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Fast, Realistic Lighting and Material Design using Nonlinear Cut Approximation

(a) (b) (c)

Figure 1: Three examples of realistic lighting and material design captured using our system at 2∼4 fps. The user can dynamically modify
the lighting, viewpoint, BRDF and per-pixel shading parameters.

Abstract

We present an interactive rendering system for realistic lighting and
material design under complex illumination with arbitrary BRDFs.
Our system smoothly integrates accurate all-frequency relighting
of shadows and reflections with dynamic per-pixel shading effects
such as bump mapping and spatially varying BRDFs. This combi-
nation of capabilities is typically missing in current systems. We
build upon a clustered piecewise constant representation called cuts
to accurately approximate both the illumination and precomputed
visibility as nonlinear sparse vectors. Our key contribution is an ef-
ficient algorithm for merging multiple cuts in a single linear traver-
sal. We use this algorithm to simultaneously interpolate visibility
cuts at each pixel, and to compute the triple product integral of the
illumination, interpolated visibility, and dynamic BRDF samples.
The theoretical error bound of this approach can be proved using
statistical interpretations of cuts. Our algorithm extends naturally
to computation with many cuts; moreover, it maps easily to modern
GPUs, resulting in a significant performance speedup over existing
methods based on nonlinear wavelet approximations. Finally, we
present a two-pass, data-driven approach that exploits pilot visibil-
ity samples to optimize the construction of the light tree, leading to
more efficient cuts and reduced datasets.

Keywords: Relighting, precomputed light transport, clustering,
cuts, BRDF editing, per-pixel shading, global illumination

1 Introduction

Realistic image synthesis requires incorporating scalable illumina-
tion, intricate shadowing, and finely detailed materials. This often
prevents users from receiving real-time feedback on lighting and
material changes due to expensive simulation costs. For instance,
final-quality rendering often requires minutes to hours to complete
one frame, significantly hampering user productivity.

Previous work [Sloan et al. 2002; Ng et al. 2003] has shown that

expensive rendering costs can be amortized by precomputing illu-
mination transport data for a static scene in exchange for real-time
frame rates. Early prototypes require fixing material properties to
avoid high sampling rates and rendering costs. Subsequent work,
such as [Ng et al. 2004], permits dynamically selecting materials,
but only supports a small set of BRDFs due to the significant pre-
processing cost for each BRDF. Most recent advances in material
editing [Ben-Artzi et al. 2006; Sun et al. 2007] have provided tech-
niques for fast feedback upon BRDF changes. However, they make
substantial assumptions that require either fixing the lighting and
view or representing arbitrary BRDFs with a small set of linear
bases. Moreover, dynamic control of meso-scale surface details
is generally missing in such systems, due to the lack of per-pixel
shading.

We present an interactive system that supports accurate, realistic
lighting and material design with dynamic per-pixel shading effects.
Figure 1 shows several examples captured in real-time. Our system
is built with the following principles in mind:

• Fully dynamic control of lighting, view point, and BRDFs;
• Per-pixel shading details using bump mapping and spatially

varying BRDF parameters, all of which can be modified in-
teractively with no precomputation required;

• Accurate soft shadows and reflections at all frequency scales;
• No precomputed BRDF data or BRDF linear basis set;
• Flexible illumination sources.

Although prior work has shown subsets of the above features, the
complete set is typically missing in existing systems. Our basic as-
sumption is that scene geometry is fixed, thus visibility can be pre-
computed and exploited on the fly. We also assume that complex il-
lumination can be approximated by many point lights, as suggested
by recent work [Walter et al. 2005; Walter et al. 2006].

For accurate rendering, we exploit a clustered piecewise constant
representation called cuts [Walter et al. 2005; Akerlund et al. 2007]
to efficiently approximate both the illumination and precomputed
visibility functions as nonlinear sparse vectors. To achieve per-pixel
shading, we interpolate visibility vectors for each pixel, then eval-
uate the view-dependent shading results by integrating the lighting,
interpolated visibility, and dynamically computed BRDF samples.
We use a deep deferred shading buffer to store all relevant shad-
ing parameters. This allows us to dynamically control meso-scale
surface shading details by enabling bump mapping and spatially
varying BRDF parameters.
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While cuts have been shown to be accurate and flexible, no prior
work has studied efficient algorithms for computation involving
many cuts, such as linear interpolation and multi-product integrals.
These are at the core of achieving our aforementioned goals. As
the primary contribution of this work, we present an efficient GPU-
friendly algorithm for computing sums and multi-product integrals
of cuts in a single linear traversal. We use this algorithm to in-
terpolate visibility cuts for each pixel in a fragment shader, while
simultaneously computing their integrals with the illumination cut
and dynamic BRDF samples.

Our algorithm extends trivially to computation with many cuts. We
show in Section 3 that the accuracy of such computation is guaran-
teed if we can bound the approximation error of each individual cut
node. Moreover, the algorithm maps easily to modern GPUs with
dynamic branching. The combination of algorithmic and hardware
developments lead to an order of magnitude speedup over existing
methods based on wavelets.

Finally, we present an two-pass, data-driven approach that exploits
subsampled visibility data to optimize the illumination clustering
schemes. This proves to be effective at improving the efficiency of
cuts, and reduces the overall data size by an average of 20∼30%.

2 Related Work

Illumination from many lights. Efficient rendering from a large
number of light sources has always been a central challenge in
graphics. Debevec et al. [1998] show that using detailed environ-
ment lighting enables photorealistic rendering effects; most global
illumination problems such as indirect lighting are fundamentally
problems involving many lights. Standard algorithms entail a lin-
ear cost with increased number of lights. To reduce this cost, sev-
eral methods[Ward 1994; Shirley et al. 1996; Paquette et al. 1998]
have been introduced to intelligently pick important lights and save
computation on unimportant ones; [Wald et al. 2003; Agarwal et al.
2003; Debevec 2005; Clarberg et al. 2005] create importance-based
illumination sampling schemes or cluster many lights into a small
set of representative lights. Recently, Walter et al. [2005] intro-
duced Lightcuts – a highly efficient, scalable solution for handling
many lights using a hierarchical algorithm. These techniques typi-
cally rely on offline renderers to sample visibility and achieve high
quality. The matrix row-column sampling algorithm by [Hašan
et al. 2007] exploits the GPU to quickly sample and cluster many
lights, improving speed to a few seconds per frame. In contrast, our
method aims at exploiting precomputed visibility to support real-
time lighting and material changes.

