
Guidelines for Scheduling
Some Common Computation-Dags

for Internet-Based Computing
Arnold L. Rosenberg, Fellow, IEEE, and Matthew Yurkewych

Abstract—A “pebble game” is developed to model the process of scheduling computation-dags for Internet-based computing (IC, for

short). Strategies are derived for scheduling three common, significant families of such dags for IC: reduction-meshes, which represent

(the intertask dependencies of) computations that can be performed by “up-sweeps” of meshes; reduction-trees, which represent

“accumulative” computations that can be performed by “up-sweeps” of trees; and FFT (Fast Fourier Transform) dags, which represent

a large variety of convolutional computations. Two criteria are used to assess the quality of a schedule: its memory requirements and

its rate of producing tasks that are eligible for allocation to remote clients. These criteria are important because of, respectively, the

typically enormous sizes of IC computations and the typical temporal unpredictability of remote clients in IC. In particular, a high

production rate of eligible tasks decreases a computation’s vulnerability to the gridlock that can occur when a computation stalls

pending the return of intermediate results by remote clients. Under idealized assumptions, the schedules derived are optimal in the rate

of producing eligible tasks and are either exactly or approximately optimal in memory requirements.

Index Terms—Internet-based computing, grid computing, global computing, Web computing, scheduling, reduction computations,

convolutional computations, mesh-structured computations, tree-structured computations.

æ

1 INTRODUCTION

ADVANCING technology has rendered the Internet a viable
medium for collaborative computing, the use of (many)

independent computers to solve a single computational

problem. Indeed, Internet-based computing (IC, for short),

in its several guises—including Grid computing (see, e.g.,

[5], [9], [10]), global computing (see, e.g., [6]), and Web

computing (see, e.g., [17], [21], [24])—promises to become a

viable computing platform for many computational pro-
blems that are prohibitively consumptive of resources on

traditional computing platforms. This paper is devoted to

extending the study initiated in [28] of scheduling compu-

tations having intertask dependencies for modalities of IC

in which a computation is fed by a (master) Server to (remote)

Clients; Grid computing and Web computing typically

proceed in this manner.

1.1 The Foci of Our Study

The danger of gridlock in IC. The problem studied in [28]

and here results from two sources of unpredictability in IC.

First, since all communication is over the Internet, it is

impossible to predict its timing with complete assurance.

Second, the remote Clients that cooperate in an

IC computation typically contract to produce results

eventually, but with no time guarantees. (Indeed, in some

modalities of IC, remote Clients cannot be trusted to return

results ever.) The absence of task completion-and-return
timing guarantees from remote clients in IC is largely an
annoyance when the tasks comprising the shared workload
are mutually independent: The (usually massive) size of the
workload ensures that some task is always eligible for
execution—hence, for allocation to a Client. However, when
the workload’s tasks have interdependencies that constrain
their order of execution, the lack of timing guarantees
creates a nontrivial scheduling challenge, which is dis-
cussed from a systems perspective in [20]. Specifically, such
dependencies can potentially engender gridlock when no
new tasks can be allocated for an indeterminate period,
pending the execution of already allocated tasks. A variety
of “safety devices” have been developed to mitigate this
danger (although no device can eliminate it since any
“backup” remote Client(s) can be as dilatory as the primary
one). Two popular “safety devices” are:

. allocating tasks to multiple Clients—a technique
used, e.g., in SETI@home [21];

. deadline-triggered reallocation of tasks—a technique
described, e.g., in [5], [20].

One weakness of the former device is its significantly
thinning out the remote workforce. More importantly, one
weakness shared by both devices is their requiring a
(reasonably) reliable model of Clients’ computing beha-
viors. In order to generate such a model, many
IC projects—see, e.g., [5], [20], [30], as well as the IC-
enabling software developed by Entropia, Inc. (http://
www.entropia.com)— monitor either the past history of
remote Clients or their current computational capabilities or
both. While the resulting snapshots of Clients yield no
guarantees of future performance, they at least afford the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005 1

. The authors are with the Department of Computer Science, University of
Massachusetts Amherst, Amherst, MA 01003.
E-mail: {rsnbrg, yurk}@cs.umass.edu.

Manuscript received 24 Mar. 2004; revised 12 July 2004; accepted 2 Sept.
2004; published online 16 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0106-0304.

0018-9340/05/$20.00 ß 2005 IEEE Published by the IEEE Computer Society

Server a basis for estimating such performance. Our study
illustrates how the information gleaned from monitoring
can be used to lessen the likelihood of gridlock. We proceed
under the idealized assumption that such monitoring yields
sufficiently accurate predictions of Clients’ future perfor-
mance that the Server can allocate eligible tasks to Clients in
an order that makes it likely that tasks will be executed in
the order of their allocation. Under this assumption, we use
the abstract IC-scheduling (pebble game) model of [28] to
seek schedules that decrease the likelihood of gridlock. As
in much of the literature on scheduling algorithms (cf. [13],
[15]), the model focuses on computations whose intertask
dependencies are structured as directed-acyclic graphs
(dags, for short).1 Our avenue for minimizing the danger
of gridlock is to seek schedules that produce allocation-
eligible tasks as fast as possible.

The memory cost of IC. Memory requirements are a
significant concern in IC, since computation-dags ear-
marked for IC are likely to be enormous, and their
constituent tasks are likely to be quite large in order to
amortize the substantial cost of communicating across the
Internet. It is, therefore, essential that IC-oriented schedules
for computation-dags be conservative of memory.

Other challenges. The present study focuses on tempor-
al challenges in IC. At least as important are the manifold
security-related challenges, which are orthogonal to our
study and which we do not address. Three citations
exemplify such challenges. Numerous sources use “reputa-
tion” to address the danger of malicious content being
spread in P2P systems; see, e.g., [1]. For special types of
computations, [14] proposes server-side methods that
ensure the integrity of clients’ submissions. Responding to
the problem of malicious anonymous “volunteers” in
SETI@home-type environments ([21]), [27] presents an
algorithmic approach to matching “volunteers” with their
results in such systems.

1.2 The Contributions of Our Study

Our study employs the Internet-Computing Pebble Game of
[28] to study the problem of scheduling dags for IC. We
extend the study in [28] in two ways. 1) We seek schedules
that produce eligible tasks optimally fast for three new
families of computation-dags that arise in a broad range of
significant applications. 2) We add memory conservation to
the quality criteria for schedules. The three dag families we
study here are:

1. Reduction-meshes (or, pyramid dags) [7], which repre-
sent (say, scientific and engineering) computations
whose intertask dependencies have the structure of
meshes and that can be executed via sweeps up the
meshes.

2. Reduction-trees [11], [19], [25], which represent
computations whose intertask dependencies have
the structure of trees and that can be executed via
sweeps up the trees.

3. FFT dags [8], [16], which represent convolution-
structured computations, including the eponymous
Fast-Fourier Transform.

Under the idealized assumption that task-execution
order follows task-allocation order, we characterize optimal
gridlock-avoiding schedules for each dag family and devise
at least one concrete optimal schedule. Additionally, we
exhibit schedules that either exactly or approximately
minimize the memory requirements of computations, even
while they minimize the likelihood of gridlock.

