,” and the two occurrences of “ρj” become “ρsj
.” We next choose any startup order

Σ for C, for which sn = i; i.e., Σ has the form Σ = 〈s1, . . . , sn−1, i〉. We then form the appropriate
versions of (1) that use startup order Σ. For the sake of perspicuity, we write these versions in the
following way, which emphasize that X(P; Σ) and X(P′; Σ) differ only in their first terms.

X(P; Σ) =
1

A+Bρsn

n−1∏
j=1

Bρsj
+ τδ

A+Bρsj

+
n−1∑
i=1

1

A+Bρsi

i−1∏
j=1

Bρsj
+ τδ

A+Bρsj

X(P′; Σ) =
1

A+Bρ′sn

n−1∏
j=1

Bρsj
+ τδ

A+Bρsi

+
n−1∑
i=1

1

A+Bρsi

i−1∏
j=1

Bρsj
+ τδ

A+Bρsj

Direct calculation now shows that

X(P′; Σ)−X(P; Σ) =
B(ρsn − ρ′sn

)

(A+Bρ′sn
)(A+Bρsn)

·
n−1∏
j=1

Bρj + τδ

A+Bρj

.

This difference is positive because ρsn = ρi > ρ′i = ρ′sn
. We thus have X(P′; Σ) > X(P; Σ).

3.2 Which Computer Should One Speed Up?

Say that one has resources to replace only one of cluster C’s computers by a faster one—or, equiv-
alently, to speed up a single computer. Which computer should one choose? Say that cluster C
has heterogeneity profile P = 〈ρ1, . . . , ρn〉, where each ρk ≥ ρk+1. Let i and j > i be two of C’s
power indices. Is it more beneficial to speed up Ci or Cj? Of course, this question makes sense
only when Ci is strictly slower than Cj , so that ρi > ρj . We answer this question twice—once for
additive speedups and once for multiplicative ones.

The analyses that embody our comparisons are simplified if we require C to employ a startup
ordering Σ from a specific class—even though part (2) of Theorem 1 assures us that Σ has no
impact on W (L; P). Specifically, we have C employ a startup ordering Σ = 〈s1, . . . , sn−1, sn〉 for
which sn = i and sn−1 = j. Under such an ordering, we can rewrite expression (1) for X(P)
in the following convenient way, using two quantities that are independent of ρi and ρj and that,
importantly, are both positive.

X(P) =
A+B(ρsn−1 + ρsn) + τδ

A2 + AB(ρsn−1 + ρsn) +B2ρsn−1ρsn

· Y (P) + Z(P) (3)

9



where

Y (P) =
n−2∏
k=1

Bρsk
+ τδ

Bρsk
+ A

and Z(P) = X(ρs1 , . . . , ρsn−2)

The fact that a faster cluster completes more work than a slower one suggests that we compare
competing heterogeneity profiles, P and P′, via their work ratio, W (L; P′)/W (L; P).

3.2.1 The additive-speedup scenario

We compare two profiles: P(i) is obtained by speeding up the slower computer (of the two we
are focusing on), viz., Ci; P(j) is obtained by speeding up the faster computer, viz., Cj . Both
speedups are by the additive term ϕ < ρn. (This inequality ensures that we can speed up any of
C’s computers by the term ϕ.)

P(i) = 〈ρ1, . . . , ρi − ϕ, . . . , ρj, . . . , ρn〉
P(j) = 〈ρ1, . . . , ρi, . . . , ρj − ϕ, . . . , ρn〉

Intuitively, the faster computer C is, the more “bang” one gets for one’s “buck” by speeding C up
additively.

Theorem 3. Under the additive-speedup scenario, the most advantageous single computer to
speed up is C’s fastest computer.

Proof. As we compare X(P(i)) and X(P(j)), we lose no generality by using a startup ordering
Σ = 〈s1, . . . , sn−1, sn〉 for C’s computers for which sn = i and sn−1 = j. We then obtain the
following expressions via (3).

X(P(i)) =
A+B(ρi + ρj − ϕ) + τδ

A2 + AB(ρi + ρj − ϕ) +B2(ρi − ϕ)ρj

· Y (P) + Z(P)

X(P(j)) =
A+B(ρi + ρj − ϕ) + τδ

A2 + AB(ρi + ρj − ϕ) +B2ρi(ρj − ϕ)
· Y (P) + Z(P)

These expressions differ only in the terms −B2ϕρj and −B2ϕρi < −B2ϕρj in the denominators
of the lead fractions of X(P(i)) and X(P(j)), respectively. (The “lead fraction” in both expressions
is the fraction that multiplies Y (P).) Because ρi > ρj , it follows that X(P(j)) > X(P(i)), whence
the result.

