
CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

CMPSCI 201 – Fall 2004

Midterm #1 – Answers
<1> 10 Points – Short Essay Answer – The 8088 is primarily a CISC processor design, and

the ARM is primarily RISC. The 6502 is such an early design that it is difficult to place
it squarely in one camp or the other. Decide whether the 6502 is more of an evolutionary
ancestor of CISC designs or of RISC designs, and write a short paragraph to justify your
decision, with examples where appropriate. What characteristics (if any) are similar to
characteristics of the 8088, and what (if any) are similar to those of the ARM?

 ANSWER: The 6502 has similarities to RISC designs in the small overall number of
instructions and relative simplicity of each instruction. It has similarities to modern CISC
designs in that instructions are variable length (1, 2, or 3 bytes) and that certain registers
have specialized uses (the X and Y registers are not general purpose accumulators, but
are primarily used as array index registers). The zero-page (8-bit) and absolute (16-bit)
addressing scheme of the 6502 also resembles the segment and offset approach of the x86
line, but not to the extreme taken by Intel.

 According to on-line encyclopedia Wikipedia (http://www.wikipedia.org) the
designers of the ARM were inspired by the design of the 6502, so in some sense it is a
direct ancestor of this RISC chip!

 GRADING: As long as you properly support your position, I will accept either answer.
There may be some valid reasons not covered here. Remove 5 points for any explanation
which does not contain an explicit example to justify the decision. Remove all 10 points
if there is no explanation at all.

– Page 1 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

<2> 10 Points – The ARM UMULL (unsigned multiplication) instruction generates a 64-bit
unsigned product from two 32-bit source operands. The general form of the instruction is
UMULL RDL,RDH,RM,RS where RM and RS represent the source operand registers, and the
result of the multiplication goes into destination registers RDL (low word) and RDH (high
word). Assuming that registers R0 and R1 contain the two operands represented as
unsigned fixed point numbers, with 16 bits to the left of the decimal point and 16 bits to
the right, write a code fragment that places the normalized 32-bit fixed point product (i.e.,
the middle 32 bits) into register R2. Use as many other registers as you need, and do not
worry about saving or restoring the values of those other registers.

 ANSWER:

UMULL R2,R3,R0,R1 R3:R2 := R0 * R1.
MOV R2,R2,LSR #16 Move high half of R2 to low.
ORR R2,R2,R3 LSL #16 Combine low half of R3 into
 high half of R2. Op-codes
 ADD and EOR will work too.

Here is a workable alternative:

UMULL R2,R3,R0,R1 R3:R2 := R0 * R1.
MOV R3,R3,LSL #16 Move low half of R3 to high.
ORR R2,R3,R2 LSR #16 Move high half of R2 into
 low half, then combine with
 R3. Op-codes ADD and EOR
 will work too.

In both cases the UMULL instruction may be written as:

UMULL R2,R3,R1,R0 R3:R2 := R1 * R0.

GRADING: Reserve 2 points for getting the UMULL specified correctly. Reserve 4
points for successfully moving the upper half of R2 into the lower half. Reserve 4 points
for successfully combining the lower half of R3 into the upper half of R2.

– Page 2 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

<3> 10 Points – Which of the following constants can I load into a register in one MOV
instruction, such as MOV R0,#_____ (immediate value) or MOV R0,#___,___ (immediate
value right-rotated by an even number between 0 and 30)?

 1. 5 Yes (The number is in the range [0…255] and will fit into the eight bits
 available for the constant part of an immediate value. The amount
 of right-rotation is zero.)

 2. 192 Yes (The number is in the range [0…255] and will fit into the eight bits
 available for the constant part of an immediate value. The amount
 of right-rotation is zero.)

 3. 259 No (The binary number is 100000001, which will not fit into the
 eight bits available for the constant part of an immediate value.)

 4. 768 Yes (The binary number is 1100000000, which is the number 3
 right-rotated by 24 bit positions.)