There is a large body of recent work on GPU-based global illumina-
tion, such as [Nijasure et al. 2005; Gautron et al. 2005; Laine et al.
2007; Dachsbacher et al. 2007]. These techniques use the GPU for
real-time visibility sampling, but typically at the cost of reduced
quality.

Precomputed light transport. PRT [Sloan et al. 2002; Ng et al.
2003] amortizes expensive rendering costs with many lights by pre-
computing illumination transport data for a static scene in exchange
for real-time frame rates. A comprehensive overview of current
PRT techniques can be found in [Lehtinen 2007]. Early work pre-
sented in [Kautz et al. 2002; Lehtinen and Kautz 2003; Liu et al.
2004; Wang et al. 2004] focuses on illumination from distant envi-
ronment lighting or mid-range illumination [Sloan et al. 2002; An-
nen et al. 2004]. They take dense illumination samples, then exploit
standard bases such as spherical harmonics (SH), Haar wavelets, or
radial basis functions (RBFs) to compress light transport data and
reduce rendering costs. A drawback of these bases is that they are
difficult to apply to arbitrary, unstructured illumination samples, as
in the case of local indirect lighting. This often limits the technique

to parameterized scene models [Kontkanen et al. 2006]. A recent
work by Hašan et al. [2006] introduced a scheme to hierarchically
cluster a group of lighting samples into a quad-tree, which can then
be compressed directly using wavelets. Most recently, Akerlund
et al. [2007] presented precomputed visibility cuts, a technique in-
spired by Lightcuts, for accurate, piecewise constant approximation
of arbitrary lighting samples. This approach has the additional ad-
vantage of incorporating BRDF samples computed on the fly, thus
permitting fully dynamic material editing.

Our method builds upon this general representation using cuts. We
note that clustering of illumination samples is hardly a new idea:
it has been used frequently in previous work, notably in radios-
ity algorithms [Hanrahan et al. 1991; Drettakis and Sillion 1997;
Gortler et al. 1993]. However, our main interest is in efficient al-
gorithms for computing interactions between many cuts which are
also GPU-friendly. To our knowledge this is the first study on such
topic. Two related works are the wavelet triple product integral by
Ng et al. [2004] and the generalized version by Sun et al. [2006].
However, wavelets impose significant limitations on handling lo-
cal lighting and dynamic BRDFs; in addition, the multi-product
wavelet integral algorithm is expensive to map to the GPU, and
hasn’t been shown in fully interactive rates.

BRDF shading and editing. Realistic BRDF shading under large-
scale illumination has been thoroughly studied. Environment map-
ping [Cabral et al. 1999; Ramamoorthi and Hanrahan 2002] is one
popular technique that assumes no shadowing effects; early work
in PRT incorporates realistic shadows but requires fixing material
properties. By adopting a factored representation that decouples
materials from scene definition, Ng et al. [2004] enable dynamic
selection of BRDFs, but they only support a small selection of ma-
terials as expensive preprocessing is required for each BRDF. In
general, these systems focus more on the capability of relighting
under rich illumination but do not provide online modification of
arbitrary BRDFs.

Colbert et al. [2006] developed BRDFShop – an intuitive BRDF
editing interface; Lawrence et al. [2004] introduced the inverse
shade tree for non-parametric BRDF editing; Kautz et al. [2007]
presented an interactive editing system for bidirectional texture
functions (BTFs). Most recently, advances in BRDF editing [Ben-
Artzi et al. 2006; Ben-Artzi et al. 2007; Sun et al. 2007] have en-
abled real-time BRDF changes under large-scale illumination; but
due to the high cost in sampling view-dependent effects, they typ-
ically make substantial assumptions that require fixing the lighting
and view, or require representing general BRDFs with a small linear
basis set. Both of these are assumptions we try to avoid. In addition,
due to the lack of per-pixel shading support, they ignore impor-
tant meso-scale surface details provided by bump maps, spatially
varying BRDFs or bidirectional texture functions. A recent work
by [Kontkanen et al. 2007] precomputes visibility data (stored in
shadow maps) and casts dynamic BRDF samples to simulate com-
plex reflections. While conceptually similar to ours, their system is
unsuitable for large-scale illumination, requiring several seconds to
converge.

Sloan et al. [Sloan et al. 2003] introduced bi-scale radiance to incor-
porate BTFs in low-frequency PRT: a macro-scale that smoothly in-
terpolates global effects (e.g. shadows), and a meso-scale that pro-
vides local shading details using texture functions. Their system is
limited to low-frequency transport effects, and requires preprocess-
ing of texture functions. Our approach is similar to theirs in spirit,
but we handle all-frequency transport effects efficiently throughout
our system; in addition, we permit fully dynamic material changes
with no preprocessing of BRDF data.
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3 Algorithm Overview

Assumptions. Similar to previous work, we make the following
assumptions: 1) scene geometry is fixed; 2) illumination can be
modeled as many diffuse point lights (this includes distant lights);
3) we only consider one bounce of illumination directly from the
lighting samples. The second assumption means we do not handle
glossy to glossy transfer paths.

3.1 Mathematical Framework

Given a set of point lights S, the radiance B caused by one-bounce
illumination from S to a surface point xo in view direction ω is:

B(xo, ω) =
∑
S

L(xi) fr(xi → xo, ω)V (xi)G(xi) cos θi (1)

where xi ∈ S is an illumination sample, L is the source radiance,
fr is the BRDF, V is the binary visibility function, and G is a geo-
metric term – the differential solid angle subtended by xi. To sim-
plify the notation, we combine the cosine term into fr , and combine
G into V . We then focus on a fixed surface point at a fixed viewing
angle, thus obtaining the simple form:

B =
∑
S

L(xi) fr(xi)V (xi) (2)

As S contains a large number of points, directly evaluating this
integral is impractical. A large body of previous work has studied
the use of bases such as Haar wavelets and spherical harmonics
to approximate each term and reduce the computational cost to be
sublinear in the number of lights. However, these approaches are
limited to distant environment lighting and require precomputing
BRDF data. Refer to [Ng et al. 2004] for a comprehensive study of
these approaches.