Additive speedup “in action.” We compare P(i) and P(j) via the work ratiosW (L; P(i))/W (L; P)
and W (L; P(j))/W (L; P). Prop. 2 assures us that both ratios exceed 1. We illustrate Theorem 3
“in action” by considering the optimal sequence of additive speedups when we begin with the 4-
computer heterogeneous cluster C whose profile is P =

〈
1, 1

2
, 1

3
, 1

4

〉
and the (additive) speedup term

10



ϕ = 1
16

. (Recall: C1 is C’s slowest computer, and C4 is its fastest.) Table 4 presents the work ratios
obtained by speeding up each of C’s computers in turn by the additive term ϕ. Table entries are
computed using expression (1) with the appropriate profile P. The table shows that one enhances

Profile Work ratio
i P(i) W (L; P(i))÷W (L; P)

1 〈15/16, 1/2, 1/3, 1/4〉 1.008
2 〈1, 7/16, 1/3, 1/4〉 1.014
3 〈1, 1/2, 13/48, 1/4〉 1.034
4 〈1, 1/2, 1/3, 3/16〉 1.159

Table 4: The work ratios as each of C’s 4 computers is sped up additively.

C’s work production: by 0.8% if one speeds up the slowest computer, C1, by 1.4% if one speeds
up the second slowest computer, C2, by 3.4% if one speeds up the second fastest computer, C3,
and by 15.9% if one speeds up the fastest computer, C4. Qualitatively similar results are observed
with other clusters C and other speedup terms ϕ.

3.2.2 The multiplicative-speedup scenario

We compare two profiles: P[i] is obtained by speeding up the slower computer (of the two we are
focusing on), viz., Ci; P[j] is obtained by speeding up the faster one, viz., Cj; both speedups are
by the multiplicative factor ψ < 1.

P[i] = 〈ρ1, . . . ψρi, . . . , ρj, . . . , ρn〉
P[j] = 〈ρ1, . . . , ρi, . . . , ψρj, . . . , ρn〉

The question of which computer to speed up has a more complicated answer with multiplicative
speedups than with additive ones. Informally, it is more advantageous to speed up the faster
computer multiplicatively—thereby (intuitively) getting more “bang” for one’s “buck”—unless
either this computer is already “very fast” or the speedup factor ψ is “very small.”

Theorem 4. Let C contain computers Ci and Cj , with respective ρ-values ρi and ρj < ρi. Under
the multiplicative-speedup scenario with speedup factor ψ:

1. If ψρiρj > Aτδ/B2, then speeding up Cj (the faster computer) allows one to complete more
work than does speeding up Ci.

2. If ψρiρj < Aτδ/B2, then speeding up Ci (the slower computer) allows one to complete
more work than does speeding up Cj .

11



Proof. We have C employ the same startup order Σ as we compare X(P[i]) and X(P[j]) as we did
when we comparedX(P(i)) andX(P(j)) (in Theorem 3); hence, sn = i and sn−1 = j. Specializing
(3) therefore yields

X(P[i]) =
A+B(ψρi + ρj) + τδ

A2 + AB(ψρi + ρj) +B2ψρiρj

· Y (P) + Z(P)

X(P[j]) =
A+B(ρi + ψρj) + τδ

A2 + AB(ρi + ψρj) +B2ψρiρj

· Y (P) + Z(P)

Clearly, then, we have X(P[i]) > X(P[j]) (resp., X(P[j]) > X(P[i])) if, and only if,

Υ[i] def
=

A+B(ψρi + ρj) + τδ

A2 + AB(ψρi + ρj) +B2ψρiρj

> Υ[j] def
=

A+B(ρi + ψρj) + τδ

A2 + AB(ρi + ψρj) +B2ψρiρj

(resp., Υ[j] > Υ[i]). By “cross-multiplying” to eliminate the fractions, we note finally that Υ[i] >
Υ[j] (resp., Υ[j] > Υ[i]) if, and only if, Ξ[i] > Ξ[j] (resp., Ξ[j] > Ξ[i]) where

Ξ[i] = A3 + A2B(ψρi + ρj) + A2τδ

+ A2B(ρi + ψρj) + AB2(ψρi + ρj)(ρi + ψρj) + AB(ρi + ψρj)τδ

+ AB2ψρiρj +B3ψρiρj(ψρi + ρj) +B2ψρiρjτδ

Ξ[j] = A3 + A2B(ρi + ψρj) + A2τδ

+ A2B(ψρi + ρj) + AB2(ψρi + ρj)(ρi + ψρj) + AB(ψρi + ρj)τδ

+ AB2ψρiρj +B3ψρiρj(ρi + ψρj) +B2ψρiρjτδ

Because ψ < 1 and ρi > ρj , the result follows by considering when the difference

Ξ[j] − Ξ[i] = [(B2ψρiρj − Aτδ)B][(1− ψ)(ρi − ρj)]

is positive and when it is negative.

