
On Scheduling Mesh-Structured Computations
for Internet-Based Computing

Arnold L. Rosenberg, Fellow, IEEE

Abstract—Advances in technology have rendered the Internet a viable medium for employing multiple independent computers

collaboratively in the solution of a single computational problem. A variety of mechanisms—e.g., Web-based computing, peer-to-peer

computing, and grid computing—have been developed for such Internet-based computing (IC). Scheduling a computation for IC

presents challenges that were not encountered with earlier modalities of parallel or distributed computing, especially when the

computation’s constituent tasks have interdependencies that constrain their order of execution. The process of scheduling such

computations for IC is studied via a “pebble game” that abstracts the process of orchestrating the allocation of a computation’s

interdependent tasks to participating computers. A quality measure for plays of this game is developed that addresses the danger of

“gridlock” in IC when a computation stalls because (due to dependencies) no tasks are eligible for execution. This measure rewards

schedules that maximize the number of tasks that are eligible for execution at every step of the computation, one avenue for

minimizing the likelihood of “gridlock.” The resulting formal setting is illustrated via the problem of scheduling computations whose

intertask dependencies have the structure of “evolving” meshes of finite dimensionalities. Within an idealized setting, a simple

scheduling strategy is shown to be optimal when the dependencies have the structure of a two-dimensional mesh and within a constant

factor of optimal for meshes of higher dimensionalities. The strategy remains optimal for a generalization of two-dimensional meshes

whose structures are determined by abelian monoids (a monoid-based version of Cayley graphs). The optimality results for the

idealized setting provide scheduling guidelines for real settings.

Index Terms—Internet-based computing, grid computing, P2P computing, Web computing, scheduling, mesh-structured

computations, monoid dags, Cayley graphs.

�

1 INTRODUCTION

ADVANCES in technology have rendered the Internet a
viable medium for employing multiple independent

computers collaboratively in the solution of a single
computational problem. A variety of mechanisms have
been developed for such Internet-based computing (IC, for
short), including Web-based computing (WC, for short),
Peer-to-Peer computing (P2P, for short), and Grid comput-
ing (GC, for short). Most forms of IC—including the three
just cited—lend themselves naturally to the master-slave
computing metaphor in which a “master” computer enlists
the aid of remote “slave” (or “client”) computers to
collaborate in the computation of a massive collection of
compute-intensive tasks of (roughly) equal complexities. In
this paper, we seek (algorithmic) remedies for a problem
that arises in IC when scheduling a computation whose
constituent tasks have dependencies that constrain their
order of execution. The problem, which arises from the
difficulty of predicting the timing of interactions among
remote clients in most IC environments, is that such
computations can encounter a form of “gridlock” in which
a computation stalls because (due to intertask dependen-
cies) no task can be executed pending the execution of
already allocated tasks.

1.1 The Growing Importance of IC

The success of IC in enabling a large variety of computa-
tions that could not be handled efficiently by any fixed-size
assemblage of dedicated computing agents (e.g., multi-
processors or clusters of workstations) is attested to by the
large—and growing—number of IC projects and project
infrastructures. An early example of P2P computing is
described in [34], whose computationally intensive biologi-
cal computations would tax the resources of any single
computing facility. The IC mechanism we are calling Web-
based computing proceeds essentially as follows (think of
SETI@home [20]). Volunteers (clients) register with a WC
Web site. Thereafter, each registered volunteer visits the
Web site from time to time to receive a task to compute.
Some time after completing the task, the volunteer returns
the results from that task and receives a new task. And the
cycle continues. A small sampler of recent WC projects
includes [20], [33], wherein astronomical calculations
benefit from IC because of the volume of their workloads;
[16], [21], wherein medical test analyses benefit for similar
reasons; and [30], wherein security-motivated number-
theoretic calculations benefit because of both the number
and computational complexity of their individual tasks. An
interesting “general-purpose” WC project is the World-
Wide Grid (http://www.cs.mu.oz.au/~raj/grids/wwg),
which aims to enlist a massive number of computers
worldwide to create a supercomputer from idle cycles. As
described in [10], [11], the IC mechanism we are calling
Grid computing occurs within a Computational Grid: a
consortium of (usually geographically dispersed) comput-
ing sites that contract to share resources. A small sampler of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004 1

. The author is with the Department of Computer Science, University of
Massachusetts Amherst, Amherst, MA 01003.
E-mail: rsnbrg@cs.umass.edu.

Manuscript received 6 Mar. 2003; revised 7 Nov. 2003; accepted 23 Dec.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 118400.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

GC projects and/or infrastructures includes commercial
infrastructures available from, e.g., IBM (http://www.ibm.
com) and Entropia (http://www.entropia.com), in addition
to research-oriented grids and infrastructures such as: the
LHC Computing Grid (http://lcg.web.cern.ch/LCG),
which is dedicated to subatomic particle related computa-
tions; TeraGrid (http://www.teragrid.org) and the GUSTO
Grid (http://www.globus.org), which are both world-wide
“virtual supercomputer” projects; the UK e-Science Grid
(http://www.escience-grid.org.uk), which is a UK-centered
analogue of GUSTO and TeraGrid.

Thus far, there is little in the way of an algorithmic
theory for Internet-based computing in its various guises.
One finds in [6] a variety of application-motivated
algorithmic challenges for GC. The problem of scheduling
general (classes of) computations for IC faces a number of
challenges that are specific to particular IC mechanisms.

. Some forms of IC (such as WC) employ “pull”-based
task allocation; others (such as GC) employ “push”-
based allocation.

. GCclients tend to be known and stable, hence trusted;
WC clients tend to be anonymous and volatile,
heightening the need for security measures (cf. [26])
and (if warranted by one’s workload) protection
against clients who never return assigned tasks.

. Grid members trade resources, which raises fairness-
related concerns (cf. [7]), an issue that does not arise
in WC.

Yet other scheduling problems arise from challenges that
are common to all forms of IC.

. It is hard to predict the timing of communications
over the Internet.

. The remote clients in all modes of IC display a level
of heterogeneity in capabilities and resources that
does not occur in other modalities of parallel or
distributed computing.

. Remote clients in IC projects typically do not
guarantee when—or, in the case of WC, if—they will
perform an assigned task.

This paper focuses on a problem that arises because of
the two types of temporal unpredictability just mentioned.

1.2 The Danger of Gridlock in IC

The absence of task completion-and-return timing guaran-
tees from remote clients in IC projects is largely an
annoyance when the tasks comprising the shared workload
are mutually independent: The (usually massive) size of the
workload ensures that some task is always eligible for
execution— hence, for allocation to a client. However, when
the workload’s tasks have interdependencies that constrain
their order of execution, the lack of timing guarantees
creates a nontrivial scheduling challenge, which is dis-
cussed from a systems perspective in [19]. Specifically, such
dependencies can potentially engender gridlock when no
new tasks can be allocated for an indeterminate period,
pending the execution of already allocated tasks. Although
a variety of “safety devices” have been developed to
address this danger—e.g., allocation of tasks to multiple
clients (a technique used, e.g., in SETI@home [20]) or

deadline-triggered reallocation of tasks (a technique de-

scribed, e.g., in [5], [19])—each such device has significant

drawbacks. To wit:

. Multiple allocation of tasks significantly thins out
the remote workforce.

. Well-planned reallocation of tasks requires a reliable
model of clients’ computing behaviors.

Moreover—and most significantly—no such device elim-

inates the danger of gridlock since the “backup” remote

client(s) assigned a given task may be as dilatory as the

primary one.