Representation using Cuts. Recently Akerlund et al. [2007]
presented an alternative representation called cuts for accurate ap-
proximation in large-scale illumination problems. Cuts nonlinearly
approximate the precomputed visibility function V as a piecewise
constant function: assume that we can partition the whole set S into
a small number of clusters Ck, such that V is coherent within each
Ck and can thus be approximated by the mean cluster value:

〈vk〉 =
1

|Ck|
∑

V (xi), xi ∈ Ck (3)

where 〈·〉 denotes the mean, and |Ck| denotes the number of clus-
ter samples. In addition, the center of cluster (the mean position of
samples) 〈xk〉 = 1

|Ck|
∑

xi can be used as a representative direc-
tion to sample dynamic BRDFs, assuming that the BRDF changes
smoothly. In order to efficiently compute the cluster values, a
global light tree is constructed which hierarchically partitions light-
ing samples. The light tree is a binary tree where the leaf nodes rep-
resent individual lighting samples and the interior nodes represent
clusters. A cut through the tree is selected to represent a partition-
ing of lighting samples into disjoint sets of clusters. Figure 2 shows
an example. Cuts are selected in order to minimize both error and
cut size. In [Akerlund et al. 2007], visibility functions are prepro-
cessed using cuts, which are called precomputed visibility cuts; the
rendering algorithm then takes one sample for L and fr per visi-
bility cluster, and computes the illumination integral by summing
up the contribution from all clusters. This approach creates clusters
based entirely on visibility and does not account for potential errors
in the illumination and BRDF. Moreover, as in most other PRT sys-
tems, they are restricted to per-vertex lighting, disabling important
per-pixel shading effects.

In general we can use cuts to approximate arbitrary functions up to
some predefined accuracy. For example, we can create an illumina-
tion cut forL, and similarly, BRDF cuts for fr . The question is how
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Figure 2: A light tree and two example cuts. Leaf nodes are indi-
vidual light samples and interior nodes are clusters. Each tree node
is indexed by the postorder traversal index (the center number); it
also stores the index to its leftmost child leaf (the lower-left num-
ber). A cut (colored lines) represents a partitioning of the leaves
into clusters. Two cuts can be merged into a new cut.

to efficiently combine these cuts and use them to quickly evaluate
Eq. 2. As presented in the next section, a simple algorithm exists
to quickly evaluate the triple product integral of the three cuts; in
addition, the same algorithm can simultaneously interpolate several
cuts, making it possible to enable per-pixel lighting by interpolat-
ing visibility cuts at each pixel. The result of this computation is
effectively a new, merged cut that combines the subclusters from
all source cuts. With the merged cut, Eq. 2 becomes:

B =
∑

k |C
′
k| 〈lk〉 〈ρk〉 〈vk〉 (4)

where C′k denotes a new cluster on the merged cut and 〈lk〉, 〈ρk〉,
〈vk〉 are the cluster means of L, fr and V . Because the merged cut
retains the accuracy in each source cut, the result of this approxima-
tion has guaranteed error bound. In Section 4 we show a theoretical
analysis of this error bound.

Unfortunately computing cuts for the BRDF is impractical as it in-
volves significant preprocessing that prevents us from modifying
them dynamically. Therefore, in practice we never compute BRDF
cuts, but instead evaluate BRDFs dynamically using each cluster’s
center direction. This effectively changes the computation to:

B =
∑

k |C
′
k| 〈lk〉 〈vk〉 fr(〈xk〉) (5)

We will return to this issue in Section 4. For now assume that a
BRDF cut does exist, and the following algorithm and theoretical
analysis remain valid for the most general case.

3.2 Efficient Algorithm for Merging Cuts

Properties of Cuts. We first define some notations to simplify the
discussion. As shown in Figure 2, each tree node on the light tree
is indexed by its postorder traversal index; at each node we also
keep the postorder index of its leftmost leaf child, which we call
the leftleaf. From the definition of postorder index, we have:

1. The children of any tree node p must have indices that range
between [p.leftleaf,p.index), referred to as the child index range;

2. If p1.index < p2.index, then either p1 is a child of p2 (this
happens when p1.index ≥ p2.leftleaf); or p1 represents a non-
overlapping cluster on the left side of p2 in the tree.

In addition, the following properties hold for cuts in general:

3. Indices of cut nodes increase monotonically from left to right;

4. The union of any number of cuts is a new cut that goes through
the deepest children nodes in all cuts; in other words, it represents
a new clustering that merges the subclusters of all cuts.

Algorithm for Merging Cuts. Our goal is to efficiently compute
sums and product integrals of several cuts. From Figure 3, it is easy
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Figure 3: Merging cuts. The left column shows two cuts C1, C2.
The node value is the cluster mean (average); the upper-left colored
number is the cluster index. The middle column shows the effective
cut approximations. The right column shows the results of summing
and multiplying the two cuts.
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Figure 4: Step-by-step execution of the example given above. Cuts
are shown by their node indices: 2, 3, 4 for the orange cut; 0, 1,
5 for the purple cut. Shaded nodes are the current nodes in ex-
ecution (the pj’s); underscore marks the smallest current index;
checkmarks indicate whether all current nodes overlap.

to see that both operations result in a new piecewise constant repre-
sentation of the merged cut. Therefore we use a unified algorithm
called merging cuts to compute both.

We note from Properties 3 and 4 that merging cuts very much re-
sembles merging sorted arrays or sorted sparse vectors. The stan-
dard algorithm works as follow: start by setting pointers to the first
elements of the arrays; begin looping, finding the smallest elements
(or elements with the smallest index, in case an index-value pair
is used) from all current pointers, merge the smallest values into a
result buffer, and increment the pointers of those with the small-
est elements; the loop continues until it has come to the end of all
arrays. Note that elements with different indices are not merged
together.

