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Reminders

I Pick up a copy of B&T

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I NO cell phones or laptops in class

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/


Recap



Last Time...

I Experiment: a process that results in exactly one of several
possible outcomes, e.g., rolling a die

I Sample space: the set of all possible outcomes of an
experiment, e.g., Ω = {1, 2, 3, 4, 5, 6}

I Event: a subset of Ω, e.g., A = “odd number” = {1, 3, 5}

I Atomic event: event consisting of a single outcome, e.g., {1}
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Last Time...

I Probability law: assigns a probability P(A) to any event
A ⊆ Ω encoding our knowledge or beliefs about the collective
“likelihood” of the elements of event A; satisfies 3 axioms

I Nonnegativity: P(A) ≥ 0 for every A ⊆ Ω

I Additivity: P(A ∪ B) = P(A) + P(B) if A and B are disjoint

I Normalization: P(Ω) = 1
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Probabilistic Models



Derivative Properties of Probabilities

I P(∅) = 0

I P(Ac) = 1− P(A)

I If A ⊂ B, then P(A) ≤ P(B)

I P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

I P(A ∪ B) ≤ P(A) + P(B)

I P(A ∪ B ∪ C ) = P(A) + P(Ac ∩ B) + P(Ac ∩ Bc ∩ C )
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Discrete Probability Laws

I If Ω is finite, the probability of any event can be derived from
the probabilities of the atomic events, i.e., if
A = {x1, x2, . . . , xn} then P(A) = P(x1) + . . . + P(xn)

I For a finite sample space, the probabilities of the atomic
events completely specify the probability law

I Discrete uniform probability law: if Ω is finite and all
outcomes are equally likely, then P(A) = |A| / |Ω|
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Examples of Discrete Probability Laws

I e.g., flipping a coin: what is the probability law?

I e.g., rolling two 4-sided dice: Ω = {(1, 1), (1, 2), . . . , (4, 4)},
what is the probability that the sum of the rolls is even?
What is the probability that the first roll is equal to the
second? What is the probability that at least one roll is a 4?
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Conditional Probability



Conditional Probability Laws

I Conditional probability provides a way to reason about the
outcome of an experiment using partial information

I e.g., rolling a die: if we know the number rolled is odd, what
is the probability that the number is < 3?

I Conditional probability law: assigns a conditional probability
P(A |B) to any event A encoding our knowledge or beliefs
about the collective “likelihood” of the elements of A given
that we know the outcome is within event B
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Conditional Probability

I Conditional probability of event A given event B:

P(A |B) =
P(A ∩ B)

P(B)
assuming P(B) > 0

I If all outcomes are equally likely, P(A |B) = |A ∩ B| / |B|
I All the conditional probability is concentrated on B

I Conditional probabilities satisfy the probability axioms
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Examples of Conditional Probability

I e.g., flipping two coins in a row: what is the probability that
the first coin is tails given that at least one coin is tails?

I e.g., I eat a cookie with probability 0.5, a brownie with
probability 0.25, and an apple with probability 0.25: what is
the probability I ate a cookie given that I ate a baked good?



Examples of Conditional Probability

I e.g., flipping two coins in a row: what is the probability that
the first coin is tails given that at least one coin is tails?

I e.g., I eat a cookie with probability 0.5, a brownie with
probability 0.25, and an apple with probability 0.25: what is
the probability I ate a cookie given that I ate a baked good?



Examples of Conditional Probability

I e.g., Competitive eaters Takeru Kobayashi and Joey Chestnut
are asked to eat 60 hot dogs in 10 minutes. From past
experience, we know that the probability that Takeru is
successful is 2 / 3, the probability that Joey is successful is
1 / 3, and the probability that at least one of them is
successful is 3 / 4. Assuming that exactly one of them was
successful, what is the probability that it was Joey?



Multiplication Rule

I For “sequential” experiments, it can be easier to specify the
probability law by specifying conditional probabilities and
using them to derive unconditional probabilities:

P(A ∩ . . . ∩ B)

= P(A1)P(A2 |A1) . . .P(An |A1 ∩ . . . ∩ An−1)

I If n=2, this is the definition of conditional probability
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Examples of the Multiplication Rule

I e.g., If there’s an intruder, my alarm will sound with
probability 0.99. If there’s no intruder, my alarm will sound
with probability 0.1. The probability of an intruder is 0.05.
What is the probability of no intruder and my alarm sounding?



Multiplication Rule as a Tree

I Form a tree where atomic events are associated with leaves

I Internal nodes are associated with other intersection events

I Record conditional probabilities on the branches of the tree

I View the occurrence of an atomic event as the traversal of the
branches from the root to the corresponding leaf =⇒ can
obtain the probability of the atomic event by multiplying the
conditional probabilities on these branches
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For Next Time

I Read B&T 1.4, 1.5

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
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