 5. 1025 No (The binary number is 10000000001, which will not fit into the
 eight bits available for the constant part of an immediate value.)

GRADING: Each answer (yes or no) is worth 2 points. No explanations are necessary.

<4> 10 Points – In each of the following problems you are to multiply the contents of integer
register R0 by a constant value, in one instruction, without using any other registers, and
without using any explicit multiplication instruction such as MUL, MLA, or UMULL. In
questions 1 and 2 you are to find two different methods for multiplication by +3. For
question 3 you may assume that the initial value in R0 is always positive.

1. R0 := R0 × 3 ADD R0,R0,R0,LSL #1 (R0+2×R0)

2. R0 := R0 × 3 RSB R0,R0,R0,LSL #2 (4×R0-R0)

3. R0 := R0 × 1½ ADD R0,R0,R0,LSR #1 (R0+R0÷2)

4. R0 := R0 × 4 MOV R0,R0,LSL #2 (4×R0)

5. R0 := R0 × -3 SUB R0,R0,R0,LSL #2 (R0-4×R0)

GRADING: Each answer is worth 2 points. In each case remove 1 point for a basically
correct instruction containing an incorrect shift-type or amount.

– Page 3 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

<5> 10 Points – Convert the decimal number 26.25 into (a) binary scientific notation (i.e.,
±1.xxxx×2Y), and (b) the equivalent binary single-precision floating-point representation.

 (a) 11010.01 = 1.101001×24

 (b) Sign = 0, Biased exponent = 4+127 = 13110 = 100000112, Mantissa = .101001

 Final answer: 0 10000011 10100100000000000000000

 GRADING: Part (a) is worth 4 points. Remove 1 point for a nearly correct fraction (an
error in a couple of bits); 2 points if the fraction is massively wrong. Remove 2 points
for an incorrect exponent.

 Part (b) is worth 6 points. Remove 1 bit for an incorrect sign bit. Remove 2 points for
incorrectly translating the exponent into a biased exponent. Remove 2 points for
incorrectly translating the fraction into the mantissa (not removing the leading 1 digit, for
example). Remove 1 point for not zero-filling the right bits of the mantissa. DO NOT
REMOVE POINTS here if the numbers in part (a) are incorrect but where those numbers
are correctly converted into floating point.

<6> 10 Points – For this problem you will need to use the MUL RD,RM,RS instruction. Create
a complete ARM subroutine to evaluate the integer polynomial y = 12x2 + 8x + 3, where
the value of x is passed in through R0 and the result y is passed back through R1. You
must maintain full transparency on all registers other than R1.

ANSWER:

 Poly STR R2,SaveR2 Save R2
 MUL R2,R0,R0 R2 := X2
 MOV R1,R2,LSL #2 R1 := 4×R2 = 4X2
 ADD R1,R1,R1,LSL #1 R1 := 3×R1 = 3×4X2 = 12X2
 ADD R1,R1,R0,LSL #3 R1 := 12X2 + 8X
 ADD R1,R1,#3 R1 := 12X2 + 8X + 3
 LDR R2,SaveR2 Restore R2
 MOV PC,LR Return

 SaveR2 DCD 0 Reserve space for R2

You can also use push R2 onto the stack (STR R2,[SP,#-4]!) and pop it from the
stack (LDR R2,[SP],#4) instead of storing into and loading from an explicit memory
location.

It is also possible to load 12 into R2 (but as shown in the appendix of the textbook you
cannot multiply by an immediate constant).

– Page 4 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

Here is a legal variation:

 Poly STR R2,[SP,#-4]! Push R2
 MUL R1,R0,R0 R1 := X2
 MOV R2,#12 R2 := 12

 MUL R1,R2,R1 R1 := R1×R2 = 12X2
 ADD R1,R1,R0,LSL #3 R1 := 12X2 + 8X
 ADD R1,R1,#3 R1 := 12X2 + 8X + 3
 LDR R2,[SP],#4 Pop R2
 MOV PC,LR Return

GRADING: Accept any form that is functionally correct. Remove 1 point for each minor
syntax error, including multiplying by a constant (as in MUL R1,R2,#12). Remove 2
points for not maintaining transparency for registers such as R2 (there is no need to save
or restore LR since there are no nested subroutine-calls).

