CMPSCI 240: "Reasoning Under Uncertainty"

 Lecture 4Prof. Hanna Wallach
wallach@cs.umass.edu

February 2, 2012

Reminders

- Pick up a copy of B\&T
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- First homework will be assigned tomorrow

Recap

Last Time: Total Probability Theorem

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+\ldots+P\left(B \cap A_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
\end{aligned}
$$

Last Time: Total Probability Theorem

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+\ldots+P\left(B \cap A_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
\end{aligned}
$$

- "Divide-and-conquer" approach to finding $P(B)$

Last Time: Bayes' Rule

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\underbrace{P\left(A_{i} \mid B\right)}_{\text {posterior }}=\frac{P\left(B \cap A_{i}\right)}{P(B)}=\frac{\overbrace{P\left(A_{i}\right)}^{\text {prior }} P\left(B \mid A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}
$$

Last Time: Bayes' Rule

- If A_{1}, \ldots, A_{n} partition Ω then for any event B

$$
\underbrace{P\left(A_{i} \mid B\right)}_{\text {posterior }}=\frac{P\left(B \cap A_{i}\right)}{P(B)}=\frac{\overbrace{P\left(A_{i}\right)}^{\text {prior }} P\left(B \mid A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}
$$

- Useful for inference, i.e., where we know $P\left(B \mid A_{i}\right)$ and $P\left(A_{i}\right)$ for every i and want to find $P\left(A_{i} \mid B\right)$ for some i

Independence

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

Independence

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

- If $P(A)>0$ this is equivalent to $P(B \mid A)=P(B)$

Examples of Independence

- e.g., are A and A^{c} independent?

Examples of Independence

- e.g., are A and A^{c} independent?
- e.g., if A and B are independent, are A and B^{c} ?

Examples of Independence

- e.g., are A and A^{c} independent?
- e.g., if A and B are independent, are A and B^{c} ?
- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}: H_{1}$ and H_{2} are independent, what about H_{1} and D ?

Independence of Multiple Events

- Events A, B, and C are independent if and only if

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \cap C) & =P(A) P(C) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{aligned}
$$

Independence of Multiple Events

- Events A, B, and C are independent if and only if

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \cap C) & =P(A) P(C) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{aligned}
$$

- Pairwise independence does not imply independence

Examples of Independence of Multiple Events

- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}: H_{1}$ and H_{2} are independent, H_{1} and D are independent, H_{2} and D are independent, what about H_{1}, H_{2}, and D ?

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

- If $P(B \mid C)>0$ this is equivalent to

$$
\frac{P(A \cap B \mid C)}{P(B \mid C)}=P(A \mid B \cap C)=P(A \mid C)
$$

Conditional Independence

- A and B are conditionally independent given C if and only if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

- If $P(B \mid C)>0$ this is equivalent to

$$
\frac{P(A \cap B \mid C)}{P(B \mid C)}=P(A \mid B \cap C)=P(A \mid C)
$$

- If $P(A \mid C)>0$ this is equivalent to $P(B \mid A \cap C)=P(B \mid C)$

Examples of Conditional Independence

- e.g., flipping two coins, $H_{1}=$ "first flip is heads" $=\{H H, H T\}, H_{2}=$ is "second flip is heads" $=\{H H, T H\}$, and $D=$ "the flips are different" $=\{H T, T H\}$: we already know that H_{1} and H_{2} are independent, but are they conditionally independent given D ?