Theorem 4 specifies the boundary values of “very fast” and “very small” in terms of the relation
between the quantity ψρiρj , which depends on the (present and anticipated) speeds of cluster
C’s computers, and the quantity Aτδ/B2, which depends on characteristics of the computational
environment: the output-to-input ration δ, the network transit rate τ , and the message-packaging
rate π. For perspective, with the values from Table 2, Aτδ/B2 ≈ 1.1 × 10−5. Hence, we expect
that speeding up the faster computer will usually be the better option in the multiplicative scenario,
as it is in the additive one.

Multiplicative speedup “in action.” The (simulation-based) experiment that illustrates multi-
plicative speedup “in action” is quite different from the one that illustrates additive speedup.
The current experiment begins with a 4-computer homogeneous cluster C whose profile is P =
〈1, 1, 1, 1〉. It iteratively optimally speeds C up via the factor ψ = 1/2. We observe the two con-
ditions of Theorem 4 “in action” via a sequence of “snapshots” that depict the successive profiles

12



of cluster C after each speedup. Each snapshot is depicted via a bar-graph (cf. Figs. 3 and 4) that
represents the then-current profile of C after one round of the experiment. Specifically, when the
four bars in a graph have heights ρ1, ρ2, ρ3, ρ4 from left to right, this means that C’s profile at that
round is 〈ρ1, ρ2, ρ3, ρ4〉.

The experiment proceeds as follows. Say that C has profile Pi after round i of the experiment. At
round i + 1, we consider four potential successors to profile Pi, call them P

[1]
i , P

[2]
i , P

[3]
i , and P

[4]
i .

Each profile P
[j]
i is obtained by speeding up only computer Cj of C, by the (multiplicative) factor

ψ = 1/2. We compare the work-productions of the four potential successor profiles, by comparing
the profiles’X-values,X(P

[1]
i ),X(P

[2]
i ),X(P

[3]
i ),X(P

[4]
i ); and we select the profile with the largest

work production to be profile Pi’s successor, Pi+i. In case of ties—wherein speeding up computers
Cj and Ck yield the same work-production—we choose to speed up the computer with the larger
index. (The independence of the FIFO protocol from computer ordering guarantees that our choice
has no impact on subsequent speedups.)

The first phase of the experiment, during which we observe condition (1) of Theorem 4 “in action,”
is depicted in Fig. 3. (We increased τ from 1 to 200 µsec/work unit to make the figure legible.)
We observe C’s profile “improving” (because of the speedups) in 16 steps from its initial value,
P = 〈1, 1, 1, 1〉, to the value P′ =

〈
1
16
, 1

16
, 1

16
, 1

16

〉
, by repeated speedup of C’s fastest computer.

In detail: this phase of the experiment begins with an invocation of our tie-breaking mechanism
because C is homogeneous before any speedups. We subsequently observe the repeated selection
of the then-current fastest computer as the best one to speed up in rounds 2–16. Observe that we
speed up computer C4 in round 1 because of our tie-breaking mechanism, but we speed it up in
rounds 2–4 because of condition (1) of Theorem 4. At round 5, condition (2) of Theorem 4 tells
us not to speed up computer C4 again. At that point, we again invoke the tie-breaking mechanism
to speed up computer C3, and the just-described cycle repeats, until C ends up in round 17 with
the profile

〈
1
16
, 1

16
, 1

16
, 1

16

〉
. At this point, we enter phase 2 of the experiment. (The procedure stays

fixed, but the results change.)

Once all of C’s computers achieve the speed ρi ≡ 1/16, all subsequent speedups follow condition
(2) in the theorem. Although we continue to speed up one of cluster C’s computers by the factor
ψ = 1/2, we observe the very different result predicted by condition (2). This phase of the
experiment is depicted in Fig. 4. (We changed the scale from that of Fig. 3 to make the new
snapshots legible.) In this second phase, we observe condition (2) of Theorem 4 invoked at every
step, which means that, at every step, C’s slowest computer is the best one to speed up (with the
tie-breaking mechanism used as necessary).

