CMPSCI 240: "Reasoning Under Uncertainty" Lecture 3

Prof. Hanna Wallach
wallach@cs.umass.edu

January 31, 2012

Reminders

- Pick up a copy of B\&T
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- First discussion on Wednesday

Recap

Last Time...

- Probability law: specifies a probability $P(A)$ for all $A \subset \Omega$ either by direct specification or by specification of enough probabilities (either unconditional or conditional) that $P(A)$ can be calculated for any A using these probabilities

Last Time: Discrete Probability Law

- Have unconditional probabilities of atomic events, want to calculate unconditional probability of some non-atomic event

Last Time: Discrete Probability Law

- Have unconditional probabilities of atomic events, want to calculate unconditional probability of some non-atomic event
- e.g., rolling a die: $\Omega=\{1,2,3,4,5,6\}$, have $P(i)=1 / 6$ for $i=1 \ldots 6$, want to calculate P (number is odd)

Last Time: Discrete Probability Law

- Have unconditional probabilities of atomic events, want to calculate unconditional probability of some non-atomic event
- e.g., rolling a die: $\Omega=\{1,2,3,4,5,6\}$, have $P(i)=1 / 6$ for $i=1 \ldots 6$, want to calculate P (number is odd)
- Use the discrete probability law: if Ω is discrete and $A=\left\{x_{1}, \ldots, x_{n}\right\}$ then $P(A)=P\left(x_{1}\right)+\ldots P\left(x_{n}\right)$

Last Time: Probability Axioms etc.

- Have unconditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event

Last Time: Probability Axioms etc.

- Have unconditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is odd), P (number ≥ 4), and $P(5)$, want to calculate $P(2)$

Last Time: Probability Axioms etc.

- Have unconditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is odd), P (number ≥ 4), and $P(5)$, want to calculate $P(2)$
- Use probability axioms and derivative properties, e.g., $P(A)=1-P\left(A^{c}\right), P(A \cup B) \geq P(A)+P(B)$ etc.

Last Time: Conditional Probability

- Have unconditional probabilities of events, want to calculate conditional probability of some (possibly atomic) event

Last Time: Conditional Probability

- Have unconditional probabilities of events, want to calculate conditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is even), P (number ≤ 2), and $P(1)$, want to calculate P (number is $2 \mid$ number is even)

Last Time: Conditional Probability

- Have unconditional probabilities of events, want to calculate conditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is even), P (number ≤ 2), and $P(1)$, want to calculate P (number is $2 \mid$ number is even)
- Use conditional probability: $P(A \mid B)=P(A \cap B) / P(B)$

Last Time: Multiplication Rule

- Have conditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event

Last Time: Multiplication Rule

- Have conditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is even) and $P(2 \mid$ number is even $)$, want $P(2)$

Last Time: Multiplication Rule

- Have conditional probabilities of events, want to calculate unconditional probability of some (possibly atomic) event
- e.g., $\Omega=\{1,2,3,4,5,6\}$, have P (number is even) and $P(2 \mid$ number is even $)$, want $P(2)$
- Use $P(A \cap B)=P(B) P(A \mid B)$ or the multiplication rule: $P\left(A_{1} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) \ldots P\left(A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right)$
"Sequential" Experiments

"Sequential" Experiments

- Last scenario usually occurs when the experiment has a "sequential" structure, e.g., flipping two coins in a row

"Sequential" Experiments

- Last scenario usually occurs when the experiment has a "sequential" structure, e.g., flipping two coins in a row
- Represent Ω as a tree that reflects the sequential structure and has the outcomes (i.e., atomic events) as leaves

"Sequential" Experiments

- Last scenario usually occurs when the experiment has a "sequential" structure, e.g., flipping two coins in a row
- Represent Ω as a tree that reflects the sequential structure and has the outcomes (i.e., atomic events) as leaves
- Internal nodes correspond to non-atomic events, but not all non-atomic events correspond to a single node

"Sequential" Experiments

- Last scenario usually occurs when the experiment has a "sequential" structure, e.g., flipping two coins in a row
- Represent Ω as a tree that reflects the sequential structure and has the outcomes (i.e., atomic events) as leaves
- Internal nodes correspond to non-atomic events, but not all non-atomic events correspond to a single node
- Specify conditional probabilities on branches

Multiplication Rule

- Have sequential experiment, Ω as tree, conditional probabilities on branches, want to calculate unconditional probability of some (possibly atomic) event

Multiplication Rule

- Have sequential experiment, Ω as tree, conditional probabilities on branches, want to calculate unconditional probability of some (possibly atomic) event
- e.g., flipping two coins, $\Omega=\{H H, H T, T H, T T\}$, have $P($ first flip is $H)$ and P (second flip is $H \mid$ first flip is H), want to calculate $P(H H)=P($ both flips are $H)$

Multiplication Rule

- Have sequential experiment, Ω as tree, conditional probabilities on branches, want to calculate unconditional probability of some (possibly atomic) event
- e.g., flipping two coins, $\Omega=\{H H, H T, T H, T T\}$, have $P($ first flip is $H)$ and P (second flip is $H \mid$ first flip is H), want to calculate $P(H H)=P$ (both flips are H)
- Multiply probabilities along path from root to event

Total Probability Theorem and Bayes' Rule

Total Probability Theorem

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+\ldots+P\left(B \cap A_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
\end{aligned}
$$

