
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #17 – March 22, 2004

Arrays
In high-level languages we have any number of techniques available for

constructing data structures. These include single-, double-, and higher-dimensional
arrays, records (or structs), bit sets, and pointers for linked lists, trees, etc. In some
languages arrays start with index 0 (C, C++, Java), in others arrays start with index 1
(BASIC, FORTRAN), and in others still arrays may start at any index chosen by the
programmer (Pascal, Delphi). At the assembly language level all of these approaches
map onto single-dimension arrays alone. If we wish to emulate one of the other
structures, then we must figure out how to create a mapping function which will convert
the appropriate high-level access method into a simple offset into a linear list of memory
bytes.

ONE-DIMENSIONAL

The simplest case is that of the single-dimension array, as such arrays in high-
level languages closely match their equivalent structures in assembly language. For
example, the ARM assembly language declaration Buffer DCD 0,0,0,0,0
allocates five 32-bit words in memory and defines the symbol Buffer to have as its
value the starting address of the first word. In a zero-based array system the first element
is Buffer[0], and the address of that first element is at address Buffer+0. For a
representation where each memory word is four bytes in length, the second element
Buffer[1] is at address Buffer+4, the third element Buffer[2] is at Buffer+8,
and so on. This is shown below:

Array Index Memory Offset
Buffer[0] Buffer+0
Buffer[1] Buffer+4
Buffer[2] Buffer+8
Buffer[3] Buffer+12
Buffer[4] Buffer+16

To reference any element in an array we need to have both the starting address of
the array (the base address) and the index of the desired element. On the ARM, the base
address of an array must be in a register. The easiest method for getting the address into
a register in ARM assembly language is to use the ADR pseudo-instruction. In the
simplest case the assembler will generate a MOV instruction with the correct (program
counter relative) offset to the array, as long as the memory for the array is relatively close
to the point of reference. For more distant offsets there are other approaches, but in each
case the base address of the array will be placed into the specified register. For example,
the (pseudo) instruction ADR R5,Buffer places the address of Buffer into register
R5.

Page 1 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The array index value must be multiplied by the size of the array elements before
it is added to the base address; if the array element size is a power of two, then we can
combine the multiplication and the addition into a single instruction. In our example,
array elements are four bytes in size; if the array index (a number between 0 and 4) is in
register R1 then loading some register Rx from Buffer[R1] is accomplished by the
following code:

ADR R5,Buffer
LDR Rx,[R5,R1,LSL #2]

Note that the contents of R1 are multiplied by four (the LSL #2 attribute) before
being added to the base address in R5, but R1 is not modified by the execution of this
instruction. On the ARM, 32-bit words must be aligned to 4-byte memory addresses, and
the assembler will insure that DCD directives start at 4-byte addresses as well. If you use
a shift value of 0 or 1, such that the final effective address is not a multiple of four, then a
run-time exception will be generated.

Note too there are no provisions in this code for range checking. It does not
matter if the value in R1 is less than zero or greater than four; the word at the computed
offset will be loaded into Rx regardless of what it contains. Worse, still, is executing an
STR instruction, as memory outside the bounds of the array will be written over.

For byte-oriented arrays declared as Buffer DCB 0,0,0,0,0 the instruction
to load an array element (using the opcode LDRB instead of LDR) does not contain any
shifting. The equivalent code for referencing a byte array is as follows:

ADR R5,Buffer
LDRB Rx,[R5,R1]

NON ZERO-BASED 1D

In languages such as Pascal, the first array element can be at any index value, and
need not always start at zero. (In my own Pascal code, I use zero-based arrays only about
30% of the time.) Given defined constants Low and High, which can have any arbitrary
integer values so long as Low is less than High, the following Pascal array definition is
perfectly legal:

Buffer : Array [Low..High] Of Integer ;

It does not matter if Low and High are positive, negative, or zero, or any
combination as long as Low ≤ High. (Pascal allows any index type to be used here as
long as it maps onto the integers, including Booleans, characters, or user-defined scalar
types.) To map this array onto the equivalent assembly language we need to know only
the total number of elements (High – Low + 1), the starting index (Low), and the
size of each array element (4 bytes each for simple integers). The total number of
elements, as well as the overall array size, can be computed at assembly time.