Of course, even within our idealized setting, the
schedules that are optimal under our formal model neither
eliminate the danger of gridlock nor obviate “safety
devices” such as those mentioned earlier. Rather, by
identifying the characteristics that guarantee optimality in
the idealized setting, we provide guidelines for provably
enhancing the effectiveness of the “safety devices.” And,
importantly, these guidelines prescribe actions that are
under the control of the IC Server and are independent of
the behavior of the Clients! (The proposed scheduling
strategy does not address the heterogeneity of Clients
explicitly. We assume, rather, that, via its monitoring of
Clients, the Server allocates tasks to Clients in a way that
recognizes and accommodates their heterogeneity.)

1.3 Related Work

The study most closely related to ours is its immediate
predecessor [28]. That source developed the pebble game
we use to study IC scheduling. It then used that model to
identify classes of schedules that are either exactly or
approximately optimal in production rate of allocation-
eligible tasks, for computation-dags having the structure of
evolving meshes or their close relatives. The main results in
[28] identify classes of schedules that are optimal for two-
dimensional evolving meshes and within a constant factor
of optimal for evolving meshes of higher (finite) dimen-
sionalities. Our study has also benefited from a number of
studies that use somewhat different scheduling models to
study the memory costs of schedules. The scheduling
problem for reduction-meshes is considered in [7] (where
reduction-meshes are called “pyramid dags”). Given the
ubiquity of tree-structured computations, it is not surpris-
ing that there have been myriad studies of scheduling
problems on reduction-trees. One of the earliest such
studies, [25], focuses on scheduling complete reduction-
trees in a way that minimizes memory cost. The study in [3]
shows how the memory requirements of complete reduc-
tion-tree computations decrease as one proceeds from an
“eager” scheduling strategy toward a “lazy” one. The study
in [11] minimizes the parallel makespans of complete
reduction-tree computations. Many studies, e.g., [12], [18],
[22], study the computational complexity of various
scheduling problems for reduction-trees. The importance
of the Fast Fourier Transform Algorithm [8] has led to a
massive body of literature that relates implicitly to FFT dags.
The importance of the FFT dag as a network has led to an
equally massive body of literature, often under the rubric
“butterfly networks,” the network-oriented name of the
dags. Butterfly networks have truly remarkable properties
related to permuting data [2] and to interconnecting
communicating sources [4], [23], [26]. Within the context
of the present study, the most relevant prior study is [16],
which focuses on scheduling (large) FFT dags in a way that
minimizes the number of data transfers between adjacent

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

1. Dags and associated notions are defined in Section 2.

levels of the memory hierarchy. The differences between
our goals and those of the cited sources demand quite
different techniques of analysis.

2 A MODEL FOR EXECUTING DAGS ON THE

INTERNET

In this section, we present the formal entities that underlie
our study: computation-dags and the IC Pebble Game.
Much of this material is excerpted from [28].

2.1 Computation-Dags

A directed graph G is given by a set of nodes NG and a set of
arcs (or, directed edges) AG, each having the form ðu ! vÞ,
where u; v 2 NG. A path in G is a sequence of arcs that share
adjacent endpoints, as in the following path from node u1 to
node un:

ðu1 ! u2Þ; ðu2 ! u3Þ; . . . ; ðunÿ2 ! unÿ1Þ; ðunÿ1 ! unÞ:

A dag (directed acyclic graph) G is a directed graph that has no
cycles; i.e., in a dag, the preceding path cannot have
u1 ¼ un. When a dag G is used to model a computation, i.e.,
is a computation-dag:

. Each node v 2 NG represents a task in the
computation;

. An arc ðu ! vÞ 2 AG represents the dependence of
task v on task u: v cannot be executed until u is.

Given an arc ðu ! vÞ 2 AG, we call u a parent of v and v a
child of u in G. Each parentless node of G is called a source
(node), and each childless node is called a sink (node).

The current study focuses on three common, significant
classes of computation-dags.

2.1.1 Reduction-Meshes

The ‘-level reduction-mesh M‘ is the dag whose nodes
comprise the set of ordered pairs of integers
fhx; yi j 0 � xþ y < ‘g. Each node v ¼ hx; yi of M‘ has an
arc to node hxÿ 1; yi whenever x > 0 and an arc to node
hx; yÿ 1i whenever y > 0; these account for all of M‘’s arcs.
The integer xþ y is the level of node hx; yi. M‘’s ‘ source
nodes are the nodes at level ‘ÿ 1; M‘’s unique sink node is
node h0; 0i, the sole occupant of level 0. Fig. 1 depicts M5.

2.1.2 Reduction-Trees

A reduction-tree T is a dag whose nodes comprise a finite
full, prefix-closed set S of binary strings. Let x be an arbitrary
(possibly null) binary string and � an arbitrary bit:
� 2 f0; 1g. By “full,” we mean that x� 2 S whenever
x� 2 S;2 by “prefix-closed,” we mean that x 2 S whenever
x� 2 S. There is an arc from each node x� 2 S to node x; all
arcs of T arise from such prefix-pairs. The set of nodes of T
that are strings of length l � 0 comprise level l of T . T ’s root
�, the null string, is the sole node at level 0 and is T ’s
unique sink; T ’s source nodes are called leaves. See Fig. 2.

Complete reduction-trees merit special attention since
they model computations that occur in so many applica-
tions. In a complete reduction-tree T , all leaf-to-root paths
have the same length; equivalently, each level l of T has

exactly 2l nodes. T ’s largest level-number is its height; we
denote the height-h complete reduction-tree by T h.

2.1.3 FFT Dags

The d-dimensional FFT dag F d exposes the data dependen-
cies of the 2d-input Fast Fourier Transform algorithm [8].
Each node v of F d has the form v ¼ hl; xi: l 2 f0; 1; . . . ; dg
specifies v’s level; x is a length-d binary string that specifies
v’s “position” within level l. Each arc of F d connects a node
at some level l > 0 to a node at level lÿ 1; specifically, each
node hl; x�yi of F d has arcs to nodes hlÿ 1; x0yi and
hlÿ 1; x1yi. Fig. 3 depicts F 3, highlighting some of the
butterflies that give FFT dags their network-oriented name.
Each butterfly of F d is the induced subdag on a quadruple
of nodes:

hl; �0�1 � � ��dÿl � � ��dÿ1i hl; �0�1 � � ��dÿl � � ��dÿ1i
hlÿ 1; �0�1 � � ��dÿl � � ��dÿ1i hlÿ 1; �0�1 � � ��dÿl � � ��dÿ1i:

ð2:1Þ

F d has arcs fromboth of the level-l nodes in (2.1) to both of the
level-ðlÿ 1Þ nodes; these are all of the out-arcs from the level-l
nodes and all of the in-arcs to the level-ðlÿ 1Þ nodes. F d’s
level-d nodes are its sources; its level-0 nodes are its sinks.

2.2 The Internet-Computing Pebble Game

A number of so-called pebble games on dags have proven,
over the course of several decades, to yield elegant formal
analogues of a variety of problems related to scheduling
computation-dags. Such games use tokens called pebbles to
model the progress of a computation on a dag: The
placement or removal of the various available types of
pebbles—which is constrained by the dependencies mod-
eled by the dag’s arcs—represents the changing (computa-
tional) status of the dag’s task-nodes. Our study is based on
the Internet-Computing (IC, for short) Pebble Game of [28],
whose structure derives from the “no recomputation
allowed” pebble game of [29].

