
80x86 Assembly Language Libraries

80x86 Assembly Language Libraries

© October-November 2002

Dr. William T. Verts

Introduction

This document describes the contents of two assembly language libraries created in
October and November 2002 to support the honors section of CMPSCI 201, Architecture and
Assembly Language, fall semester at the University of Massachusetts at Amherst. The libraries
were created in Turbo Assembler using the SMALL model, and are provided along with this
document in .OBJ format. The .OBJ files are free for general use, and may be distributed
freely as long as they are kept together with this document.

The two libraries given here are called STANDARD.OBJ and GRAPHICS.OBJ. The
libraries are completely independent; neither depends upon the other. The STANDARD library
provides a series of procedures for interfacing assembly language programs with the BIOS of the
PC, along with routines to provide general-purpose computational services. These routines
include keyboard handlers, print routines for integers, random-number generators, etc. The
GRAPHICS library contains routines that support the VGA/MCGA mode-13 graphics (320×200
pixels, 256 colors).

Any program that uses either or both of these libraries should be designed to use the
SMALL assembler model (64K code, 64K data). All library procedures use the NEAR calling
mechanism. A general template for new programs is shown below, which as an example
correctly references the Text80x25 routine from the STANDARD library:

 .MODEL SMALL
 .STACK 100h
 .DATA
 … ; Data declarations here
 .CODE
 EXTRN Text80x25:NEAR ; External subroutine
 MOV AX,@DATA ; StartUp Code
 MOV DS,AX ;
 … ; New code here
 CALL Text80x25 ; Call to external subroutine
 … ; New code here
 MOV AH,4CH ; Exit to DOS
 INT 21H ;
 END

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 1 of 33

80x86 Assembly Language Libraries

If this sample program is called MAIN.ASM, then the assembly and linking steps are
performed as follows:

 TASM MAIN
 TLINK MAIN+STANDARD

The TASM step converts the statements from the MAIN.ASM file into a linkable binary
file called MAIN.OBJ. The TLINK step is where the EXTRN references in MAIN.OBJ are
resolved with the proper addresses from the STANDARD.OBJ file. Linking will create the
executable file MAIN.EXE, which can be run by typing its name at an MS-DOS command line
or by double-clicking its icon in Windows.

If the new program uses both the STANDARD.OBJ and GRAPHICS.OBJ files, the
process is as follows:

 TASM MAIN
 TLINK MAIN+STANDARD+GRAPHICS

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 2 of 33

80x86 Assembly Language Libraries

STANDARD.OBJ

Introduction

The STANDARD library contains a set of routines that are useful to nearly all programs.
These routines include keyboard and printing routines, random-number routines, and screen and
diagnostic routines. To include links to these routines in a new program, copy the following
external references into the code section of the program (or copy the references to just the
routines that are required):

 EXTRN Start_Stack:NEAR
 EXTRN Check_Stack:NEAR
 EXTRN Text80x25:NEAR
 EXTRN Delay:NEAR
 EXTRN Keyboard_Flush:NEAR
 EXTRN Keyboard_Wait:NEAR
 EXTRN Keypressed:NEAR
 EXTRN ReadKey:NEAR
 EXTRN PrintASCII:NEAR
 EXTRN PrintBEEP:NEAR
 EXTRN PrintBLANK:NEAR
 EXTRN PrintTAB:NEAR
 EXTRN PrintMINUS:NEAR
 EXTRN PrintCRLF:NEAR
 EXTRN PrintHEX:NEAR
 EXTRN PrintBYTE:NEAR
 EXTRN PrintNYBBLE:NEAR
 EXTRN PrintBIN:NEAR
 EXTRN PrintSigned:NEAR
 EXTRN PrintUnsigned:NEAR
 EXTRN PrintFraction:NEAR
 EXTRN PrintDump:NEAR

 EXTRN Random_Initialize:NEAR
 EXTRN Random_Randomize:NEAR
 EXTRN Random_Set_Seed:NEAR
 EXTRN Random_Get_New:NEAR
 EXTRN Upper_Case:NEAR
 EXTRN Lower_Case:NEAR
 EXTRN SQRT_Signed:NEAR
 EXTRN SQRT_Unsigned:NEAR

Each of these routines is described in the following sections.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 3 of 33

80x86 Assembly Language Libraries

General Routines

Start_Stack and Check_Stack

Purpose: These two routines are diagnostic routines to aid in debugging code that uses
the stack. Calling Start_Stack simply stores the current value of the stack
pointer into a local variable. Calling Check_Stack compares the current value
of the stack pointer with the value stored in the local variable; if the values are
equal then a message stating that there is nothing on the stack is printed, and if the
values differ then another message stating the difference in the number of bytes is
printed. It is probably a good idea to call Start_Stack at the beginning of a
new program and Check_Stack at the end in order to verify overall stack
usage; these calls should be commented out after the program has been debugged.

Calling Sequence:
 CALL Start_Stack
 … ; do something with the stack
 CALL Check_Stack

Registers: Unlike all the other routines in this library, the Check_Stack routine does
not preserve the registers. This is so because to preserve the registers on the stack
would modify the stack value under test.

Text80x25

Purpose: This routine sets the display mode to text at 25 lines by 80 characters per line,
and also clears the screen. Calling this routine also exits any graphics mode that
may be running. It is a good idea to call this routine at the start and at the end of
any program to establish a consistent environment for all the other code.

Calling Sequence:
 CALL Text80x25

Registers: All registers preserved except the status register.