1.3 The Current Study

In this paper, we begin to study the problem of scheduling,

for IC platforms, computations whose intertask dependen-

cies are structured as a dag (directed acyclic graph);1 see

[12], [13]. We focus on strategies for scheduling the

allocation of the tasks of a computation-dag in a way that

minimizes the danger of gridlock by always maximizing the

number of tasks that are eligible for execution. Within an

idealized setting, we identify a scheduling strategy that

provably maximizes the number of such eligible tasks at

every step of the computation for certain mesh-structured

computation-dags and that comes within a constant factor

of that goal for other mesh-structured dags. Of course, even

within our idealized setting, such a scheduling strategy

neither eliminates the danger of gridlock nor obviates

“safety devices” such as those just mentioned. Rather, such

a strategy provides guidelines for provably enhancing the

effectiveness of the “safety devices.” And, importantly,

these guidelines prescribe actions that are under the control

of the IC master and are independent of the behavior of the

remote clients! (We see later that the proposed scheduling

strategy accommodates the heterogeneity of clients in an

implicit way.)
The contributions of our study are of three types.

1. We develop an IC-oriented variant of the pebble
games that have proven, over decades, to be useful in
the formal study of a large variety of scheduling
problems (Section 2.3). A major facet of developing
such a model is devising a formal criterion for
comparing the qualities of competing schedules. We
formulate such a criterion that is tailored to a broad
class of computation-dags, including those whose
dependencies have the structure of an “evolving”
mesh of any finite dimensionality (a mesh-dag, for
short). Mesh-dags model a variety of numerical
linear algebra computations that arise in a broad
range of scientific and engineering applications. (In a
sequel to this paper [29], we perform an analogous
study of some common computation-dags of other
structures.) The quality-measuring component of
our model formalizes and quantifies the intuitive
goal that a schedule “maximizes the number of tasks
that are eligible for execution at each step of the
computation.”

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

1. Precise definitions of all required notions appear in Section 2.

2. We identify a strategy for scheduling mesh-dags,
that is optimal (according to our formal criterion) for
two-dimensional mesh-dags (Section 3.1) and within
a constant factor of optimal for mesh-dags of higher
dimensionalities (Section 3.2).

3. We augment this second contribution by showing
that the optimal strategy for two-dimensional mesh-
dags remains optimal for a generalization of such
dags whose structures are determined by abelian
monoids (Section 4).

2 A FORMAL MODEL FOR SCHEDULING DAGS

FOR IC

In this section, we develop the formal entities that underlie
our study: computation-dags and the pebble games that
model the process of scheduling the dags’ computations.

2.1 Computation-Dags

A directed graph (digraph, for short) G is given by a set of
nodes NG and a set of arcs (or, directed edges) AG, each having
the form ðu ! vÞ, where u; v 2 NG. A path in G is a sequence
of arcs that share adjacent endpoints, as in the following
path from node u1 to node un:

ðu1 ! u2Þ; ðu2 ! u3Þ; . . . ; ðun�2 ! un�1Þ; ðun�1 ! unÞ
ð1Þ

A dag (short for directed acyclic graph) G is a digraph that has
no cycles; i.e., in a dag, there does not exist a path of the
form (1) wherein u1 ¼ un. When a dag G is used to model a
computation, i.e., is a computation-dag:

. Each node v 2 NG represents a task of the computa-
tion.

. An arc ðu ! vÞ 2 AG represents the dependence of
task v on task u: v cannot be executed until u is.

For each arc ðu ! vÞ 2 AG, we call u a parent of v and v a
child of u in G. The transitive extensions of the parent and
child relations are, respectively, the ancestor and descendant
relations. Every dag G (except for the degenerate one that
has no nodes) has at least one parentless node; such a node
is called a source of G.

We have purposely not posited the finiteness of computa-
tion-dags. While the intertask dependencies in nontrivial
computations usually have cycles—typically caused by
loops—it is useful to “unroll” these loops when scheduling
the computation’s individual tasks. This converts the
computation’s (possibly modest-size) computation-digraph
into a sequence of expanding “prefixes” of what “evolves”
into an enormous—often infinite—computation-dag. One
typically has better algorithmic control over the “steady-
state” scheduling of such computations if one expands
these computation-dags to their infinite limits and concen-
trates on scheduling tasks in a way that leads to a
computationally expedient sequence of evolving prefixes.
The case study that dominates the current paper focuses on
an important class of such computations, namely, those
whose underlying computation-dags have the structure of
finite-dimensional meshes. (For completeness, we note that
there are important classes of computation-dags that are
inherently finite; one notable example are reduction-dags, all

of whose arcs point away from the sources, toward the
childless nodes; see, e.g., [18], [29].)

2.2 Mesh-Structured Computation-Dags

LetNdenote the set of nonnegative integers. For eachpositive
integer d, the d-dimensional mesh-dagMd has node-setN

d, the
set of d-tuples of nonnegative integers. The arcs of Md

connect each node hv1; v2; . . . ; vdi 2 Nd to its d children
hv1; v2; . . . ; vj þ 1; . . . ; vdi, for all 1 � j � d. Node h0; 0; . . . ; 0i
isMd’s unique source node, often called its origin.

The diagonal levels of the dags Md play an essential role
in our study. Each such level is the subset of Md’s nodes
that share the sum of their coordinates: For each ‘ ¼ 0; 1; . . . ,
level ‘ of Md is the set

L
ðdÞ
‘ ¼def hv1; v2; . . . ; vdi j v1 þ v2 þ � � � þ vd ¼ ‘f g:

Fig. 1 depicts the first four levels, L
ð2Þ
0 ; L

ð2Þ
1 ; L

ð2Þ
2 ; L

ð2Þ
3 , of the

two-dimensional mesh-dag M2.
Mesh-dags naturally model a large variety of computa-

tional situations. As just two examples, such situations
include the numerical linear-algebraic computations that
arise in myriad scientific and engineering applications, as
well as database computations in which data organizes
naturally into (multidimensional) tables. The hallmark of
these situations is that each datum can be viewed naturally as
residing at a “lattice point” hx; . . . ; y; . . . ; zi ofNd and that the
value at each suchpoint depends computationally on someor
all of its immediate “predecessors” hx; . . . ; y� 1; . . . ; zi.
When one includes the close relatives ofmesh-dagswe study
in Section 4, the modeled class of computational situations
expands even further.

2.3 The Internet-Computing Pebble Game

A variety of so-called pebble games on dags have been
shown, over the course of several decades, to yield elegant
formal analogues of a variety of problems related to
scheduling the tasks/nodes of a computation-dag. The
basic idea underlying such games is to use tokens (called
pebbles) to model the progress of a computation on a dag:
The placement or removal of pebbles of various types
—which is constrained by the dependencies modeled by the
dag’s arcs—represents the changing (computational) status

ROSENBERG: ON SCHEDULING MESH-STRUCTURED COMPUTATIONS FOR INTERNET-BASED COMPUTING 3

Fig. 1. The first four diagonal levels of the mesh-dag M2.

of the tasks represented by the dag’s nodes. Pebble games
have been used to study problems as diverse as register
allocation [22], [8], interprocessor communication in parallel
computers [15], “out-of-core” memory accesses [14], and the
bandwidth-minimization problem for sparse matrices [28].
Additionally, pebble games have been shown to model
many complexity-theoretic problems perspicaciously [23].
The pebble game that we study here shares its basic
structure with the “no recomputation allowed” pebble
game of [28], but it differs from that game in the resource
one strives to optimize. For brevity, we describe the
Internet-Computing (I-C) Pebble Game within the “pull”-
based context of WC; the reader can easily adapt our
description to a “push”-based GC version of the Game.