4 Predicting Clusters’ Powers via Profiles

Proposition 2 tells us that if cluster C1’s profile 〈ρ11, . . . , ρ1n〉 “minorizes” cluster C2’s profile
〈ρ21, . . . , ρ2n〉, in the sense that (a) for every i, ρ1i ≤ ρ2i, (b) for at least one i, ρ1i < ρ2i, then

13



Round 1 Round 2 Round 3 Round 4

Round 5 Round 6 Round 7 Round 8

Round 9 Round 10 Round 11 Round 12

Round 13 Round 14 Round 15 Round 16

Figure 3: Speeding up a cluster when not all computers are “very fast.” Bar heights correspond to
ρ-values: The highest bars have height (i.e., ρ-value) 1 and thereafter go down by factors of 2, so
the lowest bars have height (i.e., ρ-value) 1/16.

C1 outperforms C2. It is easy to show that the “minorization” condition is sufficient but not nec-
essary: C1 can outperform C2 even though some of C1’s computers are slower than any of C2’s.
For instance, a simple calculation shows that the cluster C1 with profile 〈0.99, 0.02〉 has a larger
X-value than—hence, outperforms—the cluster C2 with profile 〈0.5, 0.5〉. Note that in this exam-
ple, C1’s mean ρ-value exceeds C2’s—which shows that mean speeds are not valid predictors of
clusters’ relative computing powers. Are there valid predictors of clusters’ relative performance
that are based solely on clusters’ profiles—other than “minorization,” and, of course, other than
computing the clusters’ X-values or HECRs?

This section is devoted to studying the use of the symmetric functions and the statistical moments
of two clusters’ profiles6 to predict the clusters’ relative computing powers.

6Of course, we use the profile only to extract the set of ρ-values.

14



Round 17 Round 18 Round 19 Round 20 Round 21

Figure 4: Speeding up a cluster when all computers are “very fast.” Bar heights correspond to
ρ-values: The highest bars have height/ρ-value 1/16 and thereafter go down by factors of 2, so the
lowest bars have height/ρ-value 1/32.

4.1 Symmetric Functions of Profiles as Predictors of Power

A function F (x1, . . . , xn) is symmetric if its value is unchanged by every reordering of values for
its variables. When n = 3, for instance, we must have

F (a, b, c) = F (a, c, b) = F (b, a, c) = F (b, c, a) = F (c, a, b) = F (c, b, a)

for all values a, b, c for the variables x1, x2, x3. For integers n > 1 and k ∈ {1, . . . n}, F (n)
k de-

notes the symmetric function that has n variables grouped as products of k variables. It simplifies
analyses clerically if we allow the index k to assume the value 0 also, with the convention that, for
all n, F (n)

0 ≡ 1. The first three families of F (n)
k functions of ρ-values (excluding the degenerate

F
(n)
0 ) are exhibited in Table 5.

F
(2)
1 (ρ1, ρ2) = ρ1 + ρ2

F
(2)
2 (ρ1, ρ2) = ρ1ρ2

F
(3)
1 (ρ1, ρ2, ρ3) = ρ1 + ρ2 + ρ3

F
(3)
2 (ρ1, ρ2, ρ3) = ρ1ρ2 + ρ1ρ3 + ρ2ρ3

F
(3)
3 (ρ1, ρ2, ρ3) = ρ1ρ2ρ3

F
(4)
1 (ρ1, ρ2, ρ3, ρ4) = ρ1 + ρ2 + ρ3 + ρ4

F
(4)
2 (ρ1, ρ2, ρ3, ρ4) = ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4

F
(4)
3 (ρ1, ρ2, ρ3, ρ4) = ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4

F
(4)
4 (ρ1, ρ2, ρ3, ρ4) = ρ1ρ2ρ3ρ4

Table 5: The first three families of symmetric functions of ρ-values.

One can use the symmetric functions of clusters’ profiles to compare the clusters’ powers. We
assume henceforth that τδ ≤ A ≤ B.7 (Consider the semantics of our architectural parameters to
see why this inequality is reasonable.)

7Recall: A = π + τ ; B = 1 + (1 + δ)π.