Delay

Purpose: This routine pauses for a few milliseconds; the number of milliseconds to wait
is passed through AX.

Calling Sequence:
 MOV AX,milliseconds
 CALL Delay

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 4 of 33

80x86 Assembly Language Libraries

Example:

The following example framework shows the layout of a typical assembly language
program using the SMALL programming model. It shows the expected positions of the calls to
the first three routines shown in this section.

 .MODEL SMALL
 .STACK 100h
 .DATA

 … ; Data declarations here

 .CODE
 EXTRN Text80x25
 EXTRN Start_Stack
 EXTRN Check_Stack

 MOV AX,@DATA ; StartUp Code
 MOV DS,AX ;
 CALL Start_Stack ;
 CALL Text80x25 ;

 … ; Program statements here

 CALL Text80x25 ;
 CALL Check_Stack ;
 MOV AH,4CH ; Exit to DOS
 INT 21H ;
 END

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 5 of 33

80x86 Assembly Language Libraries

Keyboard Routines

These routines all use the MS-DOS keyboard buffer, which is an array of characters used
to store characters coming in from the keyboard until they are required by an application
program. Striking a key on the keyboard generates an interrupt, which temporarily suspends
your program while the new value is inserted into the buffer.

Keyboard_Flush

Purpose: This routine clears the MS-DOS keyboard buffer. As keys are entered at the
keyboard, the values are entered automatically into the keyboard buffer. These
key values stay in the buffer until they are read (by ReadKey, below). If the
program is designed to ask a question, then wait for an answer, it is necessary to
flush the keyboard buffer first in order to avoid incorrect answers.

Calling Sequence:
 CALL Keyboard_Flush

Registers: All registers preserved except the status register.

Keyboard_Wait

Purpose: This routine waits until a key is pressed at the keyboard. If a key is already
waiting in the keyboard buffer, then this routine will return immediately.

Calling Sequence:
 CALL Keyboard_Wait

Registers: All registers preserved except the status register.

Keypressed

Purpose: This routine returns TRUE (Carry bit = 1) or FALSE (Carry bit = 0) depending
on whether a key value is waiting in the keyboard buffer. The Keyboard_Wait
routine (described above) is essentially equivalent to “While Not Keypressed Do
nothing”.

Calling Sequence:
 CALL Keypressed
 JC … ; Jump if key is pressed
 … ; Handle no key being pressed

Registers: All registers preserved except the status register. C=1 if a key is pressed, C=0
if no key is pressed.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 6 of 33

80x86 Assembly Language Libraries

ReadKey

Purpose: This routine waits for a key-press if necessary, and then returns the value of
that key in the AX register. It will wait forever if no keys are ever pressed. If the
ReadKey routine is called when one or more characters are in the keyboard
buffer, it will remove and return the first of those key values.

Calling Sequence:
 CALL ReadKey

Registers: All registers preserved except AX and the status register. AX contains the key
value read from the keyboard.

Example #1:

In this example, the computer waits until a Y or an N is entered from the keyboard (as in
the answer to a yes-or-no question).

 CALL Keyboard_Flush ; Eliminate any waiting keys
Char_Loop: CALL ReadKey
 CMP AL,'Y'
 JZ Do_Yes
 CMP AL,'N'
 JZ Do_No
 JMP Char_Loop

Do_Yes: …

Do_No: …

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 7 of 33

80x86 Assembly Language Libraries

Example #2:

In this example framework, an event loop is being implemented where something has to
happen continuously (like updating a clock or the positions of players in a game), even if no keys
are hit. When a key is hit the appropriate handler is called, and afterwards the event loop
continues running.

 CALL Keyboard_Flush

Event_Loop: CALL Update_Process ; Do what must be done a lot

CALL Keypressed ; Check the keyboard and…
JNC Event_Loop ; …go back if nothing to do

CALL ReadKey ; Get the new key value

 Check_A: CMP AL,'A'
 JNZ Check_B
 CALL Do_A
 JMP Event_Loop

 Check_B: CMP AL,'B'
 JNZ Check_C

CALL Do_B
 JMP Event_Loop

 Check_C: CMP AL,'C'
 JNZ Check_D

CALL Do_C
 JMP Event_Loop

 Check_D:

 .
 .
 .

 Check_Z: CMP AL,'Z'
 JNZ No_Key
 CALL Do_Z
 JMP Event_Loop

 No_Key: CALL Do_Error ; Not a valid key
 JMP Event_Loop

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 8 of 33

80x86 Assembly Language Libraries

Printing Routines

All of these routines cause a change to appear on the text mode screen display (with the
exception of PrintBEEP which “prints” a bell ringing code). These routines should not be
called if the video system is running in a graphics mode, such as the mode 13 graphics used in
GRAPHICS.OBJ, but only in text mode.

PrintASCII

Purpose: This routine prints out to the text screen the character whose ASCII value is
passed in through the AL (or AX) register.

Calling Sequence:
MOV AL,xxx ; ASCII character value
CALL PrintASCII

-or-

MOV AX,xxx ; AH ignored
CALL PrintASCII

Registers: All registers preserved except the status register.

Example:
MOV AX,'H'
CALL PrintASCII
MOV AX,'e'
CALL PrintASCII
MOV AX,'l'
CALL PrintASCII
MOV AX,'l'
CALL PrintASCII
MOV AX,'o'
CALL PrintASCII

PrintBEEP

Purpose: Generates a short tone through the speaker. Works best on pure MS-DOS
systems (generates a short click when run under Windows systems). This call is
equivalent to MOV AX,7 followed by CALL PrintASCII (character code 7 is
the “BELL” code).

