WINCE: Unobtrusive Sensing of Upper Facial **Action Units with EOG-based Eyewear**

Soha Rostaminia Alexander Lamson Subhransu Maji Tauhidur Rahman Deepak Ganesan

UMassAmherst

Why Measure Facial Expressions?

AR/VR Systems

How Can We Measure Facial Expressions?

Proximity Sensors

Electromyography (EMG)

Ideal Facial Expressions Monitoring System Should Be...

Wearable WINCE

Unobtrusive

J!NS MEME Platform

3-point Electrooculography Sensor

WINCE's Scope

Brow raiser (AU01)

Brow lower (AU04)

Cheek raiser (AU06)

Nose wrinkles (AU09)

Blink (AU45)

What are the Challenges in Motion Artifact Removal?

Facial gestures are not periodic signals.

Motion artifact and facial action units have similar frequency content.

The signal strength of motion artifact is comparable with facial action units.

W!NCE's Computational Pipeline

Stage 1 - Motion Artifact Removal

Multi-stage Adaptive NLMS Filter

Neural Network-based Filter

Stage 2 - Facial Action Units Detection

CNN Architecture

CNN Model Specifications

Input size	height = 1 (time series width = window size dimension = 4-axis EC	
Output size	number of classes :	
Convolution filter 1 size	1 x 5 x 32	
Convolution filter 2 size	1 x 5 x 64	
Fully connected layer	128	
Learning rate	0.0001	
Dropout probability	0.5	

Evaluation

- Overall Performance of WINCE for Facial Action Detection
- Case Study: Pain Monitoring
- WINCE Benchmarks (please refer to the paper)

Comparison of Motion Artifact Removal Methods

Dataset:

 5 participants 3 different head movements pitch, roll, yaw, and walking on a treadmill (~ 50 min data for each user)

Example of Motion Artifact Removal with Neural Network-based Filter

Evaluation of Facial Action Units Detection

Dataset:

 17 participants 20 times of each action unit (5 classes)

- Stationary
- Walking
- Head-movement

(over 1700 upper face action units and 8300 blinks)

Evaluation of Facial Action Units Detection

Facial action	Setting	Precision	Recall	F1 Score
FACS	Stationary	0.88 ± 0.06	0.88 ± 0.07	0.88 ± 0.06
	Walking	0.84 ± 0.08	0.83 ± 0.08	0.83 ± 0.08
	Head-movement	0.82 ± 0.07	0.80 ± 0.06	0.81 ± 0.07
Blinks	Stationary	0.96 ± 0.09	0.94 ± 0.08	0.95 ± 0.08
	Walking	0.90 ± 0.11	0.91 ± 0.1	0.90 ± 0.1
	Head-movement	0.91 ± 0.09	0.89 ± 0.08	0.90 ± 0.09

Case Study: Pain Monitoring

AU4 - Brow Lower

AU9 - Nose Wrinkler

Pain = AU4 + (AU6||AU7) + (AU9||AU10) + AU43

AU6 - Cheek Raiser

AU43 - Eye Closure

Case Study: Pain Monitoring

Conclusions

- easy to wear commercial eyeglass.
- leveraging IMU signal.
- and emotion sensing without requiring intrusive cameras.

WINCE can detect facial action units in real-time and under natural settings with an

 WINCE is robust to motion artifact. It can effectively remove substantial fraction of artifacts due to head and body movement from a multi-channel EOG signal by

WINCE presents a new way to use wearables for important applications like pain

Thanks & Questions?