15



Lemma 1. There exist positive constants, α0, α1, . . . , αn−1 and β0, β1, . . . , βn, such that

X(P) =
α0 + α1F

(n)
1 (P) + · · ·+ αn−1F

(n)
n−1(P)

β0 + β1F
(n)
1 (P) + · · ·+ βn−1F

(n)
n−1(P) + βnF

(n)
n (P)

. (4)

where for i ∈ {0, . . . , n− 1}, αi = (B/A)i

n−i−1∑
k=0

An−k−1(τδ)k,

and for i ∈ {0, . . . , n}, βi = (B/A)iAn.

Proof. Focus on a fixed, but arbitrary profile P = 〈ρ1, . . . , ρn〉, and expand expression (1) to
express X(P) as a single fraction, X(P) = Xnum/Xdenom.

Analyzing Xdenom. Consider first the denominator, Xdenom, of the fraction, which is simpler to
analyze than the numerator. Easily, Xdenom is the n-factor product Xdenom =

∏n
i=1 (Bρi + A).

Using reasoning analogous to the proof of the Binomial Theorem, it is clear that, for each i ∈
{0, . . . , n}, the coefficient, βi, of Fi(P) in Xdenom is βi = Bi · An−i.

Analyzing Xnum. We begin to analyze the numerator, Xnum, of the fraction by expressing it as an
n-term sum of products, where each product can be factored into an “I-J product,” as follows.

Xnum =
n∑

j=1

Ij · Jj where Ij =
n∏

k=j+1

(Bρk + A) and Jj =

j−1∏
k=1

(Bρk + τδ) .

Note that, for each j ∈ {0, . . . , n}, the jth I-J product, Ij · Jj , is the unique one that does not
“mention” ρj .

Focus now on an arbitrary i ∈ {0, . . . , n} and an arbitrary i-monomial µ = ρk1 · · · ρki
. Consider

the coefficient of µ in Fi(P). As just noted, µ appears as a subproduct of every I-J product I` · J`

where ` ∈ {0, . . . , n} \ {k1, . . . , ki}; focus on an arbitrary such index `. Say that µ is “split”
between I` and J`, in the sense that 0 ≤ h ≤ i of the ρ-values that appear in µ are “mentioned”
in I`, and the other i − h ρ-values are “mentioned” in J`. (The extreme cases, h = 0 and h = i,
correspond, respectively, to µ’s being a subproduct of J` or I`.) Reasoning analogous to that used
in analyzing Xdenom shows that µ’s coefficient in the product I` · J` is

cµ
def
= Bi ·

(
An−h−` · (τδ)`−(i−h)−1

)
.

Next, note that, given µ, the coefficient cµ identifies index ` uniquely. Note also that, for each
of the i + 1 possible values for h, there is an I-J product containing µ as a subproduct, within
which µ provides h ρ-values to the I-portion of the product and i − h ρ-values to the J-portion.
The just-exposed correspondences between I-J products and monomials and conversely allow us
to conclude that the coefficient of Fi(P) in Xnum is a sum over I-J products, whose summands
represent allocations of monomials the the I and J portions of the products. In detail: for each i,
αi = Bi ·

∑n−i−1
k=0 Ak · (τδ)n−k−i−1.

16



Expression (4) for X(P) suggests a method for comparing clusters C1 and C2 by comparing the
symmetric functions of their respective profiles; see footnote 6.

Proposition 3. Let clusters C1 and C2 have, respectively, profiles P1 and P2. Cluster C1 outper-
forms cluster C2 whenever the following system of inequalities holds.

For all pairs of indices i, j ∈ {0, . . . , n}, with i < j

F
(n)
i (P1) · F (n)

j (P2) ≥ F
(n)
i (P2) · F (n)

j (P1) (5)

and for at least one i-j pair, the inequality is strict.

Proof. After “cross-multiplying” the fractions that express X(P1) and X(P2) in the form (4), we
see that X(P1) > X(P2) if and only if the following “α-β difference” is positive:(

α0F
(n)
0 (P1) + · · ·+ αn−1F

(n)
n−1(P1)

)
·
(
β0F

(n)
0 (P2) + · · ·+ βnF (n)

n (P2)
)

−
(
α0F

(n)
0 (P2) + · · ·+ αn−1F

(n)
n−1(P2)

)
·
(
β0F

(n)
0 (P1) + · · ·+ βnF (n)

n (P1)
)

Consider now arbitrary indices i, j ∈ {0, . . . , n}, with i < j, and focus on the portion of the “α-β
difference” that involves exactly the four quantities F (n)

i (P1), F
(n)
i (P1), F

(n)
j (P2), and F (n)

j (P2).
One sees easily that this portion of the difference is precisely the product

(αiβj − αjβi) ·
(
F

(n)
i (P1) · F (n)

j (P2) − F
(n)
i (P2) · F (n)

j (P1)
)

(6)

The following result will allow us to complete the proof.