This algorithm is very efficient as it only requires one linear traver-
sal on each array, and the traversal is performed simultaneously for
all arrays. However, to use it for merging cuts, we must consider
a the case where cut nodes that do not share the same index can
still overlap because one is the child of the other. In this case their
values should be merged together. Given this, we modify the algo-
rithm as follows: as before, at each step we find and advance those
nodes with the smallest current index; however, the contribution of
all current nodes will be merged together as long as the intersection
of their clusters is not empty.

Nodes are overlapping if they all share one common child. Accord-
ing to Property 1, this can be quickly checked by intersecting the
child index range of all nodes: the intersection is non-empty if and
only if all nodes overlap. With this modification, we now have the
complete algorithm presented below in pseudocode. The algorithm
works for an arbitrary number (N ) of cuts, and the computation can
be a sum or product of multiple cuts, or a combination of the two:

set pj (j ∈ [1, N ]) to point to the first node in each cut;
set c = 0;
loop

min index = minimum ( p1.index, ... , pN .index );
max leftleaf = maximum ( p1.leftleaf, ... , pN .leftleaf );
if max leftleaf ≤ min index then

/* all cut nodes overlap */
perform desired computation, e.g. c = c+

∏
j〈pj〉;

end if
for all j such that (pj .index == min index) do

advance pj to its next node;
if (pj > the end of cut j) then quit loop;

end for
end loop
return c;

The above example computes the multi-product integral of the N
cuts. To perform linear interpolation instead, we can simply change
the inner computation to

∑
j wj〈pj〉, where wj is the linear inter-

polation weight. In Figure 3 and 4 we show a detailed example of
running this algorithm.

We note that the algorithm does not rely on any particular tree struc-
ture. It works even for non-binary trees. Although we do not cur-
rently take advantage of this property it could be useful in the future
for increasing compression efficiency.

Algorithm for selecting a cut. Our cut selection algorithm is
similar to [Akerlund et al. 2007]. We first sample a function (e.g.
the visibility V ) at the leaf nodes of the light tree; these values are
then clustered and propagated to all the interior nodes. At each
node we store the cluster mean 〈vk〉, along with the cluster vari-
ance var(vk), which represents the averageL2 approximation error
caused by substituting the entire cluster with the mean. To select a
cut, we start with a trivial cut that contains only the root node, then
progressively subdivide it. At each subdivision step we choose the
node from the current cut with the highest error and replace it with
its two children nodes. This refinement process stops when every
cut node has a total error that falls below a certain threshold:

|Ck| var(vk) ≤ σ2, ∀k (6)

where σ is a predefined threshold representing the maximum stan-
dard deviation allowed for this approximation. We typically set this
to 1.5∼3.0 in all our experiments. The resulting cut is then stored
as a sparse vector containing each cut node’s index and the cluster
mean 〈vk〉. To prevent cuts from growing to arbitrary lengths, we
set a maximum cut size of 1000 as in [Walter et al. 2005].

For computing the illumination cut, we prioritize the refinement
step slightly differently, by choosing at each step the node with the
highest intensity value instead of the highest error. We found this
works better for the lighting as minimizing the error in lighting has
lower priority than accounting for important, bright lights. In order
to satisfy an error bound we can apply these strategies in sequence:
first generate the cut satisfying the per node error bound, then use
any remaining budgeted nodes to refine the cut based on intensity.

3.3 Theoretical Analysis

Complexity analysis. Clearly the computational cost of our al-
gorithm is linear to the size of the final merged cut. Assuming we
have N cuts and the average cut size is m: in the best case when
all cuts are exactly the same (essentially degenerating to linear ap-
proximation), the complexity is O(m); and in the worst case when
cuts are extremely incoherent, the complexity is O(Nm). In typi-
cal situations the complexity falls somewhere in between.
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Note that due to the nonlinear approximation nature of cuts, m is
usually substantially smaller than |S|: the total number of lighting
samples. In fact, it is typically less than 1% of |S| in all our ex-
periments. The overall complexity using our algorithm is strongly
sublinear to the total number of lights.

Error analysis. Theoretical error bounds using our approach can
be easily proved through statistical interpretations. In the following
we focus on the analysis of multi-product integrals of cuts; inter-
polation of cuts can be studied similarly. For product integrals, it
suffices to examine the error at one cluster node, as the total error
is a direct sum of per-cluster errors.

Double product integrals
Assume that functions a and b have been approximated with cuts; at
any given cluster Ck on their merged cut, our cut selection criterion
(Eq. 6) guarantees the following conditions:

|Ck| var(ak) ≤ σ2
a, |Ck| var(bk) ≤ σ2

b (7)

where σa, σb are the individual cut error thresholds for a and b.
Now if we approximate their double product integral

∑
k akbk with

the simple product using their means |Ck|〈ak〉〈bk〉, the absolute
error resulting from this approximation can be bounded by:

ε2 = |
∑
akbk − |Ck|〈ak〉〈bk〉|

= |Ck| · |〈akbk〉 − 〈ak〉〈bk〉|
= |Ck| · |cov(ak, bk)|
≤

√
|Ck| var(ak) · |Ck| var(bk) ≤ σaσb (8)

where 〈·〉 denotes and mean, and cov denotes the covariance. Step
(8) can be proved using the Cauchy-Schwarz inequality and the
conditions given in Eq. 7. This implies that the double product in-
tegral error only relies on the error assumed for each individual cut.
Therefore we can effectively predict the error of this computation
once we have limited the cut selection threshold σ.

Triple product integrals
Unfortunately the conclusion above does not extend trivially to the
cases of triple- and multi-product integrals. The error resulting from
the approximation is similar, with an additional function c:

ε3 = |
∑
akbkck − |Ck|〈ak〉〈bk〉〈ck〉|

= |Ck| · |〈akbkck〉 − 〈ak〉〈bk〉〈ck〉| (9)

There is unfortunately no simple formula to relate this metric di-
rectly to our preconditions; however, using a close approxima-
tion [Bohrnstedt et al. 1969], we can reduce the error to:

ε3 ≈ |Ck| · |〈ak〉cov(bk, ck)+ 〈bk〉cov(ak, ck)+ 〈ck〉cov(ak, bk)|

Similar to Eq. 8, the covariances are still bounded:

|cov(ak, bk)| ≤ σaσb; |cov(ak, ck)| ≤ σaσc; |cov(bk, ck)| ≤ σbσc.

however, the error now additionally relies on the magnitude of the
mean values |〈ak〉|, |〈bk〉|, and |〈ck〉|, which generally cannot be
assumed to have bounds.