2.3.1 The Rules of the I-C Pebble Game

The Internet-Computing (I-C, for short) Pebble Game on a dag G
involves one playerS, called the Server, and an indeterminate
number of players C1; C2; . . . , called the Clients. The Server
has access to unlimited supplies of three types of pebbles:
ELIGIBLE-BUT-UNALLOCATED (EBU, for short) pebbles, ELI-
GIBLE-AND-ALLOCATED (EAA, for short) pebbles, and EXE-

CUTED (XEQ, for short) pebbles. The Game’s moves are
designed to reflect the successive stages in the “life-cycle” of a
task/node in a computation-dag, from the time the task
becomes eligible for execution (hence, receives an EBU

pebble) through its actual execution (when it receives an
XEQ pebble). We now present the rules of the Game,
interspersedwith illustrationsof their application.The reader
should note how themoves of theGame expose the danger of
a play’s being stalled indefinitely by dilatory Clients (the
“gridlock” referred to in the Introduction).

The I-C Pebble Game:

Rule 1. At any step of the Game, S may place an EBU pebble
on any unpebbled source node of G.
/*Unexecuted source nodes are always eligible for
execution, having no parents whose prior execution they
depend on. The Game must begin with a move of this
type*/ (see Fig. 2).

Rule 2. Say that Client Ci approaches S requesting a task. If
Ci has previously been allocated a task that it has not
completed, then Ci’s request is ignored; otherwise, the
following occurs.

1. If at least one node of G contains an EBU pebble,
then S gives Ci the task corresponding to one
such node and replaces that node’s pebble by an
EAA pebble (see Fig. 3).

2. IfnonodeofGcontainsanEBUpebble, thenCi is told
to withdraw its request, and this move is a no-op.

Rule 3. When aClient returns (the results from) a task/node,

S replaces that task/node’s EAA pebble by an XEQ pebble.

S then places an EBU pebble on each unpebbled node of G
all of whose parents contain XEQ pebbles (see Fig. 4).

Rule 4. S’s goal is to allocate nodes in such a way that every

node v of G eventually contains an XEQ pebble.

/*This modest goal is necessitated by the possibility that

G is infinite.*/

2.3.2 The Quality of a Play of the Game

We strive to determine how to play the I-C Pebble Game in

a way that maximizes the number of nodes that hold

EBU pebbles at every moment—so that we maximize the

chance that the Server always has a task to allocate when

approached by a Client. With the aid of some simplifying

assumptions (which, we argue below, are benign ones), we

derive a formal version of this goal that is appropriate for

large classes of computation-dags, including the mesh-like

dags that we study here and the reduction-dags of various

structures that we study in [29]. We hope that the analyses

that uncover optimal scheduling strategies for these classes

of computation-dags will form the basis for discovering and

analyzing analogous scheduling strategies for other im-

portant classes. A primary consideration as we contem-

plated the simplifying assumptions that we present now is

that these assumptions allow a Server to focus solely on issues

that are within its control, rather than depending on the Clients’

(unpredictable) behavior.

1. Restrict the unpredictability of Clients. Our first
simplifying assumption builds on the fact that, by
monitoring the status of Clients, an IC master can
often restrict the Clients’ unpredictability to the
timing of, rather than the order of task completion.

Simplifying assumption. Tasks are executed in the

same order as they are allocated.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

Fig. 2. Illustrating Rule 1. Fig. 3. Illustrating Rule 2.1.

Fig. 4. Illustrating Rule 3.

Rationale. Without some restriction on the
behavior of Clients, a malicious adversary (read:
unfortunate behavior by Clients) could confute any
attempt to produce EBU pebbles rapidly by execut-
ing allocated tasks in a pessimal order. As we see in
the next sections, the proposed simplification suf-
fices to afford the Server an avenue for maximizing
the production rate of EBU pebbles.

Let us put this simplifying assumption in per-
spective.

a. While the assumption idealizes the world in
which the Server allocates tasks, it is not fanciful:
The desired order can be at least approximated in
practice, using known techniques. To wit,
IC master sites often monitor the status of Clients
beforematching aClientwith an eligible task; see,
e.g., [5], [19], [32], as well as the IC-enabling
software developed by Entropia, Inc. (http://
www.entropia.com). Such monitoring allows the
master/Server to enhance the likelihood of, even
if not to guarantee, the desired execution order.

b. While the assumption simplifies the chore of
scheduling a computation-dag well (within the
context of our eligible-task-producing goal), it
decidedly does not trivialize the chore.

The preceding points should be viewed in the light
of results such as those in Sections 3.1.1 and 3.1.2,
which exhibit two equally intuitive scheduling
strategies for mesh-dags, one of which is optimal
and one pessimal within the context of our goal. On
the one hand, these results indicate the importance
of the monitoring mentioned in point 1. On the other
hand, these results indicate that intuition will not
suffice to develop good schedules.

2. Simplify the repertoire of pebbles. Our second
simplification, which is enabled by our first one,
allows us to focus on only two types of pebbles.

Simplification. Ignore the distinction between EAA

and XEQ pebbles, lumping both together henceforth as
XEQ pebbles.

Rationale. The number n of XEQ pebbles at a step
of the I-C Pebble Game is determined by the
structure of the target computation-dag and by the
strategy the Server uses when playing the Game. In
contrast, the breakdown of n into the relative
numbers of EAA and XEQ pebbles reflects the
(actual) computation rates and frequencies of ap-
proaches by Clients during that play—which is
beyond the Server’s control!

In the light of our simplifications, we enhance legibility by

henceforth renaming EAA and XEQ pebbles collectively as

EXECUTED pebbles and renaming EBU pebbles as ELIGIBLE

pebbles. For simplicity, we also, henceforth, refer to a node

that holds a pebble of type T 2 {ELIGIBLE, EXECUTED} as a

“T node.”
The preceding simplifications afford us the following

conceptually simple, mathematically tractable formalization

of our informal scheduling goal. For each step tof aplayof the

I-C Pebble Game on a dag G, let XðtÞ denote the number of

EXECUTED pebbles on G’s nodes at step t and let EðtÞ denote

the number of ELIGIBLE pebbles on G’s nodes at step t.
We measure the quality of a play of the I-C Pebble Game

on a dag G by the relative sizes of EðtÞ and XðtÞ at each step t

of the play—the bigger EðtÞ is, for fixed XðtÞ, the better. Our

goal is an I-C optimal schedule in which, for all steps t, EðtÞ

is as big as possible, given XðtÞ.

3 (NEAR-)OPTIMAL SCHEDULES FOR MESH-DAGS

In this section, we exhibit schedules for mesh-dags of all

finite dimensionalities that are either I-C optimal or within a

constant factor thereof. In Section 3.1, we present an

I-C optimal schedule for the two-dimensional mesh-dag

M2. In Section 3.2, we present a schedule for each mesh-dag

Md of fixed dimensionality d > 2, that is within a constant

factor of I-C optimal; the constant factor depends only on d.

In all cases, the exhibited schedules allocate a mesh-dag

M’s tasks along M’s diagonal levels. Interestingly, the

diagonal-level allocation/execution2 strategy for meshes is

optimal under several optimization criteria, including, e.g.,

parallel execution time [17], [31].