Claim 1 For all indices i and j > i αiβj > αjβi.

We verify Claim 1 by direct calculation. From Lemma 1, we know that[
αi = Bi ·

n−1−i∑
k=0

An−1−k−i · (τδ)k
]

and
[
βi = Bi · An−i

]
It follows that αiβj > αjβi; to wit:

αiβj − αjβi =
[
Bi ·

n−1−i∑
k=0

An−1−k−i · (τδ)k
]
·
[
Bj · An−j

]
−

[
Bj ·

n−1−j∑
k=0

An−1−k−j · (τδ)k
]
·
[
Bi · An−i

]
= Bi+j ·

(n−1−i∑
k=0

A2n−1−k−i−j · (τδ)k −
n−1−j∑

k=0

A2n−1−k−j−i · (τδ)k
)

= Bi+j ·
n−1−i∑
k=n−j

A2n−1−k−i−j · (τδ)k

17



The claimed inequality holds because every term in the last summation is positive. This verifies
Claim 1.

To complete the argument, note that whenever Claim 1 holds for a pair of indices i and j, the
product (6) is positive whenever (in fact, precisely when) the difference

F
(n)
i (P1) · F (n)

j (P2) − F
(n)
i (P2) · F (n)

j (P1)

is positive. Because Claim 1 in fact holds for all i and j > i, we see that the “α-β difference”
is positive whenever (5) holds. This means, however, that X(P1) > X(P2) whenever (5) holds,
whence the proposition.

4.2 Statistical Moments of Profiles as Predictors of Power

The results in this section are enabled by a close relationship between some of the symmetric
functions and standard statistical measures. For any profile P = 〈ρ1, . . . , ρn〉:

• The arithmetic and geometric means of the ρi are:[
ρ̄

def
= ARITH -MEAN (P) =

1

n
F

(n)
1

]
and [

GEO-MEAN (P) =
(
F (n)

n

)1/n
]
.

• The variance of the ρi is

VAR(P) =
1

n

(
ρ2

1 + · · ·+ ρ2
n

)
−

(
1

n
F

(n)
1 (P)

)2

(7)

while
F

(n)
2 (P) =

1

2

(
F

(n)
1 (P)

)2

− 1

2

(
ρ2

1 + · · ·+ ρ2
n

)
. (8)

Using these connections, we note that Proposition 3 has the following immediate consequence.

Theorem 5. Say that cluster C1, with profile P1, and cluster C2, with profile P2, share the same
mean speed.

1. If C1 outperforms C2 because of the system of inequalities (5), then VAR(P1) > VAR(P2).
2. When C1 and C2 each has 2 computers, then the preceding sentence becomes a biconditional:

C1 outperforms C2 if and only if VAR(P1) > VAR(P2).

18



Proof. Let P1 = 〈ρ11, . . . , ρ1n〉 and P2 = 〈ρ21, . . . , ρ2n〉, and say that F (n)
1 (P1) = F

(n)
1 (P2).

1. By (7), in this case:

[V AR(P1) > V AR(P2)] if and only if [ρ2
11 + · · ·+ ρ2

1n > ρ2
21 + · · ·+ ρ2

2n].

Because (ρ11 + · · ·+ρ1n)2 =
(
F

(n)
1 (P1)

)2

=
(
F

(n)
1 (P2)

)2

= (ρ21 + · · ·+ρ2n)2, equation (8) thus

implies that [F
(n)
2 (P1) < F

(n)
2 (P2)].

2. When n = 2, there are only two symmetric functions, F (2)
1 and F (2)

2 . Hence, in this case, the
sufficient condition

F
(n)
1 (P1) · F (n)

2 (P2) > F
(n)
1 (P2) · F (n)

2 (P1)

of Proposition 3 becomes “F (n)
2 (P1) < F

(n)
2 (P2).”

Theorem 5(2) exposes an unexpected fact: Heterogeneity can be a source of computational power.
This discovery contrasts dramatically with the view of heterogeneity as a computational encum-
brance that must be coped with—but that we would be better off without. The following result is
immediate from Theorem 5(2).

Corollary 1. Heterogeneity can actually lend power to a cluster. To wit, if one has two 2-computer
clusters that share the same mean speed—C2, which is homogeneous, and C1, which is not—then
C1 outperforms C2.

