Names:

CMPSCI 240
 Reasoning Under Uncertainty Discussion 7

Suppose a person goes for a heart check-up and the doctor tries to ascertain whether that person has a heart condition based on three characteristics, a patient's gender, blood pressure, and electrocardiograph (ECG) reading. The characteristics can take on the following values:

- Gender: Male or Female
- Blood pressure: Low or High
- ECG reading: Normal or Abnormal

We are given the following information:

$$
\begin{aligned}
& P(\text { having a heart condition })=0.1 \\
& P(\text { gender is male } \mid \text { a patient does not have a heart condition })=0.8 \\
& P(\text { gender is male } \mid \text { a patient has a heart condition })=0.6 \\
& P(\text { high blood pressure } \mid \text { a patient does not have a heart condition })=0.6 \\
& P(\text { high blood pressure } \mid \text { a patient has a heart condition })=0.7 \\
& P(\text { abnormal ECG } \mid \text { a patient does not have a heart condition })=0.5 \\
& P(\text { abnormal ECG } \mid \text { a patient has has a heart condition })=0.8
\end{aligned}
$$

You may assume the patient's gender, blood pressure, and ECG reading are all conditionally independent of each other given the presence or absence of a heart condition.

Question 1: A female patient has low blood pressure and an abnormal ECG. What are the maximum likelihood and MAP hypotheses regarding whether or not she has a heart condition?

Question 2: What is the posterior probability of this patient having a heart condition?

Question 3: A male patient has low blood pressure and a normal ECG. What are the maximum likelihood and MAP hypotheses regarding whether or not he has a heart condition?