3.1 I-C Optimal Schedules for Two-Dimensional
Mesh-Dags

3.1.1 I-C Optimal Schedules

Theorem 1 (The Two-dimensional mesh-dag M2). 1) For

any schedule that allocates nodes along successive diagonal

levels of M2, E
ðtÞ ¼ n whenever XðtÞ lies in the range

n

2

� �
� XðtÞ <

nþ 1

2

� �
: ð2Þ

2) For any schedule for M2, if X
ðtÞ lies in the range (2), then

EðtÞ can be as large as n, but no larger.
It follows that any diagonal-threading schedule for M2 is

I-C optimal.

ROSENBERG: ON SCHEDULING MESH-STRUCTURED COMPUTATIONS FOR INTERNET-BASED COMPUTING 5

Fig. 5. Computing a typical diagonal level of M2. “X” denotes an EXECUTED node; “E” denotes an ELIGIBLE node.

2. Since nodes are executed in order of allocation, we can use “execute”
and “allocate” interchangeably.

Proof. 1) Let S be any schedule for M2 that executes
ELIGIBLE nodes along successive diagonal levels; Fig. 5
depicts such a schedule, which proceeds up successive
diagonals ofM2. We claim that S achieves the advertised
upper bound. To see this, note that precisely n nodes of
M2 lie on the nth diagonal level L

ð2Þ
n�1. These nodes are all

ELIGIBLE as soon as all of their n
2

� �
ancestors (which

comprise all the nodes at lower diagonal levels of M2)
have been EXECUTED. As we proceed from the position
wherein the ELIGIBLE nodes comprise the entire level
L
ð2Þ
n�1 to the analogous position for level Lð2Þ

n , executing
ELIGIBLE nodes as we go, we create one new ELIGIBLE

node with each node execution, save the last, which
creates two new ELIGIBLE nodes. It follows that, during
the period when there are precisely n ELIGIBLE nodes
under schedule S, the number of EXECUTED nodes
always has the form n

2

� �
þ k for some k < n.

2) A first lower bound on XðtÞ when EðtÞ ¼ n.
Although we could argue a bit more simply if we
considered only the case d ¼ 2 here, with just a bit more
effort, we establish the basis for the proofs of our lower
bounds for mesh-dags of all finite dimensionalities. Our
proofs build on the following fact, which is a direct
consequence of the I-C Pebble Game’s rules (hence, it is
stated without proof).

Lemma 1. If the node v of Md is ELIGIBLE, then:

. every ancestor of v must be EXECUTED;

. no descendant of v can be either ELIGIBLE or
EXECUTED.

We restate the lemma in a bit more detail, focusing on
an arbitrary dimensionality d � 2. For each ðd� 1Þ-tuple
of nonnegative integers hu1; u2; . . . ; ua�1; uaþ1; . . . ; udi:

1. There is at most one nonnegative integer ua such that
the node v ¼def hu1; u2; . . . ; ua�1; ua; uaþ1; . . . ; udi of
Md is ELIGIBLE.

2. If node v is ELIGIBLE, then:

a. For all u < ua, node

hu1; u2; . . . ; ua�1; u; uaþ1; . . . ; udi

of Md is already EXECUTED.
b. For all u > ua, node

hu1; u2; . . . ; ua�1; u; uaþ1; . . . ; udi

of Md is neither EXECUTED nor ELIGIBLE.

Restricting attention to the case d ¼ 2, we find the
following important consequences of Lemma 1.

. No two ELIGIBLE nodes of M2 reside in the same
row or the same column.3

. Every row- and column-ancestor of each ELIGIBLE

node of M2 has already been EXECUTED.

These conditions indicate that, at any instant when there
are n ELIGIBLE nodes on M2, we must have n distinct
rows of M2, each containing a distinct (perforce,
nonnegative) number of EXECUTED nodes. An easy
argument shows that the number of EXECUTED nodes
is minimized in this case when the n ELIGIBLE nodes
comprise level L

ð2Þ
n�1 of M2. (Any other arrangement

could be “compactified” without increasing the number
of EXECUTED nodes.) When the ELIGIBLE nodes com-
prise level L

ð2Þ
n�1, we have

Pn�1
k¼0 k ¼ n

2

� �
EXECUTED

nodes.
Completing the proof. The preceding lower bound on

XðtÞ when EðtÞ ¼ n tells us that, in order to have nþ 1
ELIGIBLE nodes on M2, we need at least nþ1

2

� �
EXECUTED

nodes. The proof of part 1 of the theorem tells us that, as
soon as we have n

2

� �
EXECUTED nodes on M2, we can

have n ELIGIBLE nodes. Combining these facts estab-
lishes part 2 of the theorem, hence verifies the
I-C optimality of schedules that allocate M2’s nodes
along successive diagonal levels. tu

3.1.2 Some Perspective: I-C Pessimal Schedules

Theorem 1 singles out a specific strategy for executing (the
nodes of) M2 as being the best in terms of maximizing the
production rate of ELIGIBLE nodes. In fact, the prescribed
diagonal-level schedules are unboundedly better in this
respect than many other natural schedules for M2. We
illustrate this point by contrasting the production rate of
ELIGIBLE nodes exposed in the proof of Theorem 1 part 1
with the production rate of the “square-shell” schedule
depicted schematically in Fig. 6. If the reader fleshes out this
schematic depiction to a level of detail commensurate with
that of Fig. 5, they will find that, under the “square-shell”
schedule, no more than three nodes of M2 are ever
simultaneously ELIGIBLE. (The number 3 here is, in fact,
pessimal.) Thus, Theorem 1 points out a distinction in
I-C quality that is far from just of academic interest.

3.2 Near-Optimal Schedules for Higher-Dimensional
Mesh-Dags

We now extend the development of Section 3.1 to mesh-
dags of dimensionality d > 2. In this case, we are able to

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

Fig. 6. A schedule for M2 that traverses square levels. “X” denotes an EXECUTED node; “E” denotes an ELIGIBLE node. The long arrows indicate

sequences of node-executions.

3. A row (respectively, column) of M is the induced subdag on a set of
nodes of the form fig �N (respectively, N� fjg).

establish the I-C optimality of diagonal-following schedules

only to within constant factors (that depend on d).

Theorem 2 (Mesh-dags of higher dimensionality). For any

fixed dimensionality d > 2, there exist positive constants �
ðdÞ
1

and �
ðdÞ
2 , depending only on d, such that: 1) For any schedule

for Md that schedules nodes along successive diagonal levels

and lexicographically within levels, there are � n ELIGIBLE

nodes on Md at t ime t o f the schedule—i .e . ,

EðtÞ � n—whenever XðtÞ � ð1=dÞnd=ðd�1Þ þ �
ðdÞ
1 n. 2) When

XðtÞ � �
ðdÞ
2 nd=ðd�1Þ, then EðtÞ � n.

It follows that any diagonal-threading schedule for Md is
within a constant factor of I-C optimal.

Proof. 1) LetS be any schedule forMd that executes ELIGIBLE

nodes along successive diagonal levels of Md, using a

lexicographic regimen; i.e., S executes the ELIGIBLE nodes

along each diagonal level ofMd in lexicographic order of

their coordinates. We claim that S achieves the advertised

upper bound. To see this, note that precisely mþd�1
d�1

� �
nodes

ofMd lie on themth diagonal level L
ðdÞ
m�1. These nodes are

all ELIGIBLE whenever all of their
Pm�1

j¼0
jþd�1
d�1

� �
¼

mþd�1
d

� �
ancestors (which comprise all the nodes on lower

diagonal levels ofMd) are EXECUTED.

