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• Our	approach
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(1)	Trains an	unprotected	model	on	private	
training	data,	e.g.,	using	cross-entropy	loss

(2.1)	Computes reference	data	to	use	for	
knowledge	transfer

(3)	Trains the	final	protected	model	using	KL-
divergence	loss

(2.2)	Computes soft	labels	for	the	reference	data

The	DMP	defense	is	a	very	effective	regularizer	which	proceeds	as	follows
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Fine-tuning	DMP	to	adjust	privacy-utility	tradeoffs
(Empirical	verification)
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Fine-tuning	DMP	to	adjust	privacy-utility	tradeoffs
(Empirical	verification)

Increasing	the	average	entropy	of	the	reference	data	increases	the	accuracy	of	the	final	
model,	but	it	also	increases	the	membership	inference	risk
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Comparison	of	DMP	with	Adversarial	Regularization

The	target	models	without	any	
defense are	highly	susceptible to	
membership	inference	attacks

Nasr	et	al.	(2018)Machine	learning	with	membership	privacy	using	adversarial	regularization,	ACM	CCS’18
45

For	near-equal	resistance	to	MIAs,	DMP trained	
models	are	significantly more	accurate	than	
adversarially	regularized	models (Nasr	et	al.	2018)
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(Abadi et	al.	2016)	in	terms	of	tradeoffs	between	
membership	privacy	and	model	utility
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Comparing	DMP	with	DP-SGD

• We	perform	empirical comparison with	DP-SGD	
(Abadi et	al.	2016)	in	terms	of	tradeoffs	between	
membership	privacy	and	model	utility

• We	use	CIFAR10	dataset	and	the	size	of	private	
training	data	is	25k

• For	similar	resistance	to	MIAs,	DMP trained	models	
have	significantly	higher	accuracy	than	DP-SGD
trained	models

Defense Privacy	
budget	(𝜺)

𝑬gen 𝑨test 𝑨wb

No	defense - 32.5 67.5 77.9

DMP - 3.10 65.0 51.3

DP-SGD

198.5 3.60 52.2 51.7

50.2 1.30 36.9 50.2

12.5 0.30 31.7 50.0

6.8 -1.60 29.4 49.9

Abadi et	al.	(2016) Deep	learning	with	differential	privacy,	ACM	CCS’16
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Pepernot et	al.	Semi-supervised	knowledge	transfer	for	deep	learning	from	private	data,	ICLR	2017
Salimans et	al.	Improved	techniques	for	training	GANs,	NIPS 2016

Comparison	of	DMP	with	PATE

• Similar	to	DP-SGD,	we	perform	empirical	comparison	
of	DMP	and	PATE (Papernot et	al.	2016)

• We	use	25k	of	CIFAR10	dataset	as	private	training	data	
and	the	rest	as	the	public	data	for	semi-supervised	
learning;	we	use	generator-discriminator	pair	from	
(Salimans et	al.	2016)
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Comparison	of	DMP	with	PATE

• Similar	to	DP-SGD,	we	perform	empirical comparison
of	DMP	and	PATE (Papernot et	al.	2016)

• We	use	25k	of	CIFAR10	dataset	as	private	training	data	
and	the	rest	as	the	public	data	for	semi-supervised	
learning;	we	use	generator-discriminator	pair	from	
(Salimans et	al.	2016)

• We	observe	that	for	a	similar	resistance	to	MIAs,	DMP-
trained	models	have	much	better	accuracies than	
PATE-trained	models

• Corresponding	DMP	model	has	76.8%	accuracy and	
50.8%	whitebox membership	inference	risk
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Adjusting the	two	hyperparameters	of	DMP,	i.e., softmax temperature and	reference	data	size, allows	
tuning the	privacy-utility	tradeoffs
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DMP	poses	no	privacy	risk	to	its	reference	data,	which	itself	can	be	of	sensitive	nature
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Additional	Insights	into	DMP	Privacy

In	case	when	reference	data	is	not	readily	available,	DMP	achieves	state-of-the-art	tradeoffs	even	
with	synthetically	generated	reference	data

Adjusting the	two	hyperparameters	of	DMP,	i.e., softmax temperature and	reference	data	size, allows	
tuning the	privacy-utility	tradeoffs

DMP	poses	no	privacy	risk	to	its	reference	data,	which	itself	can	be	of	sensitive	nature
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Conclusions

ü We	show	the	strength	of	knowledge	transfer	as	a	sole	defense	against	membership	
inference attacks	by	proposing	Distillation	for	Membership	Privacy (DMP)	defense

ü We	show	that DMP	achieves	state-of-the-art	tradeoffs between	membership	privacy	and	
model	utility

ü We	believe	that	DMP,	due	to	its	simplicity,	can	be	incorporated	as	a	building	block	of	
future	defenses against	membership	inference	attacks
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