4.3 Going beyond Theorem 5 and Corollary 1

It would be exciting if Theorem 5(2) held for clusters of arbitrary sizes, not just n = 2, for this
would allow us to strengthen Corollary 1 to larger cluster sizes. This is an intuitively plausible
hope because when VAR(P1) > VAR(P2), one would expect P1 to contain some ρ-values that
are smaller than any of P2’s, and one might hope that these small values would pull C1’s HECR
down below C2’s. (Because each ρi ≤ 1, the small ρ-values should have greater impact on HECRs
than do the large values.) But, alas, such is not the case. We performed the following simple
simulation-based experiment for n-computer clusters, for various integers n; each trial consisted
of the following steps. (We only sketch these steps roughly, because they are described in detail in
our companion paper [13].)

1. Generate n-computer clusters C1 and C2 with respective profiles P1 and P2, such that: (a)
F

(n)
1 (P1) = F

(n)
1 (P2) (so that C1 and C2 have the same mean speed); (b) VAR(P1) 6=

VAR(P2).

2. Compare the HECRs of C1 and C2. Label (C1, C2) “good” if the cluster with larger variance
has the smaller HECR (i.e, is more powerful); otherwise, label the pair “bad.”

We found “bad” cluster-pairs for clusters of every size n = 2k for k ∈ {2, 3, . . . , 16}. Our
disappointment was moderated by two facts.

19



1. Although the percentage of “bad” pairs grew to roughly 23% (reached when n = 128), it
stayed steady thereafter. Thus, variance is a rather good predictor of the relative power of
clusters that have equal mean speeds, being “correct” roughly 76% of the time.

2. The clusters in the “bad” pairs had rather small differences in HECR.

These results led us to seek a variance threshold θ, such that having variances differ by at least
θ was (empirically) a “perfect” predictor of relative power. Specifically, we repeated a modified
version of our simulation-based experiment, which replaced the condition “cluster with larger vari-
ance” by the condition

“cluster whose variance is larger by at least θ.”
Our goal was to find the smallest value of θ for which this condition correctly identified the
more powerful cluster in 100% of our trials! Thus, assuming, with no loss of generality, that
VAR(P1) > VAR(P2), we wanted to find in every trial that HECR(C1) < HECR(C2). We
determined experimentally that the value θ = 0.167 achieves our goal:

Fact. Using the described experimental procedures, we observe HECR(C1) < HECR(C ′2) 100%
of our trials when VAR(P1) > VAR(P2) + 0.167.

We thus have an empirical version of Theorem 5(2) for clusters as large as 216. Ongoing simulation-
based experiments in our companion paper [13] are extending this work with the goal of deepening
our understanding of the role of statistical moments as predictors of computational power.

5 Conclusions and Projections

Heterogeneity is almost ubiquitous in modern computing platforms, yet sources such as [1] show
that we have yet to unlock some very basic secrets about this phenomenon. One finds in [1] a
simple computational problem (the CEP) all of whose optimal solutions for a given cluster C can
be characterized and shown to be functions of C’s (heterogeneity) profile (Theorems 1 and 2). We
build on these results by using the quality of cluster C’s solution to the CEP as a measure of C’s
computational power. We thereby expose properties of C’s profile that determine its computational
power. Perhaps our most interesting results—certainly our favorites—show the following: (1)
If one can replace just one of C’s computers by a faster one, then: (a) If the new computer is
additively faster than the old one, then the most advantageous computer to replace is C’s fastest one
(Theorem 3). (b) The same is true for multiplicative speedups, unless either C’s fastest computer
is already “very fast” or the speedup factor is “very aggressive” (Theorem 4). (2) The symmetric
functions of C’s computers’ speeds play a major role in determining C’s power (Lemma 1 and
Proposition 3); this fact suggests a similarly large role for the statistical moments of C’s computers’
speeds (Theorem 5). (3) Heterogeneity can enhance the power of a cluster (Corollary 1). Ongoing
research, whose initial results are reported in [13], strives to better understand topics (2, 3), via
both (simulation-based) experimentation and analysis.

20



Acknowledgments. This research was supported in part by NSF Grants CNS-0615170 and CNS-0905399.
The authors benefited from conversations with A.M. Maciejewski, H.J. Siegel, and F. Vivien.

References

[1] M. Adler, Y. Gong, A.L. Rosenberg (2008): On “exploiting” node-heterogeneous clusters optimally.
Theory of Computing Systems 42, 465–487.

[2] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW Team (1995): A case for NOW (networks
of workstations). IEEE Micro 15, 54–64.

[3] M. Banikazemi, V. Moorthy, D.K. Panda (1998): Efficient collective communication on heterogeneous
networks of workstations. Intl. Conf. on Parallel Processing (ICPP), 460–467.

[4] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2004): Scheduling strategies
for master-slave tasking on heterogeneous processor grids. IEEE Trans. Parallel and Distr. Systs. 15,
319–330.

[5] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2002): Bandwidth-centric allocation of
independent tasks on heterogeneous platforms. Intl. Parallel and Distr. Processing Symp. (IPDPS).

[6] O. Beaumont, A. Legrand, Y. Robert (2003): The master-slave paradigm with heterogeneous proces-
sors. IEEE Trans. Parallel and Distr. Systs. 14, 897–908.

[7] O. Beaumont, L. Marchal, Y. Robert (2005): Scheduling divisible loads with return messages on
heterogeneous master-worker platforms. 12th Intl. High-Performance Computing Conf. Lecture Notes
in Computer Science 3769, Springer, Berlin, 498–507.

[8] P.B. Bhat, V.K. Prasanna, C.S. Raghavendra (1999): Efficient collective communication in distributed
heterogeneous systems. 19th IEEE Intl. Conf. on Distributed Computing Systems (ICDCS).

[9] R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for service oriented
Grid computing. 10th Heterogeneous Computing Wkshp. (HCW).

[10] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic (2009): Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Computer Systs. 25, 599–616.

[11] W. Cirne and K. Marzullo (1999): The Computational Co-Op: Gathering clusters into a metacomputer.
13th Intl. Parallel Processing Symp. (ICPP), 160–166.

[12] F. Cappello, P. Fraigniaud, B. Mans, A.L. Rosenberg (2005): An algorithmic model for heterogeneous
clusters: rationale and experience. Intl. J. Foundations of Computer Science 16, 195–216.

[13] R.C. Chiang, A.A. Maciejewski, A.L. Rosenberg, H.J. Siegel (2010): Statistical predic-
tors of computing power in heterogeneous clusters. Submitted for publication; available at
(http://www.engr.colostate.edu/∼chilung/hetero2.pdf).

21



[14] P.-F. Dutot (2003): Master-slave tasking on heterogeneous processors. 17th Intl. Parallel and Dis-
tributed Processing Symp. (IPDPS).

[15] I. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing Infrastructure
(2nd Ed.). Morgan-Kaufmann, San Francisco.

[16] P. Fraigniaud, B. Mans, A.L. Rosenberg (2005): Efficient trigger-broadcasting in heterogeneous clus-
ters. J. Parallel and Distributed Computing 65, 628–642.

[17] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2001): SETI@home—Massively
distributed computing for SETI. In Computing in Science and Engineering 3, 78–83.

[18] P. Liu and T.-H. Sheng (2000): Broadcast scheduling optimization for heterogeneous clusters systems.
12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), 129–136.

[19] P. Liu and D.-W. Wang (2000): Reduction optimization in heterogeneous cluster environments.
Intl. Parallel and Distr. Processing Symp. (IPDPS).

[20] J. Mache, R. Broadhurst, J. Ely (2000): Ray tracing on cluster computers. Intl. Conf. on Parallel and
Distr. Processing Techniques and Applications (PDPTA), 509–515.

[21] G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006): Toward a theory for scheduling DAGs in
Internet-based computing. IEEE Trans. Comput. 55, 757–768.

[22] G.F. Pfister (1995): In Search of Clusters. Prentice-Hall.

[23] R. Prakash and D.K. Panda (1998): Designing communication strategies for heterogeneous parallel
systems. Parallel Computing 24, 2035–2052.

[24] A.L. Rosenberg (1994): Needed: a theoretical basis for heterogeneous parallel computing. In Devel-
oping a Computer Science Agenda for High-Performance Computing (U. Vishkin, ed.), ACM Press,
N.Y. (1994) 137–142.

[25] A.L. Rosenberg and R.C. Chiang (2009): Toward understanding heterogeneity in computing. Avail-
able at (http://www.cs.umass.edu/∼rsnbrg/hetero.pdf).

[26] A.S. Tosun and A. Agarwal (2000): Efficient broadcast algorithms for heterogeneous networks of
workstations. 13th Intl. Conf. on Parallel and Distr. Comput. Systs. (PDCS).

[27] S.W. White and D.C. Torney (1993): Use of a workstation cluster for the physical mapping of chro-
mosomes. SIAM NEWS, March, 1993, 14–17.

22