Focus on a moment t for which exactly n nodes of Md

are ELIGIBLE—i.e., EðtÞ ¼ n. Consider how many addi-

tional ELIGIBLE nodes must become EXECUTED under S
before nþ 1 nodes ofMd are ELIGIBLE. Due to S’s order of
executing nodes, this delay is maximum when the

n ELIGIBLE nodes at time t form a complete diagonal level

of Md, say the mth diagonal level, L
ðdÞ
m�1—in which case,

n ¼ mþd�1
d�1

� �
. As S proceeds from the position wherein the

ELIGIBLE nodes comprise level L
ðdÞ
m�1 to the first moment

when the number of ELIGIBLE nodes on Md exceeds n, S
must execute the mþd�2

d�2

� �
nodes from levelL

ðdÞ
m�1 that have 0

as their first coordinate. It follows that during the period

when Md has precisely n ELIGIBLE nodes, the number of

EXECUTED nodes always has the form mþd�1
d

� �
þ k, for

some k � mþd�2
d�2

� �
. This reckoning shows that, in general,S

will have produced mþd�1
d�1

� �
ELIGIBLE nodes onMd by the

time that it has produced mþd�1
d

� �
þ mþd�2

d�2

� �
EXECUTED

nodes. Rewriting this fact from the perspective of n, rather

thanm, yields the bound of part 1.
2) We proceed by induction on d, using the case d ¼ 2

from Theorem 1 as our base case and operating with the
following inductive hypothesis.

Inductive Hypothesis. For each dimensionality � < d,
there exists a constant c� > 0 such that, at any instant
when M� contains n ELIGIBLE nodes, it also contains at
least c�n

�=ð��1Þ EXECUTED nodes.
To extend the induction, focus on any instant t when

Md contains n ELIGIBLE nodes—i.e., EðtÞ ¼ n. Let m be
the smallest integer such that the diagonal node
hm;m; . . . ;mi of Md is neither ELIGIBLE nor EXECUTED

at time t. Let XðtÞðnÞ denote the number of EXECUTED

nodes on Md at time t, expressed as a function of n. We
distinguish two cases.

Case 1: m � n1=ðd�1Þ. This case can be viewed as
saying that we are really exploiting the full d-dimension-
ality of Md, by quickly filling up many diagonal levels.

We achieve our goal (of extending the induction) quickly
in this case.

When m � n1=ðd�1Þ; we have XðtÞðnÞ � nd=ðd�1Þ � 1:

This is verified as follows: Because node hm;m; . . . ;mi
is the first diagonal node that is neither ELIGIBLE nor
EXECUTED at time t, we know, by Lemma 1, that every
ancestor of node hm� 1;m� 1; . . . ;m� 1i is EXECUTED

by time t. Since there are md � 1 such ancestors, we have

XðtÞðnÞ � md � 1 � nd=ðd�1Þ � 1:

Case 2: m < n1=ðd�1Þ. In this case, since we are not
quickly filling up many diagonal levels ofMd, we are not
exploiting the dag’s full d-dimensionality. This means,
intuitively, that we are essentially scheduling within a
lower-dimensional mesh-dag—which means that we are
producing EXECUTED nodes at a “fast” rate. Formalizing
this intuition requires a bit more effort than in Case 1.

By Lemma 1, no descendant of node hm;m; . . . ;mi can
be either ELIGIBLE or EXECUTED at time t. These
descendants comprise the “positive orthant of Md with
node hm;m; . . . ;mi at its origin,” i.e., the set of nodes
fhm1;m2; . . . ;mdi j each mi � mg. This means that all n
ELIGIBLE nodes on Md at time t must reside in one (or
more) of the dm copies of Md�1 that are obtained by the
variousways of specifying d� 1 ofMd’s d coordinate axes
plus a position p 2 f0; 1; . . . ;m� 1g along the unspecified
axis. Let us denote the m copies along the kth axis, where
k 2 f1; 2; . . . ; dg, in some (arbitrary) way, as

Mðk;0Þ
d�1 ;M

ðk;1Þ
d�1 ; . . . ;M

ðk;m�1Þ
d�1 :

(Notethat theunionofthesecopiescomprisesMdminusall

descendants of node hm;m; . . . ;mi.)Now,manyofMd’sn

ELIGIBLEnodes at time tactually reside inmore thanoneof

the mesh-dags Mðk;jÞ
d�1 . If we assign each ELIGIBLE node in

some (arbitrary)way tooneof thedagsMðk;jÞ
d�1 that it resides

in, then we effect a partition of the integer n into dm

nonnegative parts: n ¼
Pd

k¼1

Pm�1
j¼0 nk;j. This double

sumdenotes the assignment ofnk;j of thenELIGIBLEnodes

to copyMðk;jÞ
d�1 ofMd�1.

Now, let us aggregate the dm copies of Md�1 into d

groups, according to their “unspecified” axis: The kth

group comprises mesh-dags Mðk;0Þ
d�1 ;M

ðk;1Þ
d�1 ; . . . ;M

ðk;m�1Þ
d�1 .

Note that the mesh-dags in each group are pairwise

disjoint: No two share any node. It follows that at least one

of these groups—call it group k?—contains at least n=d of

thenELIGIBLEnodes at time t. Let us restrict attentionnow

to the copies ofMd�1 in group k?. Because of the internode

dependencieswithin eachmesh-dagMðk?;iÞ
d�1 , our inductive

hypothesis implies that thenk?;i ELIGIBLEnodes residing in

Mðk?;iÞ
d�1 betoken the existence of at least cd�1n

ðd�1Þ=ðd�2Þ
k?;i

EXECUTEDnodes inMðk?;iÞ
d�1 —hence, also inMd—at time t.

It follows that the total number of EXECUTEDnodes onMd

at time t is no smaller than

�t ¼ cd�1

Xm�1

i¼0

n
ðd�1Þ=ðd�2Þ
k?;i :

ROSENBERG: ON SCHEDULING MESH-STRUCTURED COMPUTATIONS FOR INTERNET-BASED COMPUTING 7

A standard convexity argument demonstrates that the
sum �t is bounded below by the sum obtained by setting
all of the nk?;i to their average value, which is no smaller
than n=ðdmÞ. (Recall that the m numbers nk?;i sum to at

least n=d.) This gives us the following lower bound on �t:

�t � cd�1m
n

dm

� �ðd�1Þ=ðd�2Þ

¼ ½cd�1 � d�ðd�1Þ=ðd�2Þ� � nðd�1Þ=ðd�2Þ �m�1=ðd�2Þ

¼ cd � nðd�1Þ=ðd�2Þ �m�1=ðd�2Þ:

ð3Þ

When m < n1=ðd�1Þ, we achieve the claimed lower bound
on XðtÞðnÞ via substitution in (3):

XðtÞðnÞ � �t � cd � nðd�1Þ=ðd�2Þ�1=ððd�1Þðd�2ÞÞ

� cd � nd=ðd�1Þ:

This completes the proof. tu

4 OPTIMAL SCHEDULES FOR MESH-LIKE MONOID

DAGS

Although Theorem 1 refers narrowly to the mesh-dag M2,
its scheduling prescription extends to a large class of close
relatives of M2. This section is devoted to identifying one
family of such close relatives whose structures are induced
by certain families of abelian monoids. From an algebraic
perspective, these dags are monoid-theoretic analogues of
the familiar group-induced Cayley graphs. From a graph-
theoretic perspective, these dags can be viewed as some-
what distorted copies of M2 that are enhanced with
regularly placed “shortcut” arcs. We show that the mesh-
like dags in the identified family share those aspects of the
structure of M2 that underlie Theorem 1.