Counting

Equally Likely Outcomes

- Discrete probability law: If Ω is finite and

$$
A=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Omega \text { then } P(A)=P\left(x_{1}\right)+\ldots P\left(x_{n}\right)
$$

Equally Likely Outcomes

- Discrete probability law: If Ω is finite and $A=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Omega$ then $P(A)=P\left(x_{1}\right)+\ldots P\left(x_{n}\right)$
- If $P\left(x_{i}\right)=p$ for all $i=1 \ldots n$, then $P(A)=p|A|$

Equally Likely Outcomes

- Discrete probability law: If Ω is finite and $A=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Omega$ then $P(A)=P\left(x_{1}\right)+\ldots P\left(x_{n}\right)$
- If $P\left(x_{i}\right)=p$ for all $i=1 \ldots n$, then $P(A)=p|A|$
- Discrete uniform probability law: If Ω is finite and all outcomes are equally likely, then $P(A)=|A| /|\Omega|$

Equally Likely Outcomes

- Discrete probability law: If Ω is finite and $A=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Omega$ then $P(A)=P\left(x_{1}\right)+\ldots P\left(x_{n}\right)$
- If $P\left(x_{i}\right)=p$ for all $i=1 \ldots n$, then $P(A)=p|A|$
- Discrete uniform probability law: If Ω is finite and all outcomes are equally likely, then $P(A)=|A| /|\Omega|$
- How can we count $|A|$ and $|\Omega|$?

The Counting Principle: When Order Matters

- Consider a process with r stages, e.g., rolling r dice

The Counting Principle: When Order Matters

- Consider a process with r stages, e.g., rolling r dice
- There are n_{1} possible choices at the first stage

The Counting Principle: When Order Matters

- Consider a process with r stages, e.g., rolling r dice
- There are n_{1} possible choices at the first stage
- For each of these, there are n_{2} possible choices at stage 2

The Counting Principle: When Order Matters

- Consider a process with r stages, e.g., rolling r dice
- There are n_{1} possible choices at the first stage
- For each of these, there are n_{2} possible choices at stage 2
- In general, for each possible choice at stage $i-1$, there are n_{i} possible choices at stage $i \Longrightarrow$ the total number of choices (i.e., outcomes for the entire process) is $n_{1} n_{2} n_{3} \ldots n_{r}$

Examples of the Counting Principle

- e.g., a local phone number is a 7 digit sequence, but the first digit can't be a 0 or 1 . How many local numbers are there?

Examples of the Counting Principle

- e.g., a local phone number is a 7 digit sequence, but the first digit can't be a 0 or 1 . How many local numbers are there?
- e.g., if $A=\left\{x_{1}, \ldots, x_{n}\right\}$ how many subsets does A have?

Sampling with Replacement

- e.g., drawing $r=5$ cards from a deck of $n=52$ cards with replacement: $n_{1}=n_{2}=\ldots n_{5}=n=52$, so there are $n^{r}=52^{5}$ ways of drawing 5 cards with replacement

Permutations

Permutations

- e.g., how many ways can we assign n threads to n processors, such that each thread is assigned to exactly one processor and each processor is assigned exactly one thread?

k-Permutations

- e.g., how many ways can we assign n threads to $k \leq n$ processors such that no thread is assigned to multiple processors and each processor is assigned exactly one thread?

Examples of Permutations

- e.g., suppose you have 4 books about competitive eating, 10 books about Linux, and 2 books about roller derby. How many ways can you arrange these books on a shelf such that all of the books on a given subject are grouped together?

Combinations

When Order Doesn't Matter

- Combination: order of the selected elements doesn't matter

When Order Doesn't Matter

- Combination: order of the selected elements doesn't matter
- When order doesn't matter some permutations are indistinguishable from others, e.g., pizza toppings: bacon, ham, and sausage vs. sausage, bacon, and ham

Combinations

- If we take a set of k-permutations and group "duplicates" then k ! permutations will correspond to each combination

Combinations

- If we take a set of k-permutations and group "duplicates" then k ! permutations will correspond to each combination
- When order doesn't matter, the number of ways to choose k elements from a set of n elements (i.e., combinations) is

$$
\frac{\# k \text {-permutations }}{k!}=\frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

Examples of Combinations

- e.g., Antonios offers fifteen different toppings. How many ways can you create a pizza with three distinct toppings?

Real-World Examples of Combinations

- 4food claims "more than a million" burger combinations

Real-World Examples of Combinations

- 4food claims "more than a million" burger combinations
- Last year, CNN Money decided to verify this claim...