2.2.1 The Rules of the Game

The IC Pebble Game on a computation-dag G involves one
player S, the Server, and an indeterminate number of players
C1; C2; . . . , the Clients. The Server has access to unlimited
supplies of three types of pebbles: EBU (for “eligible-but-
unallocated”) pebbles, EAA (for “eligible-and-allocated”)
pebbles, and XEQ (for “executed”) pebbles. The Game’s
moves reflect the successive stages in the “life-cycle” of a task

ROSENBERG AND YURKEWYCH: GUIDELINES FOR SCHEDULING SOME COMMON COMPUTATION-DAGS FOR INTERNET-BASED... 3

2. For � 2 f0; 1g, � ¼ 1ÿ �.

Fig. 1. The 5-level reduction-mesh M5.

in a computation, from eligibility for execution through
actual execution. We now present the rules of the Game;
these are illustrated and explained in greater detail in [28].
The reader should note how the moves of the Game—no-
tably the Server’s dependence on approaches by Clients
—expose the danger of a play’s being stalled indefinitely by
dilatory Clients (what we called “gridlock” in the Introduc-
tion).

The I-C Pebble Game

Rule 1. S begins by placing an EBU pebble on every
unpebbled source node of G.
/*Unexecuted source nodes are always eligible for
execution, having no parents upon whose prior execu-
tion they depend.*/

Rule 2. Say that Client Ci approaches S requesting a task. If
Ci has previously been allocated a task that it has not
completed, then Ci’s request is ignored; else, the
following occurs:

1. If at least one node of G contains an EBU pebble, then
S gives Ci the task corresponding to one such node
and replaces that node’s pebble by an EAA pebble.

2. If no node of G contains an EBU pebble, then Ci is told
to withdraw its request, and this move is a no-op.

Rule 3. When a Client returns (the results from) a task-
node, S replaces that task-node’s EAA pebble by an XEQ

pebble. S then places an EBU pebble on each unpebbled
node of G all of whose parents contain XEQ pebbles.

Rule 4. S’s goal is ensure that every node of G eventually
contains an XEQ pebble.

/*This goal makes sense for every dag G. When G is
infinite, such a modest goal is unavoidable since there
may be infinite plays on G that never pebble certain
nodes.*/

2.2.2 The IC Quality of a Play of the Game

As discussed earlier, our goal is to determine how to play
the IC Pebble Game in a way that maximizes the likelihood
that the Server has a task to allocate whenever it is
approached by a Client. Within the framework of the
Game, this intuitive goal translates into the formal goal of
maximizing the number of nodes that hold EBU pebbles at
every step. Hence, the IC quality of a play of the Game
measures the extent to which the play maximizes the
placement rate of EBU pebbles. We term this quality IC
optimalitywhen the rate is indeed maximized. As in [28], we
approach a formal measure of IC quality via a (benign, as
argued below) assumption that allows us to simplify our
formal framework, at least for large classes of computation-
dags, including the ones studied here. We thereby enhance
the analyzability of the Game, while retaining its basic
structure. Importantly, our assumption allows a Server to focus
on issues that are under its control, rather than depending on
Clients’ (unpredictable) behavior.

Our assumption builds on the fact that careful monitor-
ing of Clients, as described in [5], [20], [30] and at http://
www.entropia.com, allows a Server to approximate a

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 2. A sample reduction-tree with eight leaves and five levels.

Fig. 3. The three-dimensional FFT dag F 3. The leftmost “butterfly” (c.f. (2.1)) at each level is highlighted via dashed arcs.

situation wherein the (temporal) unpredictability of Clients
affects the timing, but not the order of task executions.

Simplifying assumption. Tasks are executed in the same
order as they are allocated.

Rationale. In the presence of the just-mentioned mon-
itoring of Clients, the Server can enhance the likelihood of,
even if not guarantee, the desired execution order.

We see in subsequent sections that this simplification
allows the Server an easy avenue for playing the IC Pebble
Game optimally, at least for the dag families studied here. It
also allows us to simplify the repertoire of pebbles used to
play the IC Pebble Game. Specifically, we henceforth ignore
the distinction between EAA and XEQ pebbles, lumping both
together henceforth as EXECUTED pebbles. We then enhance
legibility by henceforth referring to EBU pebbles as
“ELIGIBLE” pebbles and to a node that holds a pebble of
type T 2 {ELIGIBLE, EXECUTED} as a “T node.”

The preceding simplifications afford us the following
conceptually simple, mathematically tractable formalization
of our informal scheduling goal. For each step t of a play of
the IC Pebble Game on a dag G, let EðtÞ denote the number
of ELIGIBLE pebbles on G’s nodes at step t. (Note that, under
our simplifying assumption, the analogous count, XðtÞ, of
EXECUTED pebbles at step t satisfies XðtÞ � t because one
new node is executed at each step of the simplified Game.)

We measure the IC quality of a play of the IC Pebble Game on
a dag G by the size of EðtÞ at each step t of the play—the bigger
EðtÞ is, the better. Our goal is an IC-optimal schedule in which,
for all steps t, EðtÞ is as big as possible.

2.2.3 The Memory Cost of a Play of the Game

As noted earlier, memory requirements are a significant
concern in IC since computation-dags are likely to be
massive and their constituent tasks are likely to be quite
large. The IC Pebble Game admits a simple measure of
memory cost, which is essentially the same as that studied
in [7], [25], modulo the slight differences between the IC
Pebble Game and the pebble game of those sources. When a
node v of a computation-dag G is executed in a play of the
IC Game, the results from v’s task must be kept available in
order to execute each of v’s children (since we do not allow
recomputation to regenerate the results). This observation
leads us to posit the existence, at each step t of a play of the
IC Pebble Game on G, of a “register” (i.e., a result-retaining
chunk of memory) that is associated with each EXECUTED

node of G that has a non-EXECUTED child. The number of
such open EXECUTED nodes at step t is our measure of the
memory used at that step.

The memory cost of a play of the IC Pebble Game on a
computation-dag G is the maximum, over all steps t of the play, of
the number of open EXECUTED nodes of G.

2.3 An Intuitive Strategy for Achieving IC Optimality

Intuition suggests that any IC-optimal schedule for a
computation-dag G will be parent-oriented, i.e., will execute
all parents of each node u in consecutive steps. This
“greedy” strategy seems to produce ELIGIBLE nodes as
quickly as possible; deviating from the strategy seems to
delay such production. It is easy to craft examples that show
that parent orientation is not sufficient to ensure
IC optimality in arbitrary dags. However, we show that

parent orientation is both necessary and sufficient for
IC optimality in the families of dags studied here.

The IC scheduling problem becomes much more
complicated when one seeks schedules that simultaneously
minimize memory requirements and maximize IC quality.
This complication is highlighted by our exhibiting
IC-optimal schedules that are memory-pessimal, and
memory-optimal schedules whose IC quality deviates from
optimality by an amount that increases with the target dag’s
size. Indeed, for complete reduction-trees, no schedule
optimizes both IC quality and memory requirements. These
facts illustrate that intuition alone will not suffice to develop
efficient schedules for IC platforms.

3 OPTIMAL SCHEDULES FOR REDUCTION-MESHES

This section is devoted to characterizing IC-optimal
schedules for reduction-meshes. We exhibit an IC-optimal
schedule that also minimizes memory cost.