4.1 Mesh-Like Cayley Dags of Monoids

A large literature that goes back decades amply illustrates the
benefits of exploiting the algebraic, as well as the combina-
torial, structure of graphs associated with a wide range of
computational problems. This algebraic structure is manifest
in theCayley digraphs ofmonoids.A finitely generatedmonoid is
an algebraic systemM ¼ Mð�;�;1Þ, where:

. � ¼ f�1; �2; . . . ; �ng is a finite set of generators for M;

. � is a binary associative multiplication for M;

. 1 is a (two-sided) multiplicative identity: For all
� 2 M, we have � � 1 ¼ 1� � ¼ �.

The elements of M comprise all finite products of instances
of elements � [f1g.4 The Cayley digraph GðMÞ associated
with M ¼ Mð�;�;1Þ has node-set NGðMÞ ¼ M and arc-set
AGðMÞ ¼ fð� ! � � �iÞ j � 2 M; �i 2 �g.

The computation-modeling literature focuses mainly on
Cayley digraphs of groups; see, e.g., [2], [9]. However, major
insightscanemergefromstudyingCayleydigraphsofweaker
algebraicstructures; see,e.g., the“group-actiongraphs”of [1],
[3] and the monoid-graphs of [24], [25]. Our study of Cayley
computation-dags is inspired by the last two sources.

The Cayley digraphs of many monoids are cyclic. This is
obvious for groups because of inverses; it is, less obviously,
true for all finite monoids because each arc leads to some
node and there are only jMj nodes. The acyclicity of
computation-dags is, thus, possible only for Cayley di-
graphs of infinite monoids; it manifests itself as a natural
restriction on the monoids underlying the digraphs. The
reader can easily verify the following:

Lemma 2. The Cayley digraph GðMÞ is acyclic if and only if the
monoid M does not contain elements �; �, with � 6¼ 1, such
that � ¼ � � �.

We say that a monoid M with generator-set � ¼
f�1; �2; . . . ; �ng is k-dimensional, for some k � n, if there
exists a k-element subset �0 � � such that each � 2 M is a
product of (instances of) generators from �0. In this
situation, the n� k generators from �� �0 supply “short-
cuts” in the Cayley digraph GðMÞ. We call �0 a k-basis forM.

Mesh-Like Monoid Dags. We have yet to discuss what
makes a computation-dag “mesh-like.” After close inspec-
tion of the analyses in Section 3, we have decided to insist
on the following three properties:

A Mesh-Like Monoid dag (MLM-dag, for short) M is the
Cayley digraph of a finitely generated, infinite monoid M,
such that:

. The monoid M is abelian, meaning that the following
commutative identities hold:

�1 � �2 ¼ �2 � �1 for all generators �1; �2 of M:

ð4Þ

. M is acylic; i.e., its underlying monoid M satisfies
Lemma 2.

. M has infinite width,meaning that there exist success-
ful plays of the I-C Pebble Game on M in which, for
every integer n > 0, there is a step at which at least
n nodes ofM contain ELIGIBLE pebbles.5

An MLM-dag M is two-dimensional (is a 2MLM-dag) if its
underlying monoid is two-dimensional.

Mesh-dags are the most restrictive MLM-dags in the
sense that their underlying monoids are (algebraically) free:
The identities (4) are the only nontrivial relations among
their elements. In detail, the mesh-dag Md is the MLM-dag
based on the monoid Md that has:

. d generators g1; . . . ; gd, each gi being a d-tuple of the
form gi ¼ h0; . . . ; 0; 1; 0; . . . ; 0i where the sole 1 is in
position i;

. coordinatewise addition of d-tuples of integers as its
“multiplication;”

. the identity 1 ¼ h0; 0; . . . ; 0i.

4.2 Delimiting the Structure of 2MLM-Dags

We now show that every 2MLM-dag is actually a copy of
M2 augmented with a structurally constrained set of
“shortcut” arcs. The inheritance of M2’s structure means
that 2MLM-dags cannot be scheduled with greater

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

4. As is common, “M” ambiguously denotes both the monoid Mð�;�;1Þ
and the set of its elements; context will clarify our intention.

5. We see from Section 3.1.2 that not every successful play of the Game
need satisfy this condition.

I-C quality than can M2; the constraints on the “shortcut”

arcs means that they can be scheduled with the same I-C

quality. Let us focus, henceforth, on an arbitrary 2MLM-dag

M whose underlying monoid M has a 2-basis f�; �g.
Theorem 3. The basis generators �; � of the monoid M

underlying M do not obey any equation of the form6

�a � �b ¼ �c � �d ð5Þ

for nonnegative integers a; b; c; d, except for the trivial

equation wherein a ¼ c and b ¼ d.

Proof. For the sake of contradiction, assume that an

equation of the form (5) holds for some nonnegative

integers a; b; c; d, where either a 6¼ c or b 6¼ d (or both). We

expose the absurdity of this assumption by repeatedly

invoking the following property of monoids.
Fact 1. If � ¼ � for �; � 2 M, then, for all � 2 M, we

have � � � ¼ � � �.
We isolate, in turn, three cases that exhaust the ways

in which a 6¼ c or b 6¼ d (or both).
Case 1: ½a < c and b � d� or ½a � c and b < d�. In this

case, (5) can be rewritten as:

�a � �b ¼ �aþðc�aÞ � �bþðd�bÞ

¼ ð�a � �bÞ � ð�c�a � �d�bÞ:
ð6Þ

Since ð�c�a � �d�bÞ 2 M � f1g, Lemma 3 indicates that

(6) contradicts M’s alleged acyclicity. We conclude that

(5) cannot hold with parameters that satisfy this case.
Case 2: aþ b ¼ cþ d. This condition says that nodes

�a � �b and �c � �d lie on the same “diagonal level” ‘ ¼def
aþ b ¼ cþ d of M. Therefore, we can rewrite (5) as:

�a � �l�a ¼ �c � �l�c: ð7Þ

Say, with no loss of generality, that a < c and let

e ¼ c� a.
Let us use the relations that hold within the monoidM

—specifically, (4) and (7)—to determine the population
of level l of M.

. There are a or fewer nodes “to the left of” node
�a � �l�a; all have the form �x � �l�x, where
0 � x < a.

. There are l� c or fewer nodes “to the right” of
node �c � �l�c; all have the form �x � �l�x, where
c < x � l.

. There is node �a � �l�a ¼ �c � �l�c.

. There are e� 1 or fewer nodes “between” node
�a � �l�a and node �c � �l�c; all have the form
�x � �l�x, where a < x < c.

In toto, level l of M thus contains no more than l nodes.

In the same way, let us determine the population of level

lþ e of M.

. There are a or fewer nodes “to the left of” node
�a � �lþe�a; all have the form �x � �lþe�x, where
0 � x < a.

. There are l� c or fewer nodes “to the right” of
node �cþe � �l�c; all have the form �xþe � �l�x,
where c < x � l.

. There is node

�a � �lþe�a ¼ ð�aþe � �l�a ¼ �c � �lþe�cÞ
¼ �cþe � �l�c:

The equations �a � �lþe�a ¼ �c � �lþe�c and �aþe �
�l�a ¼ �cþe � �l�c both follow from Fact 1. The

parenthesized equation �aþe � �l�a ¼ �c � �lþe�c

follows by direct calculation.
. There are e� 1 or fewer nodes “between” node

�a � �lþe�a and node �aþe � �l�a; all have the form
�x � �l�x, where a < x < aþ e.