How Many Combinations?!

- 5 buns (bagel, brioche, multigrain, ...): can have 1

How Many Combinations?!

- 5 buns (bagel, brioche, multigrain, ...): can have 1
- 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4

How Many Combinations?!

- 5 buns (bagel, brioche, multigrain, ...): can have 1
- 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- 12 sauces (mustard, mayo, ketchup, ...): can have 0-3

How Many Combinations?!

- 5 buns (bagel, brioche, multigrain, ...): can have 1
- 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- 12 sauces (mustard, mayo, ketchup, ...): can have 0-3
- 7 cheeses (blue, goat, cheddar, ...): can have 0-2

How Many Combinations?!

- 5 buns (bagel, brioche, multigrain, ...): can have 1
- 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- 12 sauces (mustard, mayo, ketchup, ...): can have 0-3
- 7 cheeses (blue, goat, cheddar, ...): can have 0-2
- 8 patties (beef, pork, egg, lamb, ...): can have 1

Less Exciting Examples of Combinations

- e.g., a system contains $2 x$ disks divided into x pairs, where each pair of disks contains the same data. If one of the disks in a pair fails, the data can be recovered, but if both disks fail, it cannot. Suppose two random disks fail. What is the probability that some data is inaccessible?
[Got to here in class...]

Binomial Probabilities

Sequences of Independent Trials

- Suppose we have a biased coin that lands heads with probability p. If we flip this coin 5 times, what is the probability that the outcome is HHTTH?

Sequences of Independent Trials

- Suppose we have a biased coin that lands heads with probability p. If we flip this coin 5 times, what is the probability that the outcome is HHTTH?
- If we flip the coin 5 times, what is the probability that the outcome consists of 3 heads and 2 tails in any order?

Binomial Probabilities

- Consider a sequence of n independent trials, each with a "success" probability p. The probability of any particular sequence with k successes is $p^{k}(1-p)^{n-k}$

Binomial Probabilities

- Consider a sequence of n independent trials, each with a "success" probability p. The probability of any particular sequence with k successes is $p^{k}(1-p)^{n-k}$
- The probability of exactly k successful trials is

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Examples of Sequences of Independent Trials

- A cell phone provider can handle up to r data requests at once. Assume that every minute, each of the provider's n customers makes a request with probability p, independent of the behavior of the other customers. What is the probability that exactly x customers will make a data request during a particular minute? What is the probability that $>r$ customers will make a data request during a particular minute?

Partitions

Combinations and Partitions

- Combination: k elements from a n element set, ignoring order

Combinations and Partitions

- Combination: k elements from a n element set, ignoring order
- A combination partitions the set in two: elements that belong to the k-element combination, and elements that don't

Combinations and Partitions

- Combination: k elements from a n element set, ignoring order
- A combination partitions the set in two: elements that belong to the k-element combination, and elements that don't
- What about partitioning n elements into r disjoint subsets of sizes $n_{1}, n_{2}, \ldots, n_{r}$? How many ways can we do this?

Partitions

- Form the subsets one at a time using a r-stage process

Partitions

- Form the subsets one at a time using a r-stage process
- There are $\binom{n}{n_{1}}$ ways to form the first subset

Partitions

- Form the subsets one at a time using a r-stage process
- There are $\binom{n}{n_{1}}$ ways to form the first subset
- For each of these, there are $\binom{n-n_{1}}{n_{2}}$ ways to form subset 2

Partitions

- Form the subsets one at a time using a r-stage process
- There are $\binom{n}{n_{1}}$ ways to form the first subset
- For each of these, there are $\binom{n-n_{1}}{n_{2}}$ ways to form subset 2
- In general, for each possible way to form subset $i-1$, there are $\binom{n-n_{1}-\ldots-n_{i-1}}{n_{i}}$ ways to form subset $i \Longrightarrow$ there are $\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}=\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}$ ways to partition the set

For Next Time

- Read B\&T 2.1, 2.2, 2.3
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- First homework will be assigned tomorrow