This problem can be understood intuitively by the fact that a large
average value in any of the three functions can arbitrarily magnify
the product error resulting from the other two terms. The simplest
example is to set one function, say ak, to a constant, thus ak = ā.
In this case, Eq. 9 reduces to the simple form:

ε3 = |Ck| · |ā| · |cov(bk, ck)| ≤ |Ck| · |ā| · σbσc (10)

where it’s obvious that the error is unbounded if ā becomes arbi-
trarily large. Note that double product integrals do not have this
problem.

Although it seems that a meaningful analysis would be impossible
given the situation, in reality the quantities involved in physics often
come with additional constraints that help remove the anomalies.
For instance, if we look at the three quantities involved in Eq. 2:
first of all, visibility V is a binary function and is thus bounded:

|〈vk〉| ≤ 1, ∀vk

second, a physically-based BRDF must conserve energy, therefore
even though some of its particular values could be unbounded, its
integral across the entire domain must be bounded (recall that we
associate the cosine term with the BRDF):∑

k |Ck| · |〈ρk〉| =
∫
S fr ≤ 1

So the BRDF term contributes to limited error when summed across
all clusters. Finally, although we are unable to bound the illumina-
tion L in the same way, studies show that people are perceptually
more tolerant to errors as the overall illumination level increases.

Comparison to Haar wavelets. Haar wavelets have been stud-
ied extensively in previous relighting systems [Ng et al. 2003; Liu
et al. 2004; Wang et al. 2004]. Fundamentally Haar wavelets are
just like cuts: both are adaptive methods that create piecewise con-
stant representations. Therefore in theory they should have similar
efficiencies. This claim is confirmed through our experiments in
Section 5. Despite the similarity, cuts are more flexible and enable a
substantially improved and efficient algorithm for computing sums
and multi-product integrals on the GPU, resulting in a significant
performance speedup over similar computation using wavelets. In
addition, we’ve shown that the computation error using cuts can be
easily bound using statistical interpretations; we are not aware of
any similar analysis on wavelet-based methods.

3.4 Improving the Light Tree Construction

Our initial light tree construction algorithm is based on the cluster-
ing algorithm by Hašan et al. [2006]. A purely geometric distance
metric dg from a point xs to cluster center 〈xc〉 is defined as

dg(s, c) =
K2

d2
||xs − 〈xc〉||2 + ||ns − 〈nc〉||2 (11)

where d is the length of the scene bounding box diagonal, intended
for normalization, and K is a user defined parameter for which we
find a default value of 30 always gives good results. Because clus-
ters must be evenly sized to create a complete binary tree, clusters
are formed by sorting the samples by the difference of the distances
to the current two cluster centers, dg(s, c1)−dg(s, c2) and splitting
the array in the middle. The tree is built top down, recursively ap-
plying this clustering algorithm to generate a complete binary tree.

The basic assumption behind this method is that illumination sam-
ples that are geometrically close to each other are likely to produce
similar light transport results. While this is a good heuristic, we
found that by having some knowledge of the actual functions be-
ing approximated, we can optimize the light tree construction and
achieve a significant improvement in compression. This is done by
using a data-driven approach that exploits pilot visibility samples.

Specifically, for each light sample we generate a light visibility vec-
tor ~li which is a subsampled version of the visibility vector from
a single light sample point xi to all mesh vertices xo. In order to
subsample the visibility vector, we must solve a similar problem
and cluster the mesh vertices into M clusters, where M is the size
of the light visibility vector. We use the purely geometric approach
described above to accomplish this very efficiently. We then sample
the light visibility vectors, by casting shadow rays from each light
xi to each vertex cluster, and averaging the visibility values taken
for all cluster members. With this information we can define a new,
data-driven distance function dv:
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(a) Purely Data-Driven (b) Mixture (c) Purely Geometric

Figure 5: Clustering of illumination samples for light tree con-
struction. These graphs show environment lighting samples clus-
tered at the 9th level, and compare the three distance metrics.

dv(s, c) =
(K + 1)2A2

M
||~ls − 〈~lc〉||2 (12)

where ~ls is the light sample’s visibility vector and ~lc is the average
visibility vector of a light cluster, K is the same as in the previous
scheme, and A is the approximate solid angle subtended by each
light, i.e. 4π/N where N is the number of lights. The constant
scaling terms are intended to normalize this metric to dg for use
later and do not affect the results of this approach. While clustering
using this metric works well, we find two problems with it. First, in
some cases the visibility vectors are all zero and clustering becomes
ineffective – samples with zero visibility vectors are grouped at ran-
dom. The effect can be seen in Figure 5(a) for sampling directions
near the −Y axis. Due to a ground plane, many samples near the
−Y direction have zero light visibility vectors and so get clustered
randomly. Second, the metric is biased strongly toward approximat-
ing visibility well, and hence may create highly anisotropic clusters
that are inefficient at representing the run-time illumination. This
effect can also be seen in Figure 5(a) as the long skinny clusters
in the −Y direction. While this purely data driven approach sig-
nificantly improves the compression rate of precomputed visibility
cuts, it may lead to very long illumination cuts, thus reducing over-
all rendering performance. Therefore, we combine this approach
with the geometric approach and create a new distance metric:

d(s, c) = (1− β) dv(s, c) + β dg(s, c) (13)

where β is a user defined weight controlling the relative importance
of the geometric vs. data-driven metric. Because we have approx-
imately normalized the two metrics, values of 0.4-0.5 for β work
well to balance improved compression and light cut efficiency. The
results are shown in Figure 5(b). For quantitative results regarding
data-driven clustering, refer to Section 5.

