

Machine Learning with Membership Privacy via Knowledge Transfer

Virat Shejwalkar and Amir Houmansadr

University of Massachusetts Amherst

35th AAAI conference on Artificial Intelligence

(1) Train unprotected model on private train data, e.g., using crossentropy loss

(2.1) Compute reference data to use for knowledge transfer

Fine-tuning DMP Defense

- predictions on them

Empirical comparison with adversarial regularization

Dataset and			No de	efense					
model	E_{den}	A _{test}	A _{wb}	A_{bb}	A_{bl}	A _{nn}	Unprotected		
Purchase + FC	24.0	76.0	77.1	76.8	63.1	60.5	modes are highly		
Texas + FC	51.3	48.7	84.0	82.2	76.1	71.9	moues are many		
CIFAR100 + Alexnet	63.2	36.8	90.3	91.3	81.8	N/A	susceptible to		
CIFAR100 + DenseNet-	12 33.8	65.2	72.2	71.8	67.5	N/A			
CIFAR100 + DenseNet-	19 34.4	65.5	82.3	81.6	68.1	N/A	MIAS		
CIFAR10 + Alexnet	32.5	67.5	77.9	77.5	66.4	N/A			
<u> </u>		•	·	•			-		
Dataset Adversaria	Adversarial regularization (AdvReg)					DMP			

Dataset	Adversarial regularization (AdvReg)					DMP						
and	Error	Egen A _{test}	Attack accuracy			Econ	Ataat	<u></u> +	Attack accuracy]
model	⊥gen		A _{wb}	A_{bb}	A_{bl}	_ <i>L</i> gen	² Ttest	^A test	$A_{\sf wb}$	A_{bb}	A_{bl}]
P-FC	9.7	56.5	55.8	55.4	54.9	10.1	74.1	+31.2%	55.3	55.1	55.2	
T-FC	6.1	33.5	58.2	57.9	54.1	7.1	48.6	+45.1%	55.3	55.4	53.6	
C100-A	6.9	19.7	54.3	54.0	53.5	6.5	35.7	+81.2%	55.7	55.6	53.3	
C100-D12	5.5	26.5	51.4	51.3	52.8	3.6	63.1	+ 138.1 %	53.7	53.0	51.8	
C100-D19	7.2	33.9	54.2	53.4	53.6	7.3	65.3	+ 92.6 %	54.7	54.4	53.7	
C10-A	4.2	53.4	51.9	51.2	52.1	3.1	65.0	+21.7%	51.3	50.6	51.6	

For near-equal resistance to MIAs, DMP trained models are significantly more accurate than adversarially regularized models

Conclusions and Future Directions

- *Membership Privacy* (DMP) defense
- membership privacy and model utility
- attacks

• In DMP, reference data should be carefully selected as their soft labels are the main source of membership leakage

• **Proposal**: Use reference data such that they are far from private training data in feature space and the unprotected model has low entropy

• **Intuition**: Such reference data are easy-to-classify samples whose predictions are not significantly impacted by the presence of any particular member of the private training data

We show the **strength of knowledge transfer as a sole defense against membership inference** attacks by proposing *Distillation for*

We show that **DMP achieves state-of-the-art tradeoffs between**

We believe that **DMP**, due to its simplicity, **can be incorporated as a building block of future defenses** against membership inference