Note that MUL R1,R2,R1 is legal, but MUL R1,R1,R2 is not (the first operand
register cannot be the same as the destination register). Since we have not covered this in
class, no penalty will be incurred for the illegal form.

<7> 10 Points – Translate the following high-level pseudo-code fragment into ARM assembly
code, using as few instructions as possible.

 R0 := 0
 R1 := 20
 Repeat
 If R1 is Even Then R0 := R0 + R1
 R1 := R1 – 3
 Until R1 <= 0

 ANSWER:

 MOV R0,#0 R0 := 0
 MOV R1,#20 R1 := 20
 RP1 TST R1,#1 Set Z if low bit = 0 (even)
 ADDEQ R0,R0,R1 If Z=1 Then R0 := R0 + R1
 SUBS R1,R1,#3 R1 := R1 – 3, set flags
 BGT RP1 If Result > 0 Then GoTo RP1

It is legal to use AND R2,R1,#1 here instead of the TST instruction, but this approach
is inefficient as it burns one more register unnecessarily. It is also inefficient to use the
following code for the loop termination as it uses one too many instructions:

 SUB R1,R1,#3
 CMP R1,#0
 BGT RP1

– Page 5 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

-alternative approach-

A smart compiler would unroll the loop since it is controlled by a constant, then
recognize that there are only a handful of values added into R0 (20, 14, 8, and 2) and that
the value in R1 always ends up at -1. Thus, the entire block of code could legally be
replaced by the two-instruction sequence:

 MOV R0,#44
 MOV R1,#-1

You can’t get away with this trick if the initial value of R1 was derived from a variable or
another register, instead of from a constant!

GRADING: As before, accept any answer that is functionally correct. Remove 1 point
for each minor syntax error, or for any instruction which must be changed in order to
bring the code into compliance with the high-level pseudo-code. In future exams any
parts of the answer denoted above as “inefficient” will have points deducted, but not here.

<8> 10 Points –

 8 points – Trace the following gate circuit and show the output for all possible input
behaviors.

A1 A0 C3 C2 C1 C0
0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 1 0 0
1 1 1 0 0 1

GRADING: ½ point each answer. Round to the nearest
whole point (i.e., both -½ and -1 both are treated as -1).

 2 points – What is the purpose of this circuit?

 ANSWER: The binary number in C3C2C1C0 is the
square of the number in A1A0.

 GRADING: All or nothing. The answer must describe C as the square of A.

– Page 6 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

<9> 10 Points – Write a complete, correct, ARM assembly language subroutine to print
isosceles triangles made out of stars and blanks (spaces). The size of the triangle to print
is given by input parameter N, which is to be passed in through the R0 register. Here are
some sample values for N and the triangles printed out as a result:

 N=1 N=2 N=3 N=4 …
 * * * *
 * * * * * *
 * * * * * *
 * * * *

 Three ASCII-based subroutines are available, called Print_Blank, Print_Star,
and Print_LF (remember that line-feed = ASCII 10), that may be called by your
subroutine; all three are completely transparent. I will be looking for efficiency in your
code, so pay particular attention to the overall number of instructions, execution time,
register usage, etc. As always, your subroutine must be completely transparent with
respect to its register usage, but the only LDR/STR instructions you are allowed to use
are for saving and restoring registers.

ANSWER: In problems such as this one it often makes sense to write the desired routine
in high-level pseudo code before writing any assembly language. For this problem, the
pseudo code (in Pascal notation) would be:

 For Row := 1 To N Do
 Begin
 For Col := 1 To N-Row Do
 Begin
 Print_Blank ;
 End ;
 For Col := 1 To N Do
 Begin
 Print_Star ;
 Print_Blank ;
 End ;
 Print_LF ;
 End

Considering that in Pascal FOR-loops terminate automatically if the starting value is
greater than the stopping value, this pseudo code works correctly for any value of N,
including 0 and negative numbers (i.e., no output). The structure of the code shows that
we need two loop counters, one for the outer loop and another for the two inner loops
(which are independent from one another). In assembly language each loop counter will
be kept in a register. We will also need a third register to hold the value of N-Row (the
number of leading blanks for each row of output).