Clearly the trade-off of this approach is increased precomputation
time vs. improved compression efficiency. Our data-driven ap-
proach now requires two visibility sampling passes and therefore
takes approximately twice as much time; on the other hand, we
found that it typically gains 20∼30% in compression rate and there-
fore leads to faster rendering framerates due to reduced cut size.

4 Implementation Details

4.1 Precomputation

The first step in precomputation is to generate light sample points.
For environment lighting we generate samples on the unit sphere;
and for local lighting we divide the samples among the objects by
surface area. In both cases we choose random points and use a
repulsion algorithm to distribute the points evenly. We find that 32K
points is sufficient for even high frequency environment lighting.
For local lighting the number of samples depends on the complexity
of the scene, but we find 32K works well for all our examples.

Next we must generate the global light tree from the unorganized
sample points. A simple implementation can use the geometric dis-

tance metric described in Section 3.4. When using the data-driven
clustering based on pilot visibility samples, we must choose a light
visibility vector length. We have found that 1024 vertex clusters
(i.e. the light visibility vector length is 1024) work well, although
this can be reduced to save space and still be effective.

Once we have the light tree constructed, we simply loop through
each vertex to generate visibility cuts. To sample visibility, we use
a simple, unoptimized ray tracer to cast shadow rays from every ver-
tex to each light sample. Because these rays are cast in a coherent
fashion, we expect a modern, optimized ray tracer could perform
at least an order of magnitude faster. We then multiply the binary
visibility with the proper geometric term of the light sample, which
depends on the type of lighting being used. Because our implemen-
tation guarantees the tree will be a complete binary tree we store the
tree linearly in memory for efficiency. Once the sampled visibility
values have been propagated up the tree, including the variance,
we use the algorithm described in Section 3.2 to compute a cut.
Because each vertex is independent we parallelize this process by
processing different vertices in different threads.

4.2 Rendering

Basic rendering algorithm. At runtime we need to render our
mesh, compute a merged visibility cut for each pixel as a linear
combination of the visibility cuts at the triangle’s vertices, and com-
pute the approximate value of the lighting integral by multiplying
the merged visibility cut, the light cut, and the BRDF cut:

B =
∑

L(xi) fr(xi) (w1 V1(xi) + w2 V2(xi) + w3 V3(xi))

Although we logically perform these steps in sequence, generating
intermediate merged cuts, we actually handle all cut operations in
a single traversal. We construct the light cut for the current frame.
Then, for each pixel, we perform a traversal on the vertex visibility
cuts and the light cut at the same time. This traversal visits the deep-
est cluster nodes in all of these cuts. At each node we interpolate the
current visibility values using barycentric weights obtained during
rasterization. The value L(xi) is obtained directly from the light-
cut. Finally, we need to obtain the value fr(xi). Because creating
BRDF cuts would be too expensive and require additional precom-
putation, we sample the BRDF on the fly. Note that this could be
problematic with high frequency BRDFs since there is no BRDF
cut to ensure we use small clusters in important and highly varying
regions of the BRDF. Currently we rely on the light cut to ensure
clusters are small enough in important regions to ensure sufficient
sampling of the BRDF. This is similar to importance sampling and
works well in practice. Finally, with all terms computed, we com-
pute the product and add it to the sum.

Note that the algorithm can also be easily extended to account for
rigid dynamic objects using the shadow fields algorithm [Zhou et al.
2005]. In this case, precomputed visibility fields are computed as
the effect an object would have on the visibility of a neighboring
object. At runtime, the visibility for a pixel is computed by locating
nearby objects whose shadow fields contain the point xi, interpo-
lating a visibility function Vk(xi) caused by each neighbor object
using linear interpolation from that object’s shadow field cuts, and
finally computing the full visibility function, which is the product
of these per-object visibility functions:

B =
∑

L(xi) fr(xi) (V1(xi)V2(xi) · · ·Vn(xi))

Again, although these steps are performed in sequence logically, in
practice the entire process can be implemented in a single traversal,
requiring no storage of temporary merged cuts. We have not yet
implemented shadow fields in our system, but it is a very promising
future direction.
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Figure 6: The upper row shows realistic material design on the model Hebe with changing environment lighting. Note the rich per-pixel
shading effects. We use a combination of bump map and spatially-varying BRDF parameters. The first two images in the bottom row shows
editing of the puff chair model with different materials; the right two images show ward anisotropic BRDF applied on the teapot and a star
specular map applied on the sphere.

GPU implementation. Our GPU-based rendering system is a sim-
ple translation of the algorithm to the GPU. First we must map our
data to textures so they can be used in shaders. Our precomputed
data is a large set of sparse, variable sized vectors. We use a greedy
algorithm to pack them into a 3D texture so that each vector fits into
a single row of the texture. This allows shaders to treat the vectors
as a 1D vector, as they truly are, and thus avoids the 1D to 2D tex-
ture coordinate mapping commonly required when mapping data
to textures. For each element in the vector we store the postorder
index, leftleaf, and a quantized value into the RGB components of
the texture. We use an unsigned 16-bit integer texture available in
OpenGL Shader Model 4.0.

We must also map our lighting values to textures. Some of this data
will be static (the light sample positions and normals) and some will
be dynamic (the light color). Although it is simpler to construct the
light tree with a standard ordering of lights, we store the textures
using postorder indices so they can be easily indexed when travers-
ing the cut. We simply allocate a square texture large enough to
hold the entire light tree. We upload the position and normal in-
formation immediately and upload the color information when it
becomes available. Note that the normal information will of course
be ignored for environment lighting, but is required for indirect lo-
cal lighting.

At runtime we must sample lighting and perform shading. We have
two ways to sample lighting. For direct environment lighting we
directly sample a cubemap at the mipmap level with approximately
the same number of texels as we have light samples. For local indi-
rect lighting we use a standard shadow cube map approach. Instead
of evaluating shadows per pixel as in standard rendering, we use the
light textures described above and perform the shadow test for the
light positions. We of course could use any approach to compute
the direct diffuse radiance for the light samples - simple unshad-
owed point lights, shadow maps, or even another PRT approach.
We then download the data to the CPU and generate the full light
tree. We then upload the resulting full tree back to the lighting tex-
ture.