Calling Sequence:
CALL PrintBEEP

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 9 of 33

80x86 Assembly Language Libraries

PrintBLANK

Purpose: Prints a blank on the text screen. This call is equivalent to MOV AX,' '
followed by CALL PrintASCII.

Calling Sequence:
CALL PrintBLANK

Registers: All registers preserved except the status register.

PrintTAB

Purpose: Prints a tab character on the text screen, jumping to the next tab stop. Tab
stops are at character positions 1, 9, 17, 25, etc. (every eight characters) This call
is equivalent to MOV AX,9 followed by CALL PrintASCII.

Calling Sequence:
CALL PrintTAB

Registers: All registers preserved except the status register.

PrintMINUS

Purpose: Prints a minus sign on the text screen. This call is equivalent to MOV AX,'-'
followed by CALL PrintASCII.

Calling Sequence:
CALL PrintMINUS

Registers: All registers preserved except the status register.

PrintCRLF

Purpose: Prints a carriage return and a line feed on the text screen (moves the cursor to
the beginning of the next line). This call is equivalent to MOV AX,13 followed
by CALL PrintASCII, and then MOV AX,10 followed by CALL
PrintASCII, (character code 13 is the carriage-return, and character code 10 is
the line-feed).

Calling Sequence:
CALL PrintCRLF

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 10 of 33

80x86 Assembly Language Libraries

PrintHEX

Purpose: Prints the contents of the AX register on the screen as four hexadecimal
characters. (This routine calls PrintBYTE twice.)

Calling Sequence:
MOV AX,xxx ; value to print
CALL PrintHex

Registers: All registers preserved except the status register.

PrintBYTE

Purpose: Prints the contents of the AL register on the screen as two hexadecimal
characters. (This routine calls PrintNYBBLE twice.)

Calling Sequence:
MOV AL,xxx ; value to print
CALL PrintBYTE

Registers: All registers preserved except the status register.

PrintNYBBLE

Purpose: Prints the lower four bits of the contents of the AL/AX register on the screen as
a single hexadecimal character.

Calling Sequence:
MOV AL,xxx ; value to print
CALL PrintNYBBLE

Registers: All registers preserved except the status register.

PrintBIN

Purpose: Prints the contents of the AX register on the screen as a string of 16 bits ('0'
or '1' characters).

Calling Sequence:
MOV AX,xxx ; value to print
CALL PrintBIN

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 11 of 33

80x86 Assembly Language Libraries

PrintSigned

Purpose: Prints the contents of the AX register on the screen in decimal, treating the
value as a 16-bit signed two’s-complement integer. The result printed will be a
value between –32768 and 32767, and only the minimum necessary number of
characters will be printed.

Calling Sequence:
MOV AX,xxx ; value to print
CALL PrintSigned

Registers: All registers preserved except the status register.

PrintUnsigned

Purpose: Prints the contents of the AX register on the screen in decimal, treating the
value as a 16-bit unsigned integer. The result printed will be a value between 0
and 65535, and only the minimum necessary number of characters will be printed.

Calling Sequence:
MOV AX,xxx ; value to print
CALL PrintUnsigned

Registers: All registers preserved except the status register.

PrintFraction

Purpose: Prints the contents of the AX register on the screen in decimal, treating the
value as a 16-bit unsigned fraction, where the decimal point is assumed to be at
the left side of the register. The decimal point will be the first character printed.
The decimal result will be a value less than 1, and the entire fraction will be
printed. With 16 bits, the smallest non-zero value that can be represented is
.0000152587890625 (equivalent to hexadecimal value $0001), and the largest is
.9999847412109375 (equivalent to hexadecimal $FFFF), and all of those digits
will be printed.

Calling Sequence:
MOV AX,xxx ; value to print
CALL PrintFraction

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 12 of 33

80x86 Assembly Language Libraries

PrintDump

Purpose: Prints the contents of all registers on the screen, plus the top four entries on the
stack, for debugging purposes. No registers are changed as a result of this call.
The top of the stack is dumped as if the call to PrintDump was invisible; it
prints out the status of the SP register and the top four entries of the stack as they
are just before (and just after) the call. Each register is printed in hexadecimal
(between 0000 and FFFF), as an unsigned integer (between 0 and 65535), and as
a signed integer (between –32768 and +32767).

Calling Sequence:
CALL PrintDump

Registers: All registers preserved except the status register.

Sample Screen Output:
REG HEX UnSign Signed
---- ---- ------ ------
AX 0C59 3161 3161
BX 0000 0 0
CX 00FF 255 255
DX 0C13 3091 3091
SI 0000 0 0
DI FF00 65280 -256
BP 0912 2322 2322
SP FF00 65280 -256

SP--> 0001 1 1
 0000 0 0
 E738 59192 -6344
 DB07 56071 -9465

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 13 of 33

80x86 Assembly Language Libraries

Random Number Routines

These routines use a 16-bit shift register as a random number generator. Every new
random number is generated from the previous number by shifting it to the right, shifting in to
the most significant bit the exclusive-OR of bits 0, 1, 7, and 12. This process will generate all
possible 16-bit patterns except 0 (if zero were ever allowed in the shift register it would remain
at zero thereafter). Note that this is a simple technique that is easily implemented, but the
sequence does eventually repeat. This routine is OK for casual usage, but should not be used for
serious work requiring extremely long sequences of random numbers.