Page 2 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

In ARM assembly language an arbitrary number of memory bytes are reserved by
using the % directive. For example, reserving 40 bytes for an array called Buffer is
accomplished by the directive Buffer % 40, and those bytes are initialized to zero
at assembly time. In 8088 assembly language the same task is accomplished by the
directive Buffer DB 40 DUP (0). Thus, the complete ARM assembly language
definition for the Pascal array will be as follows:

Low EQU ____ pick any integer
High EQU ____ pick any integer
Elements EQU High-Low+1
Buffer % Elements*4

Any index between Low and High must be mapped into the appropriate offset
between 0 and Elements – 1 before it can be applied to the base address of the array.
The mapping function need only subtract Low from the array index value to generate the
appropriate zero-based offset.

Range checking, if desired, may appear either before or after the mapping takes
place; if before, the index must be greater than or equal to Low and less than or equal to
High, and if after it must be greater than or equal to 0 and less than or equal to
Elements – 1. Because of the comparison to zero this second form may be easier to
use than the first.

The code to reference any array value with the index in R1 is as follows:

ADR R5,Buffer Base Address in R5
SUB R2,R1,Low Offset := R1 - Low
LDR Rx,[R5,R2,LSL #2] Rx := [Buffer+Offset*4]

If the code is to include range checking, it would be modified as follows:

ADR R5,Buffer Base Address in R5
SUBS R2,R1,Low Offset := R1 – Low
BMI BoundsError If (Offset<0) OR
CMP R2,Elements-1 (Offset>Elements-1)
BGT BoundsError Then BoundsError
LDR Rx,[R5,R2,LSL #2] Rx := [Buffer+Offset*4]

Page 3 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

TWO-DIMENSIONAL

For two-dimensional arrays the same issues are present as before, but the mapping
function is slightly more complicated, particularly if the array is not zero-based. The
mapping function must also deal with how the rows and columns of the array are to be
laid out in memory. For example, a two-dimensional array of three rows and four
columns must map onto a linear one-dimensional array of twelve elements, but should the
elements in each row or the elements in each column be kept together? Keeping the
elements of each row together is called row-major form, and keeping the elements of
each column together is called column-major form. Most modern high-level
programming languages use row-major form, but a notable exception is FORTRAN
which uses column major form. This can be a serious compatibility issue if data written
out by an old FORTRAN program are to be read in to an array in a modern row-major
language. These differences are illustrated below:

In the zero-based array shown above, the mapping function from row and column
onto linear offset (using row-major form) is:

Offset := 4 * Row + Column

If the column value is in register R2 and the row is in register R3, and the array
contains four-byte integers, then the ARM code to load a random element of the array
into register Rx is as follows:

 ADR R5,Buffer R5 := Address of Buffer
 MOV R1,R3,LSL #2 R1 := R * 4
 ADD R1,R1,R2 R1 := R * 4 + C
 LDR Rx,[R5,R1,LSL #2] Rx := Buffer[R1]

A code fragment in a high-level language to set all elements of the array to zero
may be written as follows:

For R := 0 to 2 Do
 For C := 0 to 3 Do
 Buffer[R,C] := 0 ;

Page 4 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

A “dumb compiler” might generate random access code for every access. A
smart compiler would recognize that the inner loop accesses items in a row in linear
order; a smarter compiler recognizes that all cells are being accessed in order, and can
generate code that treats the array as a one-dimensional array as long as the array is
stored in row-major order. The following code performs the same logical function as the
earlier version (setting all elements of the array to zero), but because the array is stored in
row-major form and the code accesses the array in column-major order, a compiler would
have to be really smart to figure out how to optimize the corresponding assembly
language:

For C := 0 to 3 Do
 For R := 0 to 2 Do
 Buffer[R,C] := 0 ;

Any programmer of a high-level language must take array order into account;
depending on a compiler to be smart enough to compensate for poorly written code can
result in less than optimal performance. Knowing something about the underlying
assembly language model allows a programmer to write more efficient high-level code,
to exploit the strengths of less-than-perfect compilers, and to avoid or reduce the effects
of some of their shortcomings.

NON ZERO-BASED 2D

As with one-dimensional arrays, two-dimensional arrays in languages such as
Pascal may start at indexes other than zero. For example, the following array declaration
is perfectly legal, given the appropriate definitions of constants LowR, HighR, LowC,
and HighC (where LowR ≤ HighR and LowC ≤ HighC):

Buffer : Array [LowR..HighR, LowC..HighC] Of Integer ;

The formula to compute the linear offset index (again, assuming row-major order)
must first calculate the starting offset of each row by multiplying the size of each row by
the zero-based row offset, and then add the zero-based column offset to the result, as
follows:

Offset := (HighC-LowC+1) * (R-LowR) + (C-LowC)

By precomputing the number of columns the expression is converted into:

Columns := HighC – LowC + 1
Offset := Columns * (R-LowR) + (C-LowC)

By rearrangement of terms this becomes:

Columns := HighC - LowC + 1
Offset := Columns * R + C + (-LowR * Columns - LowC)

Page 5 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Finally, by precomputing all possible constants the final result becomes:

Columns := HighC - LowC + 1
Adjust := -LowR * Columns - LowC
Offset := Columns * R + C + Adjust

The values of Columns and Adjust are computed once by the compiler, and
the value of Offset is computed during run time at each individual reference to the
array.

In ARM code, the declaration of the array is as follows:

LowR EQU ____ pick any integer
HighR EQU ____ pick any integer
LowC EQU ____ pick any integer
HighC EQU ____ pick any integer
Rows EQU HighR – LowR + 1
Columns EQU HighC – LowC + 1
Elements EQU Rows * Columns
Adjust EQU -LowR * Columns – LowC
Buffer % Elements*4

As before, if the column value is in register R2 and the row is in register R3, and
the array contains four-byte integers, then the ARM code to load a random element of the
array into register Rx is as follows (assuming that Columns and Adjust are small
enough constants to be embedded into instructions):

 ADR R5,Buffer R5 := Address of Buffer
 MOV R4,Columns
 MUL R1,R3,R4 R1 := Columns*R
 ADD R1,R1,R2 R1 := Columns*R + C
 ADD R1,R1,Adjust R1 := Columns*R + C + Adjust
 LDR Rx,[R5,R1,LSL #2] Rx := Buffer[R1]

In cases where the number of columns is a power of two the MUL can be replaced
with an instruction using a shift, perhaps in combination with the subsequent ADD
instruction. Doing so reduces the number of registers required. For any particular array
definition the reference code must be examined to determine if the mapping function may
be optimized.

THREE DIMENSIONAL

Three-dimensional arrays have rows, columns, and planes, and the mapping
function is correspondingly more complicated. Higher dimensional arrays are no
different in concept; only the mapping function changes.

Page 6 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 7 of 7

A SAMPLE PROBLEM

Here is a sample problem illustrating the techniques we've covered. In Pascal, I
might declare an array as follows:

Buffer : Array [10..15, -3..3] Of Integer ;

In this array there are six rows and seven columns, and the low indices of the
array do not start at zero. Laid out in memory, the 42 elements of the array are in a long
linear list. We need a mapping function that converts a row index between 10 and 15 and
a column index between -3 and +3 into a linear offset between 0 and 41. Plugging the
constants from the array declaration into the formula to compute offsets, we get the
following terms:

Columns := (3 - (-3) + 1) = 7
Offset := 7 * (R - 10) + (C - (-3))
 = 7*R - 70 + C + 3
 = 7*R + C - 67

There is no need to compute the Adjust term explicitly, since its value (67) can
be embedded as a constant into an ADD or SUB instruction. Multiplication by 7 can be
done with a reverse subtract RSB instruction and the barrel shifter; the shifter multiplies
the row value by 8, then the reverse subtract removes one copy. This same technique can
be used whenever multiplying by one less than a power of two.

The entire array offset expression can be computed in just three ARM
instructions. If the row R is in R3 and the column C is in R2, then the code to load
Buffer[R,C] into a register in ARM assembly language is as follows:

 ADR R5,Buffer R5 := Address of Buffer
 RSB R1,R3,R3,LSL #3 R1 := 7*R
 ADD R1,R1,R2 R1 := 7*R+C
 SUB R1,R1,#67 R1 := 7*R+C-67
 LDR Rx,[R5,R1,LSL #2] Rx := Buffer[R1]

Conclusions

As we have seen, it is a pretty straightforward matter to compute the array offsets
for single and double dimension arrays, whether zero-based or not. Knowing how easy
this is only contributes to my bafflement at why many modern high-level languages do
not support non-zero-based arrays. In a language that only supports zero-based arrays,
programmers must simulate non-zero-based arrays by writing their own mapping
functions, much as what we have explored here. Why should they have to? Not only is it
easy to generate assembly code to compute the mapping function, it is often true that the
mapping function can be optimized into a very short, efficient form.

	Lecture #17 – March 22, 2004
	Arrays
	
	ONE-DIMENSIONAL
	NON ZERO-BASED 1D
	TWO-DIMENSIONAL
	NON ZERO-BASED 2D
	THREE DIMENSIONAL
	A SAMPLE PROBLEM
	Conclusions