– Page 7 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

Remember that N is in R0. Let us keep Row in R1, Col in R2, and N-Row in R3. It is
trivial to convert this structure into a series of equivalent While-loops. Rewriting the
pseudo code in terms of the registers instead of variables and expressions, and While-
loops instead of For-loops gives us the following:

 R1 := 1 ;
 While R1 <= R0 Do
 Begin
 R3 := R0 – R1 ;

 R2 := 1 ;
 While R2 <= R3 Do
 Begin
 Print_Blank ;
 R2 := R2 + 1 ;
 End ;

 R2 := 1 ;
 While R2 <= R0 Do
 Begin
 Print_Star ;
 Print_Blank ;
 R2 := R2 + 1 ;
 End ;

 Print_LF ;

 R1 := R1 + 1 ;
 End

Now it remains to convert the pseudo code into assembly language. Along with the LR
register, R1, R2, and R3 are the only other registers we will change; these are the ones
that need saving and restoring for transparency purposes. We need not save R0 as its
value does not change. As you should see from the pseudo code above, translating each
statement into the equivalent ARM assembly language is a straightforward, mechanical
process.

– Page 8 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

 Triangle STR LR,SaveLR ; Save all registers
 STR R1,SaveR1 ;
 STR R2,SaveR2 ;
 STR R3,SaveR3 ;

 MOV R1,#1 ; R1 := 1
 While1 CMP R1,R0 ; While R1 <= N Do
 BGT End1 ; Begin

 SUB R3,R0,R1 ; R3 := N – Row
 MOV R2,#1 ; R2 := 1
 While2 CMP R2,R3 ; While R2 <= R3 Do
 BGT End2 ; Begin
 BL Print_Blank ; Print_Blank
 ADD R2,R2,#1 ; R2 := R2 + 1
 B While2 ;
 End2 ; End

 MOV R2,#1 ; R2 := 1
 While3 CMP R2,R0 ; While R2 <= N Do
 BGT End3 ; Begin
 BL Print_Star ; Print_Star
 BL Print_Blank ; Print_Blank
 ADD R2,R2,#1 ; R2 := R2 + 1
 B While3 ;
 End3 ; End

 BL Print_LF ; Print_LF
 ADD R1,R1,#1 ; R1 := R1 + 1

 B While1 ;
 End1 ; End

 LDR R3,SaveR3 ; Restore all registers
 LDR R2,SaveR2 ;
 LDR R1,SaveR1 ;
 LDR PC,SaveLR ; Return

 SaveLR DCD 0 ;
 SaveR1 DCD 0 ;
 SaveR2 DCD 0 ;
 SaveR3 DCD 0 ;

This is the expected code result for this problem. It is allowed to save registers to and
restore registers from the stack, as long as the code is written correctly.

– Page 9 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

If the assumption is made that N is always greater than zero (which in class was stated as
something you cannot assume), the first and third While-loops can be optimized into
Repeat-loops. Furthermore, changing a requirement that the number of leading blanks is
in the range [0…N-1] into the range [1…N] allows us to rewrite the second While-loop
as a Repeat-loop as well. The two inner Repeat-loops can now be rewritten as count-
down instead of count-up loops, gaining some efficiency there by using tests against zero
instead of test against positive integers. Here is the new pseudo code:

 R1 := 1 ;
 Repeat
 R3 := R0 – R1 + 1 ;

 R2 := R3 ;
 Repeat
 Print_Blank ;
 R2 := R2 - 1 ;
 Until R2 <= 0 ;

 R2 := R0 ;
 Repeat
 Print_Star ;
 Print_Blank ;
 R2 := R2 - 1 ;
 Until R2 <= 0 ;

 Print_LF ;

 R1 := R1 + 1 ;
 Until R1 > R0 ;

Beware of the temptation to do this, unless changing the problem definition is acceptable.
In this case, these changes result in much shorter and more efficient assembly language
code than before, but for the wrong problem! Yes, the code will print out triangles, but
only those where the value of N was positive, and all triangles will have one extra space
at the beginning of the line. You will get the same result for N<=0 as for N=1.