Random_Initialize

Purpose: This routine initializes the random-number generator to a fixed starting seed.
Calling this routine is equivalent to the instruction MOV AX,1 followed by CALL
Random_Set_Seed.

Calling Sequence:
CALL Random_Initialize

Registers: All registers preserved.

Random_Randomize

Purpose: This routine initializes the random-number generator to a seed generated by the
computer’s real-clock. The value is a 16-bit number formed by using the current
time as follows: seed := hour×256 + minute + seconds×256 + hundredths.
(Exactly midnight gives a seed of zero, which is illegal and is changed by
Random_Set_Seed to 1.)

Calling Sequence:
CALL Random_Randomize

Registers: All registers preserved except the status register.

Random_Set_Seed

Purpose: This routine allows the programmer to initialize the random-number generator
to a known starting seed. The new seed value is passed to the routine through the
AX register, and may be any 16-bit value except zero (which is automatically
changed to 1).

Calling Sequence:
MOV AX,xxx
CALL Random_Set_Seed

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 14 of 33

80x86 Assembly Language Libraries

Random_Get_New

Purpose: This routine updates the random number seed to a new value, and returns that
new value through the AX register. The value returned may be any 16-bit number
except zero. This value may be scaled to any range by treating it as an integer and
using the remainder of dividing it by another integer, or by treating the value as a
fraction and multiplying it by an integer, then truncating the result.

Calling Sequence:
CALL Random_Get_New
{ use value in AX }

Registers: All registers preserved except AX and the status register. Register AX contains
the new random number, as an integer between 1 and 65535 (inclusive).

Example:

Here is some sample code that returns a random integer between 1 and 10. Note that the
scaling part of the code gets a random number between 0 and 9, to which 1 must be added to
shift the range upwards to between 1 and 10. The first version extracts the remainder of dividing
the random integer by 10, and the second multiplies the random fraction by 10 and truncating the
result.

 CALL Random_Get_New
 XOR DX,DX
 MOV BX,10
 DIV BX ; AX := DX:AX÷10, DX=remainder 0..9
 ADD DX,1
 { random number is in DX }

 CALL Random_Get_New
 MOV BX,10
 MUL BX ; DX:AX := 0.AX×10, DX=whole part 0..9
 ADD DX,1
 { random number is in DX }

To generate a number in any range of integers, replace the 1 in the code above with the
smallest expected value, and replace the 10 with the total number of random values in the
sequence (not the largest expected value, but instead the largest value minus the smallest value
plus one).

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 15 of 33

80x86 Assembly Language Libraries

Character Routines

These routines perform some simple processing on ASCII characters.

Upper_Case

Purpose: This routine capitalizes the ASCII character in the AL register. If the character
is not in the range 'a'.. 'z' then no change is made.

Calling Sequence:
CALL Upper_Case

Registers: All registers preserved except AL.

Lower_Case

Purpose: This routine changes the ASCII character in the AL register into lower case. If
the character is not in the range 'A'.. 'Z' then no change is made.

Calling Sequence:
CALL Lower_Case

Registers: All registers preserved except AL.

Square-Root Routines

These routines extract the integer square root of the number in AX and return the value
back in the AX register. The number returned is the floor of what would be the true, real square
root of the argument; the largest integer less than or equal to the true answer. Thus, the square
root of 16 is 4, but so are the square roots of all numbers between 16 and 24. The square root of
all numbers between 25 and 35 is 5, the square root of all numbers between 36 and 48 is 6, etc.

SQRT_Signed and SQRT_Unsigned

Purpose: The SQRT_Unsigned routine expects an unsigned integer argument between
0 and 65535 in AX, and returns the square root in AX (between 0 and 255). The
SQRT_Signed routine expects a signed integer in AX between –32768 and
+32767. It returns the proper square root in AX (between 0 and 181) for argument
values greater than or equal to zero and clears the Carry bit, but for illegal
values less than zero the value returned in AX is zero and the Carry bit is set.

Calling Sequence:
MOV AX,xxx MOV AX,xxx
CALL SQRT_Signed CALL SQRT_Unsigned
JCS Error

Registers: All registers preserved except AX.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 16 of 33

80x86 Assembly Language Libraries

GRAPHICS.OBJ

Introduction

The GRAPHICS library contains a set of routines which exploit mode 13 graphics on the
VGA/MCGA video adapter. Mode 13 graphics is low resolution (only 320×200), but supports
up to 256 simultaneous colors, and is a particularly easy graphics mode to access from assembly
language. These routines include getting into and out of graphics mode, drawing lines, pixels,
boxes (filled and outline), circles (filled and outline), and text, and scrolling the screen up or
down. To include links to these routines in a new program, copy the following external
references into the code section of the program (or copy the references to just the routines that
are required):

 EXTRN Graphics_Mode:NEAR
 EXTRN Text_Mode:NEAR
 EXTRN Set_Color:NEAR
 EXTRN Clear_Screen:NEAR
 EXTRN Set_Pixel:NEAR
 EXTRN HLine:NEAR
 EXTRN VLine:NEAR
 EXTRN Line:NEAR
 EXTRN Block:NEAR
 EXTRN Box:NEAR
 EXTRN Circle:NEAR
 EXTRN Spot:NEAR
 EXTRN Scroll_Up:NEAR
 EXTRN Scroll_Down:NEAR
 EXTRN OutChar:NEAR
 EXTRN OutString:NEAR
 EXTRN Justify_Left:NEAR
 EXTRN Justify_Center:NEAR
 EXTRN Justify_Right:NEAR
 EXTRN Plot_Unsigned:NEAR
 EXTRN Plot_Signed:NEAR
 EXTRN Save_BMP:NEAR
 EXTRN Save_Default:NEAR
 EXTRN Palette_Save:NEAR
 EXTRN Palette_Restore:NEAR
 EXTRN VGA_Set_Segment:NEAR
 EXTRN VGA_Get_Segment:NEAR
 EXTRN VGA_Reset_Segment:NEAR
 EXTRN VGA_Copy_To_Screen:NEAR
 EXTRN VGA_Copy_To_Buffer:NEAR

