CMPSCI 240: "Reasoning Under Uncertainty" Lecture 4

Prof. Hanna Wallach wallach@cs.umass.edu

February 2, 2012

Reminders

- Pick up a copy of B&T
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- First homework will be assigned tomorrow

Recap

Last Time: Total Probability Theorem

• If A_1, \ldots, A_n partition Ω then for any event B

$$P(B) = P(B \cap A_1) + \ldots + P(B \cap A_n)$$
$$= \sum_{i=1}^n P(A_i) P(B \mid A_i)$$

Last Time: Total Probability Theorem

• If A_1, \ldots, A_n partition Ω then for any event B

$$P(B) = P(B \cap A_1) + \ldots + P(B \cap A_n)$$
$$= \sum_{i=1}^n P(A_i) P(B \mid A_i)$$

• "Divide-and-conquer" approach to finding P(B)

Last Time: Bayes' Rule

• If A_1, \ldots, A_n partition Ω then for any event B

Last Time: Bayes' Rule

• If A_1, \ldots, A_n partition Ω then for any event B

$$\underbrace{P(A_i \mid B)}_{\text{posterior}} = \frac{P(B \cap A_i)}{P(B)} = \frac{\overbrace{P(A_i)}^{\text{prior}} P(B \mid A_i)}{\sum_{i=1}^{n} P(A_i) P(B \mid A_i)}$$

► Useful for inference, i.e., where we know P(B | A_i) and P(A_i) for every *i* and want to find P(A_i | B) for some *i*

► Two events A and B are independent if and only if $P(A \cap B) = P(A) P(B)$

► Two events A and B are independent if and only if $P(A \cap B) = P(A) P(B)$

• If P(B) > 0 this is equivalent to

$$\frac{P(A \cap B)}{P(B)} = P(A \mid B) = P(A)$$

► Two events A and B are independent if and only if

$$P(A \cap B) = P(A) P(B)$$

• If P(B) > 0 this is equivalent to

$$\frac{P(A \cap B)}{P(B)} = P(A \mid B) = P(A)$$

• If P(A) > 0 this is equivalent to P(B | A) = P(B)

Examples of Independence

• e.g., are A and A^c independent?

Examples of Independence

- e.g., are A and A^c independent?
- e.g., if A and B are independent, are A and B^c ?

Examples of Independence

- e.g., are A and A^c independent?
- e.g., if A and B are independent, are A and B^c?
- e.g., flipping two coins, H₁ = "first flip is heads" = {HH, HT}, H₂ = is "second flip is heads" = {HH, TH}, and D = "the flips are different" = {HT, TH}: H₁ and H₂ are independent, what about H₁ and D?

Independence of Multiple Events

▶ Events A, B, and C are independent if and only if

$$P(A \cap B) = P(A) P(B)$$
$$P(A \cap C) = P(A) P(C)$$
$$P(B \cap C) = P(B) P(C)$$
$$P(A \cap B \cap C) = P(A) P(B) P(C)$$

Independence of Multiple Events

Events A, B, and C are independent if and only if

$$P(A \cap B) = P(A) P(B)$$
$$P(A \cap C) = P(A) P(C)$$
$$P(B \cap C) = P(B) P(C)$$
$$P(A \cap B \cap C) = P(A) P(B) P(C)$$

Pairwise independence does not imply independence

Examples of Independence of Multiple Events

 ▶ e.g., flipping two coins, H₁ = "first flip is heads" = {HH, HT}, H₂ = is "second flip is heads" = {HH, TH}, and D = "the flips are different" = {HT, TH}: H₁ and H₂ are independent, H₁ and D are independent, H₂ and D are independent, what about H₁, H₂, and D? Conditional Independence

► A and B are conditionally independent given C if and only if $P(A \cap B \mid C) = P(A \mid C) P(B \mid C)$

Conditional Independence

► A and B are conditionally independent given C if and only if $P(A \cap B \mid C) = P(A \mid C) P(B \mid C)$

• If P(B | C) > 0 this is equivalent to

$$\frac{P(A \cap B \mid C)}{P(B \mid C)} = P(A \mid B \cap C) = P(A \mid C)$$

Conditional Independence

► A and B are conditionally independent given C if and only if $P(A \cap B \mid C) = P(A \mid C) P(B \mid C)$

• If P(B | C) > 0 this is equivalent to

$$\frac{P(A \cap B \mid C)}{P(B \mid C)} = P(A \mid B \cap C) = P(A \mid C)$$

• If P(A | C) > 0 this is equivalent to $P(B | A \cap C) = P(B | C)$

Examples of Conditional Independence

► e.g., flipping two coins, H₁ = "first flip is heads" = {HH, HT}, H₂ = is "second flip is heads" = {HH, TH}, and D = "the flips are different" = {HT, TH}: we already know that H₁ and H₂ are independent, but are they conditionally independent given D?

Counting

• Discrete probability law: If Ω is finite and $A = \{x_1, \dots, x_n\} \subseteq \Omega$ then $P(A) = P(x_1) + \dots P(x_n)$

• Discrete probability law: If Ω is finite and $A = \{x_1, \dots, x_n\} \subseteq \Omega$ then $P(A) = P(x_1) + \dots P(x_n)$

• If
$$P(x_i) = p$$
 for all $i = 1 \dots n$, then $P(A) = p |A|$

• Discrete probability law: If Ω is finite and $A = \{x_1, \dots, x_n\} \subseteq \Omega$ then $P(A) = P(x_1) + \dots P(x_n)$

• If
$$P(x_i) = p$$
 for all $i = 1 \dots n$, then $P(A) = p |A|$

Discrete uniform probability law: If Ω is finite and all outcomes are equally likely, then P(A) = |A| / |Ω|

• Discrete probability law: If Ω is finite and $A = \{x_1, \dots, x_n\} \subseteq \Omega$ then $P(A) = P(x_1) + \dots P(x_n)$

• If
$$P(x_i) = p$$
 for all $i = 1 \dots n$, then $P(A) = p |A|$

- Discrete uniform probability law: If Ω is finite and all outcomes are equally likely, then P(A) = |A| / |Ω|
- How can we count |A| and $|\Omega|$?

Consider a process with r stages, e.g., rolling r dice

- ► Consider a process with *r* stages, e.g., rolling *r* dice
- There are n₁ possible choices at the first stage

- Consider a process with r stages, e.g., rolling r dice
- There are n₁ possible choices at the first stage
- ▶ For each of these, there are *n*² possible choices at stage 2

- Consider a process with r stages, e.g., rolling r dice
- There are n₁ possible choices at the first stage
- For each of these, there are n_2 possible choices at stage 2
- In general, for each possible choice at stage *i* − 1, there are *n_i* possible choices at stage *i* ⇒