We also generate the light cut at this stage. This implementation is
as simple as generating the precomputed visibility cuts except we
select the node to split based on the magnitude of the value at each
cut node instead of the error. This is similar to importance sampling
where more samples (more cut nodes) are used in areas where the
lighting is stronger. The light cut is uploaded to a 1D texture using
a similar format as the visibility cut data.

Shading a fragment is expensive, so our runtime algorithm uses de-
ferred shading to process only the visible fragments. In the first
pass we render to a deep deferred shading buffer. We use a geom-
etry shader to generate vertex indices and barycentric coordinates
to be interpolated and passed to the fragment shader. The fragment
shader then stores the barycentric coordinates, material ID, posi-
tion, normal, and per-pixel BRDF information. Note that this step
isn’t strictly necessary, we could have simply primed the z-buffer
and performed shading in the second pass if that provided perfor-
mance benefits. Our implementation allows the BRDF to use 8
floating point values. This was sufficient for the BRDFs we imple-
mented but this could easily be extended to 16 or more values on
current hardware. Note that all our BRDF inputs in this shader are
actually textures and so trivially allow spatially varying BRDF pa-
rameters. Constant BRDF parameters are simply represented as a
1x1 texture. We have also included normal perturbation by a bump
or normal map in this step. Other similar techniques could easily
be added.

The second pass performs the final shading calculations. This is
essentially a direct implementation of the approach described in
Section 3.2, interpolating 3 visibility cuts and multiplying the re-
sult by the light cut and dynamically sampled BRDF values. We
load the data from the deferred shading buffer and use the vertex
indices to lookup the cut coordinates in the data pointer texture.
We also initialize the light cut coordinates trivially to 0. If we’re
calculating local lighting we compute the direct lighting value first.
Then we start the loop, finding the current cut node with the deepest
postorder index and the maximum leftleaf value. If the maximum
leftleaf value is less than the deepest index then the nodes are all in
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Figure 7: The first two images on the upper row compares images with direct illumination only and the addition of one bounce indirect
illumination. The third and fourth images show realistic material design of this bedroom model. The bottom row shows the table scene (the
scene geometry is courtesy of [Ng et al. 2004]) rendered with dynamically changing material and lighting.

the same subtree and we compute the interpolated visibility value
and sample the BRDF at the cluster center. We add the resulting
value to the current pixel color. Regardless of the alignment of the
nodes, each cut’s current node is advanced if its current node had
the deepest index. Finally, we check if any cuts have advanced past
their end and terminate if they have, writing the final color sum to
the output.

BRDFs are sampled entirely on the fly and no BRDF cuts are
ever constructed. This gives great flexibility with BRDFs and en-
ables BRDFs and their parameters to be selected on a per-pixel
basis. However, this also imposes a few limitations. First, with-
out a BRDF cut we cannot ensure that the BRDF is sampled finely
enough in the right areas. For instance, it is possible for highly spec-
ular lobes to be missed entirely because the lighting and visibility
cuts were relatively high in the light tree, and the BRDF sample
taken for the node containing the lobe was relatively small. This is
only a problem for high frequency BRDFs. This can result in the
loss of specular highlights. However, because we construct our light
cut based on light intensity, we sample our BRDF approximately as
we would using importance sampling in an offline raytracer. In
practice this seems to be sufficient in most cases. However, we are
interested in solutions to this problem. We believe that for certain
classes of BRDFs indications of the frequency of the BRDF within
a cluster could be found either analytically or based on a heuristic
such as the gradient at the cluster center. We leave investigation of
these approaches to future work.

5 Results

We performed tests on a variety of scenes: Bedroom (Figure 1(c)),
Dining room (Figure 6), Hebe (Figure 6), Motobike (Figure 1(a)),
Table (Figure 1(b)), and Teapot. The table scene is courtesy of [Ng
et al. 2004] All performance statistics are gathered on a quad-core
2.0GHz computer with an NVIDIA 8800GTX graphics card.

Comparison of cuts and wavelets. A direct comparison of cuts
and wavelets is difficult for a number of reasons: we generate cuts
by limiting the per cluster maximum variance while wavelets are
usually selected by minimizing the total L2 error of the entire func-
tion, or for a specified number of terms. Our experiments show that
they are both very efficient at nonlinear approximation. However,
cuts are more flexible in that they can operate on unstructured sam-
ple sets whereas wavelets already require parametrization. There-

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

200

400

600

800
Wavelets
Cuts

RMS Error

Ap
pr

ox
im

at
io

n 
Te

rm
s

(a)

Bird Dining Room Hebe
0

100

200

300

400
320 345

305

197

279

178196

275

178

Geometric Mixed Data Driven

Av
er

ag
e 

C
ut

 S
iz

e

(b)

Figure 8: (a) Comparison of compression rates using wavelets vs.
cuts. (b) Comparison of different clustering schemes for light tree
construction.

fore we cannot easily implement a wavelet version of our system
for complete comparison.

In order to compare the two we only focus on their ability to effi-
ciently represent visibility functions as defined over a cubemap. For
wavelets we specify a variety of L2 errors and find the number of
wavelet coefficients required to approximate the original cubemap
with at most the specified error. For cuts, we specify a variety of
per node variance thresholds and generate the cuts as described in
Section 3.2. However, in both cases we plot the root mean squared
error of the resulting approximation by the number of terms saved,
both averaged over all the vertices in a test scene. The resulting
graph using a 6x128x128 cubemap is presented in Figure 8(a).

As shown, cuts do in fact require a relatively small increase of terms
to represent the same cubemap function to equal accuracy. For the
same error, cuts require about 10∼15% more terms than wavelets.
However, note that since our comparison criteria is the RMS er-
ror, a cut selection algorithm that minimizes the total error over all
clusters would likely to perform better than our current one which
limits the per-cluster error. We believe the loss of compression is
made up for by the cut representation’s simplicity, efficient com-
putational algorithms and flexibility of application. In addition, we
do find that cuts have the nice property that they will never inflate
sparse high-frequency data as wavelets can; and for very highly ac-
curate approximation, they tend to reach a perfect representation
with fewer nodes, even with high frequency data.