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 17 of 33

80x86 Assembly Language Libraries

Screen Routines

These routines are used to get into and out of graphics mode. Note that the Text_Mode
routine is functionally identical to the Text80x25 routine in the STANDARD.OBJ library, but
because it is included here, the GRAPHICS.OBJ library is independent of the STANDARD.OBJ
library, and the two libraries need not be loaded together unless functions from both are truly
required.

Graphics_Mode

Purpose: This routine switches the video mode into mode 13 graphics mode. The screen
is cleared by the action of switching modes, but this routine does not explicitly set
the screen to any particular color (to do that, call the Clear_Screen routine
instead). Before exiting any program, get out of graphics mode by calling the
Text_Mode routine. This routine is provided as a convenience, as the actual
code is very simple (MOV AX,0013H followed by INT 10H).

Calling Sequence:
CALL Graphics_Mode

Registers: All registers preserved except the status register.

Text_Mode

Purpose: This routine switches the video mode into text mode with 25 lines by 80
characters per line, and should always be called immediately before exiting to
MS-DOS in any routine using graphics. It is provided as a convenience, as the
actual code is very simple (MOV AX,0003H followed by INT 10H). This
routine is identical to Text80x25 from the STANDARD.OBJ library.

Calling Sequence:
CALL Text_Mode

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 18 of 33

80x86 Assembly Language Libraries

Pixel Routines

These routines are the simplest ways to put color on the screen. Mode 13 graphics
supports 256 colors on screen in a palette. By default, upon program start the first 16 entries in
the palette are predefined to contain the standard 16 VGA colors. Those colors are as follows:

 0 Black 8 Dark Gray
 1 Blue 9 Light Blue
 2 Green 10 Light Green
 3 Cyan 11 Light Cyan
 4 Red 12 Light Red
 5 Magenta 13 Light Magenta
 6 Brown 14 Yellow
 7 Light Gray 15 White

The screen is a two-dimensional array of pixels, where the coordinates of the upper-left
pixel are <0,0> and the coordinates of the lower-right pixel are <319,199>. There are 64000
separate pixels in the screen.

Set_Color

Purpose: This routine defines to the graphics system the color to be used in all drawing
routines. The color value is passed to the routine through the AL register (or
through AX, where only the lower 8 bits are used).

Calling Sequence:
MOV AX,xxx
CALL Set_Color

Registers: All registers preserved except the status register.

Clear_Screen

Purpose: This routine nearly instantly sets every pixel in the screen to the last color
defined by Set_Color.

Calling Sequence:
 MOV AX,xxx
 CALL Set_Color
 CALL Clear_Screen

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 19 of 33

80x86 Assembly Language Libraries

Set_Pixel

Purpose: This routine puts one pixel on the screen. Coordinates are passed in through
the stack, and the pixel is set to the last color defined by Set_Color. Full
clipping is supported, so that nothing is painted on the screen if the X value is
outside the range of 0 through 319 or if the Y value is outside the range of 0
through 199.

Calling Sequence:
{Push X}
{Push Y}
CALL Set_Pixel

Registers: All registers preserved except the status register.

Example:
MOV AX,319
PUSH AX
MOV AX,199
PUSH AX
CALL Set_Pixel ; Set_Pixel(319,199)

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 20 of 33

80x86 Assembly Language Libraries

Line Routines

These routines all draw straight lines on the screen using the last color defined by
Set_Color. Drawing horizontal lines is slightly faster than drawing vertical lines, and both
are far faster than drawing a general line between any two arbitrary points.

HLine

Purpose: This routine draws a horizontal line between coordinates <X1,Y> and <X2,Y>
using the last color defined by Set_Color. The values of X1 and X2 can
appear in either order. This is an extremely fast routine; once the coordinates
have been clipped to the screen, the remaining visible piece of line (if any) is
painted by a single x86 instruction.

Calling Sequence:
{Push X1}
{Push X2}
{Push Y}
CALL HLine

Registers: All registers preserved except the status register.

Example:
MOV AX,0 ; X1
PUSH AX
MOV AX,319 ; X2
PUSH AX
MOV AX,199 ; Y
PUSH AX
CALL HLine ; HLine (0,319,199) { bottom raster }

VLine

Purpose: This routine draws a vertical line between coordinates <X,Y1> and <X,Y2>
using the last color defined by Set_Color. The values of Y1 and Y2 can
appear in either order. Once the coordinates have been clipped to the screen, the
remaining visible piece of line (if any) is painted by a small tight loop, but this
routine is not quite as fast as HLine.