There are e� 1 or fewer nodes “between” node

�c � �lþe�c and node �cþe � �l�c; all have the form

�x � �l�x, where c < x < cþ e.
However, the preceding two sets of nodes are

identical, as we show now.

Lemma 3. On level lþ e ofM, the set of nodes that lie “between”

nodes �a � �lþe�a and �aþe � �l�a is identical to the set of nodes

that lie “between” nodes �c � �lþe�c and �cþe � �l�c.

Verification. For each j 2 f1; 2; . . . ; e� 1g:

�aþj � �lþe�ðaþjÞ ¼ ð�a � �l�aÞ � ð�j � �l�jÞ
¼ ð�c � �l�cÞ � ð�j � �l�jÞ
¼ �cþj � �lþe�ðcþjÞ

ð8Þ

The e� 1 instances of (8) prove the lemma. Fig. 7

illustrates the argument pictorially.
Thus, in toto, level lþ e of M contains no more than l

nodes.

Aside. Reasoningmirroring that in system (8) shows that the

set of nodes of M that populate the entire “triangle”

ROSENBERG: ON SCHEDULING MESH-STRUCTURED COMPUTATIONS FOR INTERNET-BASED COMPUTING 9

Fig. 7. Lemma 3, pictorially. Node A is �a�b ¼ �c�d; Node B is

�a�bþe ¼ ð�c � �dþe ¼ �aþe�bÞ ¼ �cþe�d.

6. As usual, for any � 2 M, we have �0 ¼ 1 and �iþ1 ¼ � � �i.

subtended by nodes �a � �l�a, �a � �lþe�a, and �aþe � �l�a

is identical to the set of nodes ofM that populate the entire

“triangle” subtended by nodes �c � �l�c, �c � �lþe�c, and

�cþe � �l�c.
One easily extends the reasoning that leads to system

(8) to show that every level lþme of M, where
m ¼ 0; 1; 2; . . . , contains no more than l nodes. Since
every node of M has the form �x�y, it follows thatM has
finite width (in the sense of Section 4.1). To wit:

Lemma 4. Say that there exist fixed constants s and kðsÞ such

that, for all but finitely many lines of slope s in the �-� plane, a

line segment of length kðsÞ contains all of the nodes of the

dag M along that line. Then, M has finite width.

Verification. Invoking the reasoning that proves the lower

bound in part 2 of Theorem 1, we note that two nodes of

M can simultaneously be ELIGIBLE only if they reside in

distinct rows and columns of the �-� plane. Under the

assumption of the lemma, no more than kðsÞ such

independent nodes can coexist.
Thus, the assumption of Case 2 contradicts the fact

that M, being a 2MLM-dag, has infinite width. We
conclude that (5) cannot hold with parameters that
satisfy this case.

Case 3: aþ b 6¼ cþ d. Say, with no loss of generality,
that aþ b < cþ d and that a < c (so, by Lemma 2, b > d).
Let e ¼ c� a and f ¼ b� d. Since this case can be viewed
as a “skewed” version of Case 2, we shall be a bit
sketchier than in that case.

In addition to the motivating (5), we now have the
triple equation

�a�bþf ¼ ð�aþe�b ¼ �c�dþfÞ ¼ �cþe�d:

The equations �a�bþf ¼ �c�dþf and �aþe�b ¼ �cþe�d both

follow from Fact 1. The parenthesized equation �aþe�b ¼
�c�dþf follows by direct calculation.

Using an argument that mirrors (8), one shows the
following by direct calculation.

Lemma 5. The set of nodes of M that lie along the line between

nodes �aþe�b and �a�bþf is identical to the set of nodes of M
that lie along the line between nodes �cþe�d and �c�dþf .

Aside. One can strengthen the assertion of Lemma 5 to the

two “triangles” subtended, respectively, by the nodes

f�a�b, �aþe�b, �a�bþfg and the nodes f�c�d, �cþe�d, �c�dþfg.
A similar direct calculation reveals the following:

Lemma 6. The set of nodes of M that lie along the line between

nodes �a�b and �c�d is equinumerous to the set that lie along

the line between nodes �aþe�b and �a�bþf .

Lemmas 5 and 6 easily imply that

Lemma 7. For all integers m � 0, the sets of nodes of M that lie

along the line between nodes �aþme�b and �a�bþmf have equal,

finite cardinality.

In the presence of Lemma 4, Lemma 7 implies that, in
Case 3, too, the dag M has finite width, contradicting its

being a 2MLM-dag. We conclude that (5) cannot hold
with parameters that satisfy this case.

As Cases 1, 2, and 3 exhaust the situations that
support (5), the theorem is proven. tu

4.3 Optimal Schedules for 2MLM-Dags

Theorem 4. Let M be a 2MLM-dag. Theorem 1 holds with every

instance of “M2” replaced by “M.”

Proof. Theorem 3 tells us that the nodes of M comprise all

lattice points of the nonnegative �-� quadrant; i.e.,

NM ¼ f�a � �b j a; b ¼ 0; 1; . . .g. Therefore, we can repeat

the lower-bound proof of Theorem 1 verbatim for M,

with only the changes in notation necessitated by the

shift from “M2” to “M.”

Let � be any generator of M. By hypothesis, � must be

a nonidentity7 element of the monoidMðf�; �g;�;1Þ; i.e.,
� ¼ �a � �b, for some a; b such that aþ b > 0. Now, if

node �x � �y of M is ELIGIBLE at some step t of the

I-C Pebble Game, then all of its ancestors f�u � �v j ½u <

x� and ½v < y�g must be EXECUTED at step t. Thus, the

ELIGIBLE status of node �x � �y is unaffected by the

presence or absence of an arc ð�x�a � �y�b ! �x � �yÞ.
(This arc would betoken the fact that �x � �y ¼ �x�a �
�y�b � � in M.) It follows that node �x � �y is ELIGIBLE at

step t of the I-C Pebble Game on M if and only if

node hx; yi is ELIGIBLE at step t of the I-C Pebble Game

on M2. The upper bound of the theorem thus follows

from the upper-bound proof of Theorem 1, with only the

changes in notation necessitated by the shift from mesh-

dags to monoid-dags. tu

5 CONCLUSIONS

We have formulated a variant of the classical pebble game

on dags that models the process of executing a computa-

tion-dag within an Internet-based computing environment

(Section 2.3.1). Within this model, we have proposed a

formalism, I-C quality, for assessing the relative qualities of

individual executions of a broad range of computation-

dags, including mesh-like ones (Section 2.3.2). We have then

identified strategies that are exactly I-C optimal for both

two-dimensional mesh-dags (Section 3.1) and their monoid-

theoretic kin, 2MLM-dags (Section 4), and are within

constant factors of I-C optimal for all mesh-dags

(Section 3). We have also noted that I-C optimal schedules

for mesh-dags are unboundedly better than I-C pessimal

ones (Section 3.1.2).
Many inviting challenges remain in this research area.

The arguments that we have used here to establish the

(near) I-C optimality of schedules rely extensively on the

specific structures of the dags being scheduled. This

specificity is true also for the I-C optimal schedules

identified in this paper’s sequel [29]. Yet, perusing the

analyses of the schedules, one has the feeling that there are

“big,” as-yet unidentified, principles that are ensuring the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

7. When � ¼ 1, the associated digraph M has self-loops, hence is not
acyclic.

I-C quality of the schedules. Seeking such principles is an

enticing and potentially significant challenge.