Total Probability Theorem

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+\ldots+P\left(B \cap A_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
\end{aligned}
$$

- "Divide-and-conquer" approach to finding $P(B)$

Total Probability Theorem

- Have unconditional probabilities of events A_{1}, \ldots, A_{n} that partition Ω and conditional probability of B given each A_{i} for $i=1, \ldots, n$, want to calculate unconditional probability of B

Total Probability Theorem

- Have unconditional probabilities of events A_{1}, \ldots, A_{n} that partition Ω and conditional probability of B given each A_{i} for $i=1, \ldots, n$, want to calculate unconditional probability of B
- e.g., $\Omega=\{H H, H T, T H, T T\}$, have P (first flip is H), P (second flip is $H \mid$ first flip is H), and P (second flip is $H \mid$ first flip is T), want $P($ second flip is $H)$

Total Probability Theorem

- Have unconditional probabilities of events A_{1}, \ldots, A_{n} that partition Ω and conditional probability of B given each A_{i} for $i=1, \ldots, n$, want to calculate unconditional probability of B
- e.g., $\Omega=\{H H, H T, T H, T T\}$, have P (first flip is H), P (second flip is $H \mid$ first flip is H), and P (second flip is $H \mid$ first flip is T), want P (second flip is H)
- Use total probabiity theorem: $P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)$

Examples of Total Probability Theorem

- e.g., every day I take Route 9 to the department with probability $1 / 3$; otherwise I take back roads. When I take Route 9, I get stuck in traffic with probability $9 / 10$. When I take the back roads, I get stuck in traffic with probability $1 / 4$. What is the probability that I get stuck in traffic?

Rev. Thomas Bayes

Bayes' Rule

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\underbrace{P\left(A_{i} \mid B\right)}_{\text {posterior }}=\frac{P\left(B \cap A_{i}\right)}{P(B)}=\frac{\overbrace{P\left(A_{i}\right)}^{\text {prior }} P\left(B \mid A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}
$$

Bayes' Rule

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\underbrace{P\left(A_{i} \mid B\right)}_{\text {posterior }}=\frac{P\left(B \cap A_{i}\right)}{P(B)}=\frac{\overbrace{P\left(A_{i}\right)}^{\text {prior }} P\left(B \mid A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}
$$

- Useful for inference, i.e., where we know $P\left(B \mid A_{i}\right)$ and $P\left(A_{i}\right)$ for every i and want to find $P\left(A_{i} \mid B\right)$ for some i

Examples of Bayes' Rule

- e.g., a test can detect a disease with 95% accuracy: if a person has the disease, the results are positive with probability 0.95 , if they don't, the results are negative with probability 0.95 . A random person drawn from the population has a probability 0.001 of having the disease. If a person tests positive, what is the probability that they have the disease?

Independence

Independence

- Conditional probability: $P(A \mid B)$ is the probability of event A given that we know the outcome is within event B

Independence

- Conditional probability: $P(A \mid B)$ is the probability of event A given that we know the outcome is within event B
- Suppose event B provides no information about event A ?

Independence

- Conditional probability: $P(A \mid B)$ is the probability of event A given that we know the outcome is within event B
- Suppose event B provides no information about event A ?
- e.g., flipping two coins: knowing that the first is heads gives no information about whether the second will be heads

Independence

- Conditional probability: $P(A \mid B)$ is the probability of event A given that we know the outcome is within event B
- Suppose event B provides no information about event A ?
- e.g., flipping two coins: knowing that the first is heads gives no information about whether the second will be heads
- If the occurrence of event B does not alter the probability of A, then events A and B are independent events

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

- If $P(A)>0$ this is equivalent to $P(B \mid A)=P(B)$
[Got to here in class...]

Examples of Independence

- e.g., are A and A^{c} independent?

Examples of Independence

- e.g., are A and A^{c} independent?
- e.g., if A and B are independent, are A and B^{c} ?

Examples of Independence

- e.g., are A and A^{c} independent?
- e.g., if A and B are independent, are A and B^{c} ?
- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}: H_{1}$ and H_{2} are independent, what about H_{1} and D ?

Independence of Multiple Events

- Events A, B, and C are independent if and only if

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \cap C) & =P(A) P(C) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{aligned}
$$

Independence of Multiple Events

- Events A, B, and C are independent if and only if

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \cap C) & =P(A) P(C) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{aligned}
$$

- Pairwise independence does not imply independence

Examples of Independence of Multiple Events

- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}: H_{1}$ and H_{2} are independent, H_{1} and D are independent, H_{2} and D are independent, what about H_{1}, H_{2}, and D ?

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

- If $P(B \mid C)>0$ this is equivalent to

$$
\frac{P(A \cap B \mid C)}{P(B \mid C)}=P(A \mid B \cap C)=P(A \mid C)
$$

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

- If $P(B \mid C)>0$ this is equivalent to

$$
\frac{P(A \cap B \mid C)}{P(B \mid C)}=P(A \mid B \cap C)=P(A \mid C)
$$

- If $P(A \mid C)>0$ this is equivalent to $P(B \mid A \cap C)=P(B \mid C)$

Examples of Conditional Independence

- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}$: we already know that H_{1} and H_{2} are independent, but are they conditionally independent given D ?

For Next Time

- Read B\&T 1.5, 1.6, 1.7
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