Calling Sequence:
{Push X}
{Push Y1}
{Push Y2}
CALL VLine

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 21 of 33

80x86 Assembly Language Libraries

Example:
MOV AX,319 ; X
PUSH AX
MOV AX,0 ; Y1
PUSH AX
MOV AX,199 ; Y2
PUSH AX
CALL VLine ; VLine (319,0,199) { right side }

Line

Purpose: This routine draws a line between two arbitrary coordinates <X1,Y1> and
<X2,Y2>, using the last color defined by Set_Color. The algorithm uses
Bresenham’s digital line stepping algorithm to generate the coordinates of
individual pixels along the line. Those coordinates are passed to Set_Pixel,
which performs the necessary clipping to the screen to eliminate off-screen pixels.
If Y1 equals Y2, this routine automatically calls HLine to speed up line drawing.
Similarly, if X1 equals X2, the VLine routine is automatically called.

Calling Sequence:
{Push X1}
{Push Y1}
{Push X2}
{Push Y2}
CALL VLine

Registers: All registers preserved except the status register.

Example:
MOV AX,0 ; X1
PUSH AX
MOV AX,0 ; Y1
PUSH AX
MOV AX,199 ; X2
PUSH AX
MOV AX,319 ; Y2
PUSH AX
CALL Line ; Line (0,0,319,199) { corner-corner }

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 22 of 33

80x86 Assembly Language Libraries

Drawing Routines

These routines all draw two-dimensional figures on the screen using the last color defined
by Set_Color. Block and Box paint rectangular figures on the screen, the first a solid
rectangle and the second just the outline of a box. Spot and Circle paint circular figures on
the screen, the first a solid spot and the second just the circle outline.

Block

Purpose: This routine draws a rectangular block defined by corner coordinates <X1,Y1>
and <X2,Y2> using the last color defined by Set_Color. The values X1 and
X2 can appear in either order, as can the values Y1 and Y2 (i.e., it does not matter
in which order the opposing corner coordinates are specified). The coordinates
are clipped to the screen, and the remaining lines of the block (if any) are painted
on screen using the same technique as in HLine for maximum drawing speed.

Calling Sequence:
{Push X1}
{Push Y1}
{Push X2}
{Push Y2}
CALL Block

Registers: All registers preserved except the status register.

Example:
MOV AX,10 ; X1
PUSH AX
MOV AX,10 ; Y1
PUSH AX
MOV AX,50 ; X2
PUSH AX
MOV AX,30 ; Y2
PUSH AX
CALL Block ; Block (10,10,50,30)

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 23 of 33

80x86 Assembly Language Libraries

Box

Purpose: This routine is identical to the Block routine except that it draws the outline
of the rectangle defined by corner coordinates <X1,Y1> and <X2,Y2>, instead of
its interior, using the last color defined by Set_Color. The values X1 and X2
can appear in either order, as can the values Y1 and Y2. The body of this routine
calls HLine twice and VLine twice with the appropriate sets of coordinates.

Calling Sequence:
{Push X1}
{Push Y1}
{Push X2}
{Push Y2}
CALL Box

Registers: All registers preserved except the status register.

Example:
MOV AX,10 ; X1
PUSH AX
MOV AX,10 ; Y1
PUSH AX
MOV AX,50 ; X2
PUSH AX
MOV AX,30 ; Y2
PUSH AX
CALL Box ; Box (10,10,50,30)

Spot

Purpose: This routine paints a solid circular spot on screen, at center coordinate <X,Y>
and with radius R, using the last color defined by Set_Color. The routine clips
the bounding box of the circle against the screen coordinates to see if any part
needs to be drawn at all. The body of this routine calls the HLine routine for
each raster line in the circle, which performs any needed clipping for partially
visible circles. Spots of radius 0 still appear as a single pixel at the center
coordinate. Negative radii are OK; the absolute value is used.

Calling Sequence:
{Push X}
{Push Y}
{Push R}
CALL Spot

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 24 of 33

80x86 Assembly Language Libraries

Example:
MOV AX,160 ; X
PUSH AX
MOV AX,100 ; Y
PUSH AX
MOV AX,50 ; R
PUSH AX
CALL Spot ; Spot (160,100,50) { screen center }

Circle

Purpose: This routine is essentially the same as the Spot routine except that it draws the
outline ring of a circle at center <X,Y> and radius R, instead of its interior, using
the last color defined by Set_Color. The routine clips the bounding box of the
circle against the screen coordinates to see if any part needs to be drawn at all.
The body of this routine calls the Set_Pixel routine for each pixel in the circle,
which performs any needed clipping for partially visible circles. Circles of radius
0 still appear as a single pixel at the center coordinate. Negative radii are OK; the
absolute value is used.

Calling Sequence:
{Push X}
{Push Y}
{Push R}
CALL Circle

Registers: All registers preserved except the status register.

Example:
MOV AX,160 ; X
PUSH AX
MOV AX,100 ; Y
PUSH AX
MOV AX,50 ; R
PUSH AX
CALL Circle ; Circle (160,100,50) { screen center }

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 25 of 33

80x86 Assembly Language Libraries

Scrolling Routines

These routines scroll the entire screen up or down by one raster line. The raster moving
off the edge of the screen is lost, and the raster freed up by the scroll is painted with the last color
defined by Set_Color. Bear in mind that these routines are moving 64000 bytes (pixels) at
once; even though the routines use the fastest instructions available in the x86 these routines are
quite slow, even on fast hardware.

Scroll_Up

Purpose: This routine scrolls the entire screen up by one raster. The raster at the top of
the screen is lost, and the raster at the bottom of the screen is painted with the last
color defined by Set_Color.

Calling Sequence:
CALL Scroll_Up

Registers: All registers preserved except the status register.

Scroll_Down

Purpose: This routine scrolls the entire screen down by one raster. The raster at the
bottom of the screen is lost, and the raster at the top of the screen is painted with
the last color defined by Set_Color.