ACKNOWLEDGMENTS

This research was supported in part by US National Science

Foundation (NSF) Grant CCR-00-73401. The author is grate-

ful to Fran Berman for suggesting the scheduling problem

studied herein and to Micah Adler, Henri Casanova, Matt

Yurkewych, and the anonymous referees for many helpful

comments and suggestions. A portion of this paper appeared

in the Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS ’03) as [27].

REFERENCES

[1] F.S. Annexstein, M. Baumslag, and A.L. Rosenberg, “Group
Action Graphs and Parallel Architectures,” SIAM J. Computing,
vol. 19, pp. 544-569, 1990.

[2] B.W. Arden and K.W. Tang, “Representations and Routing of
Cayley Graphs,” IEEE Trans. Comm., vol. 39, pp. 1533-1537, 1991.

[3] M. Baumslag and A.L. Rosenberg, “Processor-Time Tradeoffs for
Cayley Graph Interconnection Networks,” Proc. Sixth Distributed
Memory Computing Conf., pp. 630-636, 1991.

[4] A.R. Butt, S. Adabala, N.H. Kapadia, R. Figueiredo, and J.A.B.
Fortes, “Fine-Grain Access Control for Securing Shared Resources
in Computational Grids,” Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS ’02), 2002.

[5] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid
Architecture for Service Oriented Grid Computing,” Proc. 10th
Heterogeneous Computing Workshop, 2001.

[6] H. Casanova, Distributed Computing Research Issues in Grid
Computing, typescript, Univ. of California, San Diego, 2002.

[7] W. Cirne and K. Marzullo, “The Computational Co-Op: Gathering
Clusters into a Metacomputer,” Proc. 13th Int’l Parallel Processing
Symp., pp. 160-166, 1999.

[8] S.A. Cook, “An Observation on Time-Storage Tradeoff,”
J. Computer and System Sciences, vol. 9, pp. 308-316, 1974.

[9] V.V. Dimakopoulos and N.J. Dimopoulos, “Optimal Total
Exchange in Cayley Graphs,” IEEE Trans. Parallel and Distributed
Systems, vol. 12, pp. 1162-1168, 2001.

[10] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. San Francisco: Morgan-Kaufmann, 1999.

[11] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. Supercomputer
Applications, 2001.

[12] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling Dags on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, pp. 276-291, 1992.

[13] L. He, Z. Han, H. Jin, L. Pan, and S. Li, “DAG-Based Parallel Real
Time Task Scheduling Algorithm on a Cluster,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications
(PDPTA ’2000), pp. 437-443, 2000.

[14] J.-W. Hong and H.T. Kung, “I/O Complexity: The Red-Blue
Pebble Game,” Proc. 13th ACM Symp. Theory of Computing, pp. 326-
333, 1981.

[15] J.E. Hopcroft, W. Paul, and L.G. Valiant, “On Time versus Space,”
J. ACM, vol. 24, pp. 332-337, 1977.

[16] “The Intel Philanthropic Peer-to-Peer program,”www.intel.com/
cure, 2003.

[17] R.M. Karp, R.E. Miller, and S. Winograd, “The Organization of
Computations for Uniform Recurrence Equations,” J. ACM, vol. 4,
pp. 563-590, 1967.

[18] R.M. Karp, A. Sahay, E. Santos, and K.E. Schauser, “Optimal
Broadcast and Summation in the logP Model,” Proc. Fifth ACM
Symp. Parallel Algorithms and Architectures, pp. 142-153, 1993.

[19] D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and
Scheduling Guidelines for Global Computing Applications,” Proc.
Int’l Parallel and Distributed Processing Symp. (IPDPS ’02), 2002.

[20] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home: Massively Distributed Computing for SETI,”
Computing in Science and Eng., 2000.

[21] Th e O l s o n L a b o r a t o r y F i g h t A IDS@Hom e P r o j e c t ,
www.fightaidsathome.org, 2003.

[22] M.S. Paterson and C.E. Hewitt, “Comparative Schematology,”
Proc. Project MAC Conf. Concurrent Systems and Parallel Computa-
tion, pp. 119-127, 1970.

[23] N.J. Pippenger, “Pebbling,” Proc. Fifth IBM Symp. Math. Founda-
tions of Computer Science, 1980.

[24] A.L. Rosenberg, “Data Graphs and Addressing Schemes,”
J. Computing Systems Sciences, vol. 5, pp. 193-238, 1971.

[25] A.L. Rosenberg, “Addressable Data Graphs,” J. ACM, vol. 19,
pp. 309-340, 1972.

[26] A.L. Rosenberg, “Accountable Web-Computing,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, pp. 97-106, 2003.

[27] A.L. Rosenberg, “On Scheduling Collaborative Computations on
the Internet: Mesh-Dags and Their Close Relatives,” Int’l Parallel
and Distributed Processing Symp. (IPDPS ’03), 2003.

[28] A.L. Rosenberg and I.H. Sudborough, “Bandwidth and Pebbling,”
Computing, vol. 31, pp. 115-139, 1983.

[29] A.L. Rosenberg and M. Yurkewych, “Guidelines for Scheduling
Some Common Computation-Dags for Internet-Based Comput-
ing,,” submitted for publication, 2004.

[30] The RSA Factoring by Web Project, http://www.npac.syr.edu/
factoring (with foreword by A. Lenstra). Northeast Parallel
Architecture Center, 2003.

[31] W. Shang and J. Fortes, “Time-Optimal Linear Schedules for
Algorithms with Uniform Dependencies,” IEEE Trans. Computers,
vol. 40, pp. 723-742, 1991.

[32] X.-H. Sun and M. Wu, “GHS: A Performance Prediction and Task
Scheduling System for Grid Computing,” Proc. IEEE Int’l Parallel
and Distributed Processing Symp., 2003.

[33] C. Weth, U. Kraus, J. Freuer, M. Ruder, R. Dannecker, P.
Schneider, M. Konold, and H. Ruder, XPulsar@home-Schools Help
Scientists, typescript, Univ. of Tübingen, 2000.

[34] S.W. White and D.C. Torney, “Use of a Workstation Cluster for the
Physical Mapping of Chromosomes,” SIAM NEWS, pp. 14-17,
Mar. 1993.

Arnold L. Rosenberg is a Distinguished Uni-
versity Professor of Computer Science at the
University of Massachusetts (UMass) Amherst,
where he codirects the Theoretical Aspects of
Parallel and Distributed Systems (TAPADS)
Research Laboratory. Prior to joining UMass,
he was a professor of computer science at Duke
University from 1981 to 1986, and a research
staff member at the IBM T.J. Watson Research
Center from 1965 to 1981. He has held visiting

positions at Yale University and the University of Toronto; he was a Lady
Davis Visiting Professor at the Technion (Israel Institute of Technology)
in 1994, and a Fulbright Research Scholar at the University of Paris-
South in 2000. Dr. Rosenberg’s research focuses on developing
algorithmic models and techniques to deal with the new modalities of
“collaborative computing” that result from emerging technologies. He is
the author or coauthor of more than 145 technical papers on these and
other topics in theoretical computer science and discrete mathematics
and is the coauthor of the book Graph Separators, with Applications. He
is a fellow of the ACM, a fellow of the IEEE, and a Golden Core member
of the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

ROSENBERG: ON SCHEDULING MESH-STRUCTURED COMPUTATIONS FOR INTERNET-BASED COMPUTING 11