3.1 The Source of IC Quality

The following analysis tells us how to schedule reduction-
meshes IC optimally. Focus on a play of the IC Pebble Game
on the ‘-level reduction-mesh M‘. Say that, at step t of the
play, each level l 2 f0; 1; . . . ; ‘ÿ 1g of M‘ has E

ðtÞ
l ELIGIBLE

nodes and X
ðtÞ
l EXECUTED nodes. Let c be the smallest level-

number for which EðtÞ
c þXðtÞ

c > 0.

Lemma 3.1. Given the current profile hXðtÞ
l j 0 � l < ‘i of

EXECUTED nodes:

1. The aggregate number of ELIGIBLE nodes at time t,

EðtÞ ¼def P‘ÿ1
i¼0 E

ðtÞ
i , is maximized if all EXECUTED

nodes on each level of M‘ are consecutive.
3

2. Once EðtÞ is so maximized, we have c � EðtÞ � cþ 1.

Proof.

1. Each nonsource ELIGIBLE node of M‘ has two
EXECUTED parents. Moreover, if the nonsource
ELIGIBLE nodes u and v are consecutive on some
level l of M‘, then they share an EXECUTED

parent. This verifies the following system of
inequalities.

E
ðtÞ
l � X

ðtÞ
lþ1 ÿX

ðtÞ
l ÿ 1 for l 2 fc; cþ 1; . . . ; ‘ÿ 2g;

E
ðtÞ
‘ÿ1 ¼ ‘ÿX

ðtÞ
‘ÿ1:

ð3:1Þ

If all EXECUTED nodes occur consecutively along
a level lþ 1 of M‘, then the inequality involving
E

ðtÞ
l in (3.1) is an equality. It follows that all

inequalities in (3.1) are equalities when the
EXECUTED nodes at every level of M‘ occur
consecutively. Further, such consecutiveness may
decrease the value of c by rendering new nodes
ELIGIBLE at lower-numbered levels. Conse-
quently, this arrangement of EXECUTED nodes
maximizes the value of EðtÞ.

ROSENBERG AND YURKEWYCH: GUIDELINES FOR SCHEDULING SOME COMMON COMPUTATION-DAGS FOR INTERNET-BASED... 5

3. Nodes u0; u1; . . . ; ukÿ1 are consecutive on level l of M‘ just when each
uj ¼ hmþ j; lÿmÿ ji for some 0 � m � lÿ k, 0 � j < k.

2. We sum the (now) equalities in system (3.1) to

obtain an explicit expression for the maximum

value of EðtÞ in terms of
P‘ÿ1

i¼0 X
ðtÞ
i ¼ t, given

the current profile of EXECUTED nodes:

EðtÞ ¼ P‘ÿ1
i¼c E

ðtÞ
i ¼ cþ 1ÿXðtÞ

c . Part (2) now fol-

lows because, when the EXECUTED nodes at each

level of M‘ occur consecutively, we must have

XðtÞ
c � 1: A larger value would imply that

X
ðtÞ
cÿ1 þ E

ðtÞ
cÿ1 > 0. tu

3.2 Characterizing IC Optimal Schedules

Theorem 3.1. A schedule for reduction-meshes is IC optimal if,
and only if, it is parent-oriented, i.e., it executes M‘’s nodes
level-by-level, starting with level ‘ÿ 1, and always keeping the
EXECUTED nodes at each level consecutive.

Proof. Lemma 3.1.2 indicates that an optimal schedule for
executing M‘ always keeps c (the level-number of the
lowest-numbered level that contains an ELIGIBLE or
EXECUTED node) as large as possible for as long as
possible. This means that an optimal schedule executes
all nodes at level l of M‘ before it executes any node at
level lÿ 1.

Next, we maximize the number of ELIGIBLE nodes

level-by-level during the computation by ensuring that

each inequality in (3.1) is an equality, i.e., by executing

the nodes on each level of M‘ as a consecutive block. By

the analysis of Section 3.1, this strategy maximizes EðtÞ at

every step t of the computation; hence it is IC optimal.tu

3.3 IC Optimal Schedules Optimize Memory Cost

Lemma 3.2 [7]. Every schedule for M‘ has memory cost � ‘.

Lemma 3.2 is proven by counting the open EXECUTED

nodes at the first step of the IC Pebble Game when every
source-to-sink path contains at least one EXECUTED node.

Theorem 3.2. The IC-optimal schedule that proceeds across each
level of M‘ is also memory-optimal.

Proof. After step ‘,when thereare ‘openEXECUTEDnodeson
M‘, at least one such node is “closed” at every step. By
Theorem 3.1, this schedule is IC optimal; by Lemma 3.2, it
is also memory-optimal. tu

3.4 How Important Is IC Optimality?

We now indicate the importance of Theorem 3.1 and its
supporting analysis by exhibiting a “natural” strategy for
executing M‘ whose IC quality deviates from optimality by
a multiplicative amount that increases with the number of
EXECUTED nodes. Fig. 4 depicts step t of two schedules for
M‘, both of which optimize memory cost. The schedule of
Fig. 4a proceeds eagerly, always executing the newest
ELIGIBLE node; the schedule of Fig. 4b proceeds lazily,
hence IC optimally. Let E

ðtÞ
ðaÞ (respectively, E

ðtÞ
ðbÞ) denote the

number of ELIGIBLE nodes in Fig. 4a (respectively, Fig. 4b);
the number of EXECUTED nodes is, of course, t for both
schedules. In Fig. 4a, the following nodes have been
executed:

. for 1 � j < k, the j nodes of “diagonal” ‘ÿ j:
fh‘ÿ j; ii j i ¼ 0; 1; . . . ; jÿ 1g;

. the “first” q nodes of “diagonal” ð‘ÿ kÞ:
fh‘ÿ k; ii j i ¼ kÿ q; . . . ; kÿ 1g.

Easily then, t ¼ k
2

ÿ �

þ q and E
ðtÞ
ðaÞ � ‘ÿ kþ 1 (with equality

when q < k). In Fig. 4b, the following nodes ofM‘ have been
executed:

. all nodes from levels ‘ÿ 1; ‘ÿ 2; . . . ; ‘ÿ r; s nodes
from level ‘ÿ rÿ 1.

To compare E
ðtÞ
ðaÞ and E

ðtÞ
ðbÞ perspicuously, we note that U ðtÞ,

the number of un-EXECUTED nodes at step t, satisfies

UðtÞ � ‘þ 1

2

� �

ÿ kþ 1

2

� �

:

This means that

E
ðtÞ
ðbÞ �

ffiffiffiffiffiffiffiffiffiffiffi

2U ðtÞ
p

�
ffiffiffi

2
p

�
ffi

‘þ 1

2

� �

ÿ kþ 1

2

� �

s

þOð1Þ

so that

E
ðtÞ
ðbÞ

E
ðtÞ
ðaÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘þ kÿ 1

‘ÿ k

r

þOð1Þ ¼
ffi

1þ 2kÿ 1

‘ÿ k

r

þOð1Þ: ð3:2Þ

The ratio (3.2) grows with k, becoming proportional to
ffiffi

‘
p

as
k approaches ‘. Indeed, while the eager schedule is
executing the last m diagonals of M‘ (the nodes of the
form hi; ki for i � mÿ 1), it has access to � m ELIGIBLE

nodes at each step, whereas the IC-optimal schedule has
access to roughly

ffiffi

‘
p

such nodes.

4 OPTIMAL SCHEDULES FOR REDUCTION-TREES

This section is devoted to characterizing IC-optimal
schedules for reduction-trees. We exhibit an IC-optimal
schedule for complete reduction-trees whose memory cost is
within a factor of 2 of optimal and show that no IC-optimal
schedule has better memory cost.

4.1 The Source of IC Quality

The following analysis tells us how to schedule reduction-
trees IC optimally. Focus on a play of the IC Pebble
Game on an ‘-level reduction-tree T that has S source
nodes (i.e., leaves), with Sl source nodes at each level l,
for l 2 f0; 1; . . . ; ‘ÿ 1g.4 Say that at step t of the play, each
level l 2 f0; 1; . . . ; ‘ÿ 1g of T has E

ðtÞ
l ELIGIBLE nodes and

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 4. M‘ being executed: (a) eagerly, (b) IC optimally. Nodes in the
shaded, “All X” areas are all EXECUTED.

4. Of course, S0 ¼ 0 if T has more than one level.

X
ðtÞ
l EXECUTED nodes. Let c be the smallest level-number

such that EðtÞ
c þXðtÞ

c > 0.
We say that the EXECUTED nodes at level l of T are

sibling-paired if there is at most one EXECUTED node x� at
level l whose sibling node x� is not EXECUTED.

Lemma 4.1. Given the current profile hXðtÞ
l j 0 � l < ‘i of

EXECUTED nodes:

1. The aggregate number of ELIGIBLE nodes at time t,

EðtÞ ¼def P‘ÿ1
i¼0 E

ðtÞ
i , is maximized if the EXECUTED

nodes along each level of T are sibling-paired.
2. Once EðtÞ is so maximized, we have

EðtÞ ¼ S ÿ 1
2
tÿ 1

2

P‘ÿ1
i¼0ðX

ðtÞ
i mod 2Þ.

Proof.

1. Each ELIGIBLE nonsource node of T has two
EXECUTED parents. It follows that, at time t:

E
ðtÞ
l � Sl þ

1

2
X

ðtÞ
lþ1

� �

ÿX
ðtÞ
l for l 2 f0; 1; . . . ; ‘ÿ 2g;

E
ðtÞ
‘ÿ1 ¼ S‘ÿ1 ÿX

ðtÞ
‘ÿ1:

ð4:1Þ

If all EXECUTED nodes at level lþ 1 of T are
sibling-paired, then the inequality involving E

ðtÞ
l

in (4.1) is an equality. It follows that all inequal-
ities in (4.1) are equalities if all EXECUTED nodes
along each level of T are sibling-paired. Further,
forcing all EXECUTED nodes along each level of T
to be sibling-paired may decrease the value of c
by rendering new nodes ELIGIBLE at lower-
numbered levels. Consequently, this arrangement
of EXECUTED nodes at each level maximizes the
value of EðtÞ.

2. We sum the (now) equalities in system (4.1) to
obtain an explicit expression for the maximum
value of EðtÞ, given the current profile of
EXECUTED nodes in T . Exploiting the fact that
when the EXECUTED nodes at each level of T
are sibling-paired, we must have XðtÞ

c � 1 (a
larger value would imply that X

ðtÞ
cÿ1 þ E

ðtÞ
cÿ1 > 0),

we have

EðtÞ ¼
X

‘ÿ1

i¼0

E
ðtÞ
i ¼

X

‘ÿ1

i¼0

Si ÿX
ðtÞ
0 ÿ

X

‘ÿ1

i¼1

1

2
X

ðtÞ
i

� �

¼ S ÿ 1

2

X

‘ÿ1

i¼0

X
ðtÞ
i ÿ 1

2
the number of odd X

ðtÞ
i

� �

:

Part (2) now follows since
P‘ÿ1

i¼0 X
ðtÞ
i ¼ XðtÞ ¼ t. tu

4.2 Characterizing IC Optimal Schedules

Theorem 4.1. A schedule for reduction-trees is IC optimal if, and
only if, it is parent-oriented, i.e., it always executes a node of a
reduction-tree and its sibling in consecutive steps.

Proof. By Lemma 4.1.1, an allocation of EXECUTED nodes to
the levels of T maximizes the number of ELIGIBLE nodes
(for that allocation) if each level of T has at most one
EXECUTED node that is not sibling-paired. Lemma 4.1.2
then implies that one maximizes EðtÞ by minimizing the

number of levels of T that contain odd numbers of
EXECUTED nodes. If we execute sibling-pairs in con-
secutive steps, then, after every:

. even-numbered step, no level of T contains an
odd number of EXECUTED nodes;

. odd-numbered step, precisely one level of T
contains an odd number of EXECUTED nodes.

Since the IC Pebble Game allows us to execute only one
node at a time, no schedule can improve on this behavior
of alternating steps in which there is no “odd level” with
steps in which there is one “odd level.” tu

Corollary 4.1. The strategy of executing the nodes of a reduction-
tree level-by-level, proceeding sequentially across each level, is
IC optimal.

Of course, one need not execute nodes level-by-level in
order to achieve IC optimality. We next show how to craft
alternative IC-optimal schedules to significant benefit.

4.3 Doubly Efficient Schedules for Complete
Reduction-Trees

We now develop a strategy for scheduling complete
reduction-trees that is IC optimal and:

. optimal in memory cost given its IC optimality: it uses
2h registers while executing T h; no IC-optimal
schedule uses fewer registers;

. within a factor of 2 of optimal in memory cost:
memory-optimal schedules use hþ 1 registers while
executing T h.

For perspective, the level-by-level schedules of Corollary 4.1
are pessimal in memory cost, requiring 2h registers at the
(temporal) midpoint of the execution of T h.

The doubly efficient schedule. We conserve memory
while remaining IC optimal by applying the parent-
orientation mandated by Theorem 4.1 lazily while executing
T h, in contrast to the eager application of the level-by-level
strategy. Specifically, we execute the next sibling-pair of
ELIGIBLE nodes at a given level of T h onlywhen not doing so
would require us to leave a sibling-unpaired EXECUTED

node at a lower-numbered level. We now present Algorithm
Postorder-Execute, which embodies this strategy. The
algorithm executes sibling-pairs of T h in amodified postorder
fashion. Fig. 5 illustrates the order in which Algorithm
Postorder-Execute executes the sibling-pairs of T 3.

Algorithm Postorder-Execute(T h)

Repeat until Halt

if the root of T h is ELIGIBLE for execution

then EXECUTE the root; Halt

else Determine the lowest level-number l of T h that

contains an ELIGIBLE sibling-pair;
EXECUTE the leftmost sibling-pair at level l

Theorem 4.2 Algorithm Postorder-Execute schedules complete
reduction-trees IC optimally. Moreover, it uses 2h memory
locations while executing T h, which is optimal among
IC-optimal schedules and less than double the memory cost
of memory-optimal schedules.

ROSENBERG AND YURKEWYCH: GUIDELINES FOR SCHEDULING SOME COMMON COMPUTATION-DAGS FOR INTERNET-BASED... 7

Proof. The algorithm executes ELIGIBLE sibling-pairs in

consecutive steps, hence it is IC optimal (Theorem 4.1).

We therefore focus on its memory cost. Under its

modified postorder execution of T h, for each level

l ¼ h, hÿ 1; . . . ; 0, in turn, the algorithm:

1. executes one copy of T hÿl, ending with the root of
that copy as the only ELIGIBLE node;

2. executes the sibling copy of T hÿl, ending with the
roots of the two copies of T hÿl as a sibling-pair;

3. executes the sibling-pair, at which point it has
executed one copy of T hÿlþ1.

This reckoning means that the number of registers the
algorithm uses while executing T h is two more than it
uses while executing T hÿ1. Since this inductive tally
begins with the use of two registers while executing T 1,
we conclude that the algorithm employs a total of 2h
registers when executing T h.

The optimality of the algorithm’s memory cost follows
from the next two lemmas. First, we compare the
algorithm against absolute memory optimality.

Lemma 4.2 [25]. Every schedule for T h has memory cost

� hþ 1. The pure postorder schedule achieves this cost.

Next, we show that no schedule optimizes both IC quality
and memory requirements.

Lemma 4.3. Every IC-optimal schedule for T h has memory cost

� 2h.

Proof. As with Lemmas 3.2 and 4.2, we consider the number

of open EXECUTED nodes on T h at the first step when

every source-to-sink path contains at least one EXE-

CUTED node. Say that this is step t.
Say, solely for notational convenience, that source

node 1h (a string of h 1s) is the last source node to be
executed, i.e., it is the node executed at step t. It follows
that, at step tÿ 1, node 1h’s sibling, 1hÿ10, is EXECUTED

but sibling-unpaired. Since the schedule is IC optimal,

node 1hÿ10 must be the only sibling-unpaired EXECUTED

nodeofT h at step tÿ 1. Since allhÿ 1nodes of the form 1k,
for 1 � k < h, are not EXECUTED at step tÿ 1, it follows
that all of their siblings, the nodes 1kÿ10, must also not be
EXECUTED; otherwise, T h would have more than one
sibling-unpaired EXECUTED node. Since all of T h’s leaves,
save node 1h, are EXECUTED at time tÿ 1, while all nodes
of the form 1kÿ10, for 1 � k < h, are not EXECUTED, at least
2hÿ 1 registers must be in use at step tÿ 1. Hence, at least
2h registers must be in use at step t. tu

4.4 How Important Is IC Optimality?

We now indicate the importance of Theorem 4.1 and its

supporting analysis, by showing that there are “natural”

strategies for executing T h whose IC quality deviates from

optimality by an amount that oscillates over time but that

periodically is a multiplicative factor that increases with the

number of EXECUTED nodes. Fig. 6 depicts step t of two

schedules for T h. The (memory-minimizing [25]) schedule

of Fig. 6a executes T h eagerly; i.e., the newest ELIGIBLE node

is always chosen for execution. The schedule of Fig. 6b

executes T h level-by-level (i.e., lazily), hence (by Corollary

4.1) IC optimally. Let E
ðtÞ
ðaÞ (respectively, E

ðtÞ
ðbÞ) denote the

number of ELIGIBLE nodes in Fig. 6a (respectively, Fig. 6b);

the number of EXECUTED nodes is, of course, t for both

schedules. In Fig. 6a, the following nodes of T h have been

executed:

. For 0 � i � k, one height-i complete subtree (which
contains 2i of T h’s leaves).

Easily then, t ¼ Pk
i¼0ð2iþ1 ÿ 1Þ ¼ 2kþ2 ÿ ðkþ 3Þ and

E
ðtÞ
ðaÞ ¼ 2h ÿ 2kþ1 þ 1. In Fig. 6b, the following nodes of T h

have been executed:

. all nodes from levels h; hÿ 1; . . . ; hÿ rþ 1; s nodes
from level hÿ r,

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 5. T 3 being executed by Algorithm Postorder-Execute; italic numbers indicate the execution-order of sibling-pairs.

Fig. 6. T h being executed: (a) eagerly, (b) IC optimally. Nodes in the shaded “All X” areas are all EXECUTED.

where the integers r and 0 � s < 2hÿr satisfy

sþPrÿ1
i¼0 2

hÿi ¼ t. In order to compare E
ðtÞ
ðaÞ and E

ðtÞ
ðbÞ

perspicuously, we note that U ðtÞ, the number of un-

EXECUTED nodes at step t, satisfies

UðtÞ ¼ ð2hþ1 ÿ 1Þ ÿ ð2kþ2 ÿ ðkþ 3ÞÞ > 2ð2h ÿ 2kþ1Þ þ k:

This means that E
ðtÞ
ðbÞ > 2h ÿ 2kþ1 þ k=2 so that

E
ðtÞ
ðbÞ

E
ðtÞ
ðaÞ

� 1þ 1

2

k

2h ÿ 2kþ1 þ 1

� �

þOð1Þ: ð4:2Þ

The quantity (4.2) grows superlinearly with k. Indeed,

during the “end game,” from step 2hþ1 ÿ hÿ 2 on, the

eager schedule has access to only one ELIGIBLE node per

step, whereas the IC-optimal schedule has access to at

least h=a such nodes for ð1ÿ 2=aÞh of these steps. Note

that, when the EXECUTED nodes under the eager schedule

comprise precisely m complete binary subtrees, then

E
ðtÞ
ðbÞ ÿ E

ðtÞ
ðaÞ ¼ mÿ 1.

5 OPTIMAL SCHEDULES FOR FFT DAGS

This section is devoted to characterizing IC-optimal

schedules for FFT dags. We exhibit an IC-optimal schedule

whose memory cost is within 1 of optimal.

5.1 The Source of IC Quality

The following analysis tells us how to schedule FFT dags IC

optimally: Focus on a play of the IC Pebble Game on the

d-dimensional FFT dag F d. Say that, at step t of the play,

each level l 2 f0; 1; . . . ; dg of F d has E
ðtÞ
l ELIGIBLE nodes and

X
ðtÞ
l EXECUTED nodes. Let c be the smallest level-number

such that EðtÞ
c þXðtÞ

c > 0.
Recalling—cf. Fig. 3 and (2.1)—that F d is composed of

many butterflies, we call pairs of level-‘ nodes h‘; x�dÿ‘yi and
h‘; x�dÿ‘yi butterfly partners. We say that the EXECUTED

nodes at level ‘ of F d are butterfly-paired if there is at most

one EXECUTED level-‘ node whose butterfly partner is not

EXECUTED.

Lemma 5.1. Given the current profile hXðtÞ
l j 0 � l � di of

EXECUTED nodes:

1. The aggregate number of ELIGIBLE nodes at time t,

EðtÞ ¼def Pd
i¼0 E

ðtÞ
i , is maximized if all EXECUTED

nodes along each level of F d are butterfly-paired.
2. Once EðtÞ is so maximized, we have

EðtÞ ¼ 2d ÿX
ðtÞ
0 ÿPd

i¼1ðX
ðtÞ
i mod 2Þ.

Proof.

1. As indicated in (2.1), each nonsource ELIGIBLE

node of F d has two EXECUTED parents. More-
over, each ELIGIBLE node shares these parents
with its butterfly partner. This verifies the
following system of inequalities:

E
ðtÞ
l � 2

1

2
X

ðtÞ
lþ1

� �

ÿX
ðtÞ
l for l 2 f0; 1; . . . ; dÿ 1g;

E
ðtÞ
d ¼ 2d ÿX

ðtÞ
d :

ð5:1Þ

If all EXECUTED nodes at level lþ 1 of F d are
butterfly-paired, then the inequality involving
E

ðtÞ
l in (5.1) is an equality. It follows that all

inequalities in (5.1) are equalities if all EXECUTED

nodes along each level of F d are butterfly-paired.
Further, forcing the EXECUTED nodes at each
level to occur as a block may decrease the value of
c by rendering new nodes ELIGIBLE at lower-
numbered levels. Consequently, this arrangement
of EXECUTED nodes maximizes the value of EðtÞ.

2. We now obtain part (2) by summing the (now)
equalities in system (5.1) and noting that XðtÞ

c � 1

when all EXECUTED nodes along each level of F d

are butterfly-paired (since X
ðtÞ
cÿ1 þ E

ðtÞ
cÿ1 ¼ 0). tu

5.2 Characterizing IC Optimal Schedules

Theorem 5.1. A schedule for FFT dags is IC optimal if, and only
if, it is parent-oriented, i.e., it always executes a node of F d

and its butterfly partner in consecutive steps.

Proof. By Lemma 5.1.1, an allocation of EXECUTED nodes to
the levels of F d maximizes the number of ELIGIBLE

nodes (for that allocation) if each level of F d has at most
one EXECUTED node that is not butterfly-paired.
Lemma 5.1.2 then implies that one maximizes EðtÞ by
minimizing the number of levels of F d that contain odd
numbers of EXECUTED nodes. If we always execute
butterfly partners in consecutive steps, then:

. After every even-numbered node-execution, no
level of F d contains an odd number of EXECUTED

nodes.
. After every odd-numbered node-execution, pre-

cisely one level of F d contains an odd number of
EXECUTED nodes.

Since the IC Pebble Game allows us to execute only one
node at a time, no schedule can improve on this behavior
of alternating steps in which there is no “odd level” with
steps in which there is one “odd level.” tu

Corollary 5.1. The strategy of executing the nodes of an FFT dag
level-by-level, always executing a node and its butterfly
partner consecutively, is optimal in IC quality.

5.3 Memory-Efficient IC Optimal Schedules

The IC-optimal schedules of Corollary 5.1 have memory
cost that is within 1 of optimal.

Lemma 5.2. Every schedule for F d has memory cost � 2d.

Proof. For an arbitrary schedule, consider a snapshot of a
play of the IC Pebble Game at the moment when an
ELIGIBLE pebble is first placed on level 0 of F d, say on
node v. Note that the subdag of F d comprised of all of v’s
ancestors is a copy of T d whose 2d sources are F d’s 2d

sources; see Fig. 7. By the rules of the IC Pebble Game,
every ancestor of v must be EXECUTED. This means that
every one of F d’s 2

d “columns” must contain at least one

ROSENBERG AND YURKEWYCH: GUIDELINES FOR SCHEDULING SOME COMMON COMPUTATION-DAGS FOR INTERNET-BASED... 9

open EXECUTED node. Specifically, in every “column”
save the one containing node v, there is an EXECUTED

node at some level i > 0, while the node at level 0 is not
EXECUTED; in the “column” containing v, v’s parent’s
other child is not EXECUTED. tu

Theorem 5.2. Any schedule for F d that executes nodes level-by-
level, always executing a node and its butterfly partner
consecutively, has memory cost 2d þ 1, hence it is within 1 of
optimal in memory cost.

Proof. The theorem follows by recognizing that exactly 2d þ 1

registers are employed when both of the following
conditions hold:

. All nodes at some level i � 0 are EXECUTED.

. Some node at level iþ 1 is EXECUTED while its
butterfly partner is not.

For all other steps in the schedule, no more than
2d registers are required. tu

5.4 How Important Is IC Optimality?

We now indicate the importance of Theorem 5.1 and its
supporting analysis by showing that there are “natural”
strategies for executing F d whose IC quality deviates
from optimality by an amount that oscillates over time
but that periodically is a multiplicative factor that
increases with the number of EXECUTED nodes. Fig. 8
depicts step t of two plays for F d, which have identical
memory requirements. The schedule of Fig. 8a executes
F d eagerly, i.e., the newest ELIGIBLE node is always
chosen for execution. The schedule of Fig. 8b is the
IC-optimal schedule described in Corollary 5.1. Let E

ðtÞ
ðaÞ

(respectively, E
ðtÞ
ðbÞ) denote the number of ELIGIBLE nodes in

Fig. 8a (respectively, Fig. 8b); the number of EXECUTED

nodes is, of course, t for both schedules. In Fig. 8a, the
following nodes of F d have been executed:

. For 1 � i � k, one i-level sub-FFT dag of F d (which
contains 2iÿ1 of F d’s source nodes).

E a s i l y t h e n , t ¼ Pk
i¼1 i2

iÿ1 ¼ ðkÿ 1Þ2k þ 1 a n d

E
ðtÞ
ðaÞ ¼ 2d ÿ 2kþ1 þ 1. In Fig. 8b, the following nodes of F d

have been executed:

. all nodes from levels d; dÿ 1; . . . ; dÿ rþ 1; s nodes
from level dÿ r,

where the integers r and 0 � s < 2dÿr satisfy sþ r2d ¼ t. We

see easily that E
ðtÞ
ðbÞ ¼ 2d ÿ ðsmod 2Þ � 2d ÿ 1. We thus have

E
ðtÞ
ðbÞ

E
ðtÞ
ðaÞ

� 1þ 1

2

2k ÿ 1

2d ÿ 2kþ1 þ 1

� �

þOð1Þ;

which grows faster than 2kÿ1, where the number of

EXECUTED nodes is roughly k2k. Notably, from step ðkÿ
1Þ2k þ 1 on, the eager schedule must execute a complete

binary tree “out-dag,” whose root node 1d is its sole source,

and whose leaves are its 2d sinks.

6 CONCLUSION AND PROJECTIONS

Using the IC Pebble Game of [28], we have continued that

source’s study of the problem of scheduling computations

with intertask dependencies on the Internet. The goal of the

study is to devise schedules that produce execution-eligible

tasks as fast as possible in order to minimize the likelihood

of the gridlock that can occur when computational progress

cannot be made pending the return of tasks from remote

Clients. We have focused on three important families of

computation-dags: reduction-meshes (Section 3), reduction-

trees (Sections 4.2 and 4.3), and FFT dags (Section 5). For

each family, we have devised schedules that provably

maximize the production rate of execution-eligible tasks,

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 7. F 3, with the complete reduction-tree of ancestors of node h0; 010i highlighted via dashed arcs.

Fig. 8. F d being executed: (a) eagerly, (b) IC optimally. Nodes in the shaded “All X” areas are all EXECUTED.

even while minimizing the amount of memory needed to
achieve such a production rate.

In order to simplify our development while still
conveying underlying principles, we have restricted atten-
tion to two-dimensional reduction-meshes and to binary
reduction-trees. The reader should be able to extend our
results to reduction-meshes of arbitrary finite dimensional-
ities and to reduction-trees of arbitrary finite arities.

The novel goal of our schedules has demanded the
development of new techniques for analyzing the perfor-
mance of schedules on computation-dags. The techniques
we use here exploit the uniform structures of the dag
families we have studied. It is an inviting challenge to
extend our techniques to structurally less uniform families
of dags and to dags that evolve in unpredictable (perhaps
stochastic) manners.

ACKNOWLEDGMENTS

This research was supported in part by US National Science
Foundation Grants CCR-00-73401 and CCF-0342417. The
authors have benefited from the comments of anonymous
referees. A portion of this work was presented at the 17th
International Conference on Parallel and Distributed Com-
puting Systems 2004 (PDCS).

REFERENCES

[1] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-Peer
Information System,” Proc. 10th Intl Conf. Information and Knowl-
edge Management, 2001.

[2] V.E. Bene�ss, “Optimal Rearrangeable Multistage Connecting Net-
works,” Bell System Technical J., vol. 43, pp. 1641-1656, 1964.

[3] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg,
“Scheduling Tree-Dags Using FIFO Queues: A Control-Memory
Tradeoff,” J. Parallel and Distributed Computing, vol. 33, pp. 55-68,
1996.

[4] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obreni�cc,
A.L. Rosenberg, and E.J. Schwabe, “Optimal Emulations by
Butterfly-Like Networks,” J. ACM, vol. 43, pp. 293-330, 1996.

[5] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid
Architecture for Service Oriented Grid Computing,” Proc. 10th
Heterogeneous Computing Workshop, 2001.

[6] W. Cirne and K. Marzullo, “The Computational Co-Op: Gathering
Clusters into a Metacomputer,” Proc. 13th Int’l Parallel Processing
Symp., pp. 160-166, 1999.

[7] S.A. Cook, “An Observation on Time-Storage Tradeoff,”
J. Computer Systems and Sciences, vol. 9, pp. 308-316, 1974.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed. Cambridge, Mass.: MIT Press, 1999.

[9] The Grid: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, eds. San Francisco: Morgan-Kaufmann, 1999.

[10] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. Supercomputer
Applications, 2001.

[11] L.-X. Gao, A.L. Rosenberg, and R.K. Sitaraman, “Optimal
Clustering of Tree-Sweep Computations for High-Latency Parallel
Environments,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
pp. 813-824, 1999.

[12] M.R. Garey, R.L. Graham, D.S. Johnson, and D.E. Knuth,
“Complexity Results for Bandwidth Minimization,” SIAM J.
Applied Math., vol. 34, pp. 477-495, 1978.

[13] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling Dags on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, pp. 276-291, 1992.

[14] P. Golle and I. Mironov, “Uncheatable Distributed Computa-
tions,” Proc. RSA Conf. 2001 (Cryptographers’ Track), 2001.

[15] L. He, Z. Han, H. Jin, L. Pan, and S. Li, “DAG-Based Parallel Real
Time Task Scheduling Algorithm on a Cluster,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications
(PDPTA 2000), pp. 437-443, 2000.

[16] J.-W. Hong and H.T. Kung, “I/O Complexity: The Red-Blue
Pebble Game,” Proc. 13th ACM Symp. Theory of Computing, pp. 326-
333, 1981.

[17] The Intel Philanthropic Peer-to-Peer program. www.intel.com/cure,
2001.

[18] A. Jakoby and R. Reischuk, “The Complexity of Scheduling
Problems with Communication Delays for Trees,” Proc. Scandina-
vian Workshop Algorithmic Theory, pp. 163-177, 1992.

[19] R.M. Karp, A. Sahay, E. Santos, and K.E. Schauser, “Optimal
Broadcast and Summation in the logP Model,” Proc. Fifth ACM
Symp. Parallel Algorithms and Architectures, pp. 142-153, 1993.

[20] D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and
Scheduling Guidelines for Global Computing Applications,” Proc.
Int’l Parallel and Distributed Processing Symp. (IPDPS ’02), 2002.

[21] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home: Massively Distributed Computing for SETI,”
Computing in Science and Eng., P.F. Dubois, ed., Los Alamitos,
Calif.: IEEE CS Press, 2000.

[22] J.K. Lenstra, M. Veldhorst, and B. Veltman, “The Complexity of
Scheduling Trees with Communication Delays,” J. Algorithms,
vol. 20, pp. 157-173, 1996.

[23] B.M. Maggs and R.K. Sitaraman, “Simple Algorithms for Routing
on Butterfly Networks with Bounded Queues,” SIAM J. Comput-
ing, vol. 28, pp. 984-1004, 1999.

[24] The Olson Laboratory Fight AIDS@Home Project, www.fightaids
athome.org, 2001.

[25] M.S. Paterson and C.E. Hewitt, “Comparative Schematology,”
Proc. Project MAC Conf. Concurrent Systems and Parallel Computa-
tion, pp. 119-127, 1970.

[26] A.G. Ranade, “Optimal Speedup for Backtrack Search on a
Butterfly Network,”Math. Systems Theory, vol. 27, pp. 85-101, 1994.

[27] A.L. Rosenberg, “Accountable Web-Computing,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, pp. 97-106, 2003.

[28] A.L. Rosenberg, “On Scheduling Mesh-Structured Computations
for Internet-Based Computing,” IEEE Trans. Computers, vol. 53,
pp. 1176-1186, 2004.

[29] A.L. Rosenberg and I.H. Sudborough, “Bandwidth and Pebbling,”
Computing, vol. 31, pp. 115-139, 1983.

[30] X.-H. Sun and M. Wu, “GHS: A Performance Prediction and Task
Scheduling System for Grid Computing,” Proc. IEEE Int’l Parallel
and Distributed Processing Symp., 2003.

Arnold L. Rosenberg is a Distinguished Uni-
versity Professor of Computer Science at the
University of Massachusetts Amherst, where he
codirects the Theoretical Aspects of Parallel and
Distributed Systems (TAPADS) Research La-
boratory. Prior to joining UMass, he was a
professor of computer science at Duke Univer-
sity from 1981 to 1986 and a research staff
member at the IBM T.J. Watson Research
Center from 1965 to 1981. He has held visiting

positions at Yale University and the University of Toronto; he was a Lady
Davis Visiting Professor at the Technion (Israel Institute of Technology)
in 1994, and a Fulbright Research Scholar at the University of Paris-
South in 2000. His research focuses on developing algorithmic models
and techniques to deal with the new modalities of “collaborative
computing” (the endeavor of having several computers cooperate in
the solution of a single computational problem) that result from emerging
technologies. He is the author or coauthor of more than 150 technical
papers on these and other topics in theoretical computer science and
discrete mathematics and is the coauthor of the book Graph Separators,
with Applications. Dr. Rosenberg is a fellow of the ACM, a fellow of the
IEEE, and a Golden Core member of the IEEE Computer Society.

Matthew Yurkewych received the BS degree
from the Massachusetts Institute of Technology
in 1998. He is a PhD student in computer
science at the University of Massachusetts
Amherst. Prior to entering graduate school, he
worked at Akamai Technologies and CNet Net-
works as a software engineer.

ROSENBERG AND YURKEWYCH: GUIDELINES FOR SCHEDULING SOME COMMON COMPUTATION-DAGS FOR INTERNET-BASED... 11