Calling Sequence:
CALL Scroll_Down

Registers: All registers preserved except the status register.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 26 of 33

80x86 Assembly Language Libraries

Character Routines

These routines plot, or help plot, characters on the screen using the last color defined by
Set_Color. The characters are defined by an 8×8 grid of pixels, and have the same definitions
as in the original IBM-PC graphics character set. The 256 complete character definitions are
included as part of the GRAPHICS.OBJ file, which adds only 2K to the overall size of the
executable file.

OutChar

Purpose: This routine plots a single character on the screen, where the upper-left
coordinate of the character grid is at location <X,Y>. The shape of the character
will be painted using the last color defined by Set_Color. Character values
follow the IBM-PC extended ASCII set; any value between 0 and 255 is legal.
Full clipping insures all parts of the character that should appear on screen will be
painted, and as fast as possible regardless of how much of the character is visible.

Calling Sequence:
{Push X}
{Push Y}
{Push Char}
CALL Circle

Registers: All registers preserved except the status register.

Example:
MOV AX,160 ; X
PUSH AX
MOV AX,100 ; Y
PUSH AX
MOV AX,'Q' ; R
PUSH AX
CALL OutChar ; Print 'Q' at <160,100>

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 27 of 33

80x86 Assembly Language Libraries

Justify_Left, Justify_Center, and Justify_Right

Purpose: These routines affect how the OutString routine (described next) plots
strings on screen. In left justification (the default) the X coordinate of the string
position is at the left end of the plotted string, in right justification the X
coordinate is at the right end of the plotted string, and in center justification the X
coordinate is in the middle of the plotted string. Justification does not use or
modify the Y coordinate.

Calling Sequence:
CALL Justify_Left or
CALL Justify_Center or
CALL Justify_Right

Registers: All registers preserved.

OutString

Purpose: This routine plots a zero-terminated string one character at a time, starting at
location <X,Y> (according to the selected justification), using the last color
defined by Set_Color. Each character is passed to OutChar, until the end of
the string is reached or the X coordinate of the next character to plot is off the
right edge of the screen. The string address must be an offset into the DATA
segment.

Calling Sequence:
CALL Justify_Left ; Optional justification
{Push X}
{Push Y}
{Push OFFSET String}
CALL OutString

Registers: All registers preserved except the status register.

Example:
 String1 DB 'Hello',0

…
MOV AX,160 ; X
PUSH AX
MOV AX,100 ; Y
PUSH AX
MOV AX,OFFSET String1 ; R
PUSH AX
CALL OutString ; 'Hello' at <160,100>

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 28 of 33

80x86 Assembly Language Libraries

Plot_Unsigned and Plot_Signed

Purpose: Plot_Unsigned converts an unsigned 16-bit integer into decimal and plots
the resulting string on the display at <X,Y>, using the last color defined by
Set_Color. Legal 16-bit unsigned values are between 0 and 65535, and so the
resulting string will be between one and five characters in length. Plot_Signed
does exactly the same task, but treats the 16-bit value as a two’s-complement
signed integer. Legal 16-bit signed values are between –32768 and 32767, and so
the resulting string will be between one and six characters in length. Characters
are passed to OutChar for plotting, which performs any necessary clipping.

 NOTE: At this time the Plot_Unsigned and Plot_Signed routines do not
use the OutString routines, so they are not affected by center or right
justification. Consider them to be hard-coded as always left-justified. (This may
change in a future release.)

Calling Sequences:
{Push X} {Push X}
{Push Y} {Push Y}
{Push N} {Push N}
CALL Plot_Unsigned CALL Plot_Signed

Registers: All registers preserved except the status register.

Example:
MOV AX,160 ; X
PUSH AX
MOV AX,100 ; Y
PUSH AX
MOV AX,65535 ; R
PUSH AX
CALL Plot_Unsigned ; Plot '65535' at <160,100>

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 29 of 33

80x86 Assembly Language Libraries

File Routines

These routines save the image on screen to a Windows-compatible bitmap (.BMP) file.
The files so created are always exactly 65,078 bytes in length. At the current time the palette
that is saved with the file has the first 16 entries defined to be the standard VGA colors, and the
remaining 240 palette entries are zero. This may change in the near future.

Save_BMP

Purpose: Save_BMP writes the entire 64,000 pixel graphic image on screen to a .BMP
file. The offset to the filename is passed into the routine via the DX register, and
the string must be zero-terminated. The AX register returns any error code from
the file service routines called by this subroutine.

Calling Sequences:
MOV DX, OFFSET Filename
CALL Save_BMP
CMP AX,0
JNZ Handle_Error

Registers: All registers preserved except the status register and AX. Any error in
creating, writing to, or closing the file will return an error code in the AX register.
The AX register will return zero if no error has occurred.

Example:
Filename DB 'JUNK.BMP',0
 …

MOV DX, OFFSET Filename
CALL Save_BMP

Save_Default

Purpose: Save_Default calls Save_BMP with the fixed name DEFAULT.BMP just
to have a simple way of saving the graphics screen without worrying about setting
up the filename buffer correctly.

Calling Sequences:
CALL Save_Default

Registers: All registers preserved except the status register and AX. Any error in
creating, writing to, or closing the file will return an error code in the AX register.
The AX register will return zero if no error has occurred.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 30 of 33

80x86 Assembly Language Libraries

Palette Routines

Palette_Save and Palette_Restore

Purpose: These routines save into and restore from a hidden memory area the default
VGA palette of 256 colors. The intent is that the palette be saved just after the
start of graphics mode processing and restored just before exiting to text mode; in
between the palette can be modified at will.