– Page 10 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

 Triangle STR LR,SaveLR ; Save all registers
 STR R1,SaveR1 ;
 STR R2,SaveR2 ;
 STR R3,SaveR3 ;

 MOV R1,#1 ; R1 := 1
 RP1 SUB R3,R0,R1 ; Repeat
 ADD R3,R3,#1 ; R3 := N – R1 + 1
 ;
 MOV R2,R3 ; R2 := R3
 RP2 BL Print_Blank ; Repeat Print_Blank
 SUBS R2,R2,#1 ; R2 := R2 - 1
 BGT RP2 ; Until R2 <= 0

 MOV R2,R0 ; R2 := R0
 RP3 BL Print_Star ; Repeat Print_Star
 BL Print_Blank ; Print_Blank
 SUBS R2,R2,#1 ; R2 := R2 - 1
 BGT RP3 ; Until R2 <= 0

 BL Print_LF ; Print_LF

 ADD R1,R1,#1 ; R1 := R1 + 1
 CMP R1,R0 ; Until R1 > R0
 BLE RP1 ;

 LDR R3,SaveR3 ; Restore all registers
 LDR R2,SaveR2 ;
 LDR R1,SaveR1 ;
 LDR PC,SaveLR ; Return

 SaveLR DCD 0 ;
 SaveR1 DCD 0 ;
 SaveR2 DCD 0 ;
 SaveR3 DCD 0 ;

GRADING: As before, accept any answer that works correctly. Remove 1 point for each minor
syntax error. Remove 1 point for not correctly maintaining transparency among used registers.
Remove 2 points overall for using REPEAT structures instead of WHILE structures that change
the definition of the problem. Remove 5 points for answers that contain correct sections of code
but are obviously incomplete.

– Page 11 –

CMPSCI 201 – Fall 2004 – Midterm #1 – Professor William T. Verts

– Page 12 –

<10> 10 Points – The following 6-bit shift-register circuit gets its input from the exclusive-OR
of bits 0 and 2. Track the values in the six bits of the shift register over ten complete clock
cycles.

Clock S5 S4 S3 S2 S1 S0
0 1 1 1 1 0 1
1 0 1 1 1 1 0
2 1 0 1 1 1 1
3 0 1 0 1 1 1
4 0 0 1 0 1 1
5 1 0 0 1 0 1
6 0 1 0 0 1 0
7 0 0 1 0 0 1
8 1 0 0 1 0 0
9 1 1 0 0 1 0
10 0 1 1 0 0 1

 After each clock cycle, the output values for S0 through S4 will become the previous
values from S1 through S5 (i.e., S5 is copied to S4 at the same time that S4 is copied to
S3, S3 to S2, and so on). The new value in S5 will become the XOR of the old values of
bits S2 and S0, but the old value of S0 is then lost.

 This circuit is actually useful in real life, as the pattern does not repeat until 63 (26-1)
clock pulses have occurred. The sequence of values then becomes useful for a “pseudo
random” number generator. The longer the shift register, the longer time will elapse
before the sequence will repeat (but more XOR taps may be necessary). Note that the
shift register should never be reset to zero, as the value will never change after that.

 GRADING: Reserve 1 point for each line of answers. Remove 1 point for each error in
the S5 part of the line. In addition, remove 2 points overall for any case where the values
in S5…S1 of one line are not correctly transferred to S4…S0 of the next line (but do not
go below zero points).

	CMPSCI 201 – Fall 2004
	Midterm #1 – Answers