Data-driven construction of light tree. Figure 8(b) shows the
average cut size for the different clustering schemes we tested for
light tree construction. We show average cut size for three values
of β: 1.0, representing pure geometric clustering; 0.5, represent-
ing the mixed mode; and 0.0, representing pure data-driven clus-
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Geometric Based Clustering Data-driven Clustering
Scene Verts Type P. Time Storage avg. cutsize RMS Storage avg. cutsize RMS Gain FPS
Hebe 68K Env 13min 59 MB 260 0.074 45 MB 200 0.057 24% 8 / 6.4 / 5
Motobike 112K Env 40min 93 MB 190 0.059 65 MB 133 0.051 30% 4 / 3.5 / 2.5
Table 114K Env 30min 183 MB 402 0.099 153 MB 337 0.095 16% 2.5 / 2 / 1.5
Dining 65K Local 20min - - - 114 MB 643 0.13 - 1.4 / 1.2 / 1.1
Teapot 86K Local 16min - - - 78 MB 261 0.058 - 7 / 6 / 4
Bedroom 105K Local 30min - - - 219 MB 662 0.13 - 2 / 2 / 1.5

Figure 9: Detailed statistics of our algorithm. From left to right, the columns present the vertex count of each model, illumination type
(environment or local), precomputation time, and precomputation profiles for the simple geometric based light tree construction and our
proposed data-driven construction of light tree. The data-driven approach requires twice precomputation time, but reduces overall data size
by an average of 20∼30%. Note that the cut size for the local lighting case is typically much larger than the environment lighting case. The
last column presents the rendering rates using a selection of illumination cut size: 128/256/512.

(a) illumination cut: 64 (b) illumination cut: 128

(c) illumination cut: 256 (d) raytraced reference

Figure 10: Image quality comparison with ray traced reference by
varying the illumination cut size. Note the artifacts on the reflection
with 64 and 128 cut size; as we increase the cut size, the image
quality quickly converges to reference.

tering. Data-driven clustering is clearly a significant improvement
over pure geometrical cluster, by as much as 40% and by 20∼30%
on average. The mixed mode only causes very small increases in
average cut size and improves rendering by allowing more efficient
approximation of the lighting.

Precomputation. The precomputation stage is fairly efficient. The
majority of the time during precomputation is spent performing vis-
ibility sampling. Since we use a simple, unoptimized raytracer to
perform visibility sampling we believe precomputation time could
be reduced significantly by an improved packet based raytracer or
performing visibility sampling on the GPU.

Statistics for all the test scenes presented are given in Figure 9.
These statistics include the compressed file size, average cut size,
and the RMS error of the resulting data. Note that our storage re-
quirements are less than other PRT systems because we only pre-
compute visibility which can be compressed effectively. Note also
that the data-driven clustering helps reduce the storage size signf-
icantly at the cost of longer precomputation. We also observe that
the visibility cuts computed for local lighting are longer than those
for environment lighting. We expect this because for environment
lighting visibility is a binary function but for local indirect lighting
it is continuous.

Rendering. performance for each of the scenes we tested is
given in Figure 9. Frame rates are reported for illumination cut
sizes of 128, 256, and 512 nodes. Clearly increasing this size will

better account for important error in illumination and improve ac-
curacy. However, we found in general 256∼512 works for all our
test scenes with no noticeable artifacts. Run time frame rates are in-
teractive for simple scenes and 2∼4 fps for more complicated ones.
Note that local lighting tends to be slower on average because the
visibility cuts produced are significantly longer on average.

Figure 6 shows an example of a scene rendered under environment
lighting with a variety of materials. Notice that all effects - hard and
soft shadows, low and high glossy materials - are rendered dynami-
cally with high realism. Figure 7(e) shows the table scene rendered
using only direct lighting using shadow mapping. Figures 7(f), 7(g),
and 7(h) show the same scene with the same lighting using direct
and indirect local lighting. The images are much more convincing
with indirect lighting enabled. Figure 6 demonstrates a variety of
per-pixel shading effects. Bump mapping provides fine texture, a
specular map controls the BRDF to create patterns, and texturing
is used on the floor and dresser. All these effects are generated en-
tirely at run time and require no additional preprocessing.

Varying illumination cut size. Finally, we present results regard-
ing the error of our images with respect to the ground truth render-
ings obtained using an offline raytracer. Figure 10 shows render-
ings from our system using various light cut sizes and a reference
raytraced image. The errors are small. With very small lightcuts
shadows are blurred due to subsampling. Even with longer light-
cuts, some reflections are inaccurate because the lighting is approx-
imated. However, the error is barely noticeable.

6 Conclusions and Future Work

We have presented an interactive rendering system for realistic
lighting and material design under complex illumination with ar-
bitrary BRDFs. The key contribution which makes this possible is
an efficient algorithm for computing sums and products of an arbi-
trary number of piecewise constant approximations called cuts. We
prove an error bound on multi-product integrals computed using our
algorithm. We suggest a two-pass data-driven clustering algorithm
which improves compression by 20∼30%. Our system precom-
putes only visibility and demonstrates our efficient cut algorithm
by interpolating visibility and computing the light integral at each
pixel. Because of this we are also able to perform dynamic per-
pixel effects such as bump mapping and spatially varying BRDF
parameters, techniques not possible in most other PRT systems.

An implicit assumption we made is that it is appropriate to linearly
interpolate visibility data. This may be true if meshes are densely
tessellated, but tessellating meshes may inflate data sizes unneces-
sarily. Therefore we are interested in studying both nonlinear in-
terpolation schemes and performing efficient spatial compression
of visibility data. Moreover, we plan to study better ways to guide
BRDF sampling on the fly. Finally, we believe that cuts are a gen-
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eral and effective approximation and, combined with our efficient
computational algorithm, could find use on problems besides PRT.
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GORTLER, S. J., SCHRÖDER, P., COHEN, M. F., AND HANRAHAN, P.
1993. Wavelet radiosity. In Proceedings of SIGGRAPH ’93, 221–230.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A rapid hier-
archical radiosity algorithm. In Proceedings of SIGGRAPH ’91, ACM,
New York, NY, USA, 197–206.
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