 NOTE: At the current time routines to modify individual palette entries are not
provided. These may be added in a future release.

Calling Sequences:
CALL Palette_Save
…
CALL Palette_Restore

Registers: All registers preserved except the status register.

Example:
CALL Graphics_Mode
CALL Palette_Save
…
… do something that modifies the palette
…
CALL Palette_Restore
CALL Text_Mode

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 31 of 33

80x86 Assembly Language Libraries

Video Buffer Routines

These routines all deal with the segment of the video screen, to be used by all plotting
routines. By default, the video segment is A000 (the start of the VGA video buffer, visible on
screen). These routines allow programmers to establish separate video buffers in memory, create
images there, and then copy those updated images into the visible video buffer.

VGA_Set_Segment

Purpose: Sets the video segment to the value in the AX register. This segment number
must point to the start of a 64,000-byte buffer somewhere in memory. It is
possible with this call to set the video segment to a memory buffer, and then
create and save graphics images off-screen without ever switching the video card
into graphics mode (i.e., have a text-mode-only program create and save graphics
files which are never shown on screen).

Calling Sequences:
MOV AX,xxx
CALL VGA_Set_Segment

Registers: All registers preserved.

VGA_Get_Segment

Purpose: Gets the current video segment number into the AX register.

Calling Sequences:
CALL VGA_Get_Segment

Registers: All registers preserved except AX.

VGA_Reset_Segment

Purpose: Sets the video segment to the default value of A000, the start of the default
VGA screen buffer. This call is functionally equivalent to MOV AX,0A000H
followed by CALL VGA_Set_Segment. Note that there is no need to call
VGA_Reset_Segment at the start of a program because the video segment
value has already been properly initialized to A000.

Calling Sequences:
CALL VGA_Reset_Segment

Registers: All registers preserved.

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 32 of 33

80x86 Assembly Language Libraries

Fourth Draft © November 20, 2002 Dr. William T. Verts
Page 33 of 33

VGA_Copy_To_Screen

Purpose: Copies the 64,000 bytes of an off-screen VGA video buffer into the visible
VGA screen. VGA_Set_Segment must have been used previously to set the
current video segment to point at a 64,000-byte buffer somewhere in memory. If
the current segment happens to be the default value of A000 (the visible screen),
then no copy occurs. This function is used to create off-screen graphics, then
quickly dump the newly created image into the visible VGA buffer.

Calling Sequences:
CALL VGA_Copy_To_Screen

Registers: All registers preserved except the status register.

VGA_Copy_To_Buffer

Purpose: Copies the 64,000 bytes of the visible VGA screen into an off-screen VGA
video buffer. VGA_Set_Segment must have been used previously to set the
current video segment to point at a 64,000-byte buffer somewhere in memory. If
the current segment happens to be the default value of A000 (the visible screen),
then no copy occurs.

Calling Sequences:
CALL VGA_Copy_To_Buffer

Registers: All registers preserved except the status register.

Example:

In this example, the off-screen video buffer is stored in the FARDATA segment, and all
new graphics are created there. Final images are then copied to the VGA screen.

 .DATA

 .FARDATA
Buffer DB 64000 DUP(0) ; Buffer starts at offset 0

 .CODE
 MOV AX,@DATA
 MOV DS,AX
 MOV AX,@FARDATA
 CALL VGA_Set_Segment
 CALL Graphics_Mode
 ... ; Do graphics in off-screen buffer
 CALL VGA_Copy_To_Screen
 ...

	80x86 Assembly Language Libraries
	© October-November 2002
	Dr. William T. Verts
	Introduction
	STANDARD.OBJ
	Introduction
	General Routines
	Start_Stack and Check_Stack
	Text80x25
	Delay
	Example:

	Keyboard Routines
	Keyboard_Flush
	Keyboard_Wait
	Keypressed
	ReadKey
	Example #1:
	Example #2:

	Printing Routines
	PrintASCII
	PrintBEEP
	PrintBLANK
	PrintTAB
	PrintMINUS
	PrintCRLF
	PrintHEX
	PrintBYTE
	PrintNYBBLE
	PrintBIN
	PrintSigned
	PrintUnsigned
	PrintFraction
	PrintDump

	Random Number Routines
	Random_Initialize
	Random_Randomize
	Random_Set_Seed
	Random_Get_New
	Example:

	Character Routines
	Upper_Case
	Lower_Case

	Square-Root Routines
	SQRT_Signed and SQRT_Unsigned

	GRAPHICS.OBJ
	Introduction
	Screen Routines
	Graphics_Mode
	Text_Mode

	Pixel Routines
	Set_Color
	Clear_Screen
	Set_Pixel

	Line Routines
	HLine
	VLine
	Line

	Drawing Routines
	Block
	Box
	Spot
	Circle

	Scrolling Routines
	Scroll_Up
	Scroll_Down

	Character Routines
	OutChar
	Justify_Left, Justify_Center, and Justify_Right
	OutString
	Plot_Unsigned and Plot_Signed

	File Routines
	Save_BMP
	Save_Default

	Palette Routines
	Palette_Save and Palette_Restore

	Video Buffer Routines
	VGA_Set_Segment
	VGA_Get_Segment
	VGA_Reset_Segment
	VGA_Copy_To_Screen
	VGA_Copy_To_Buffer
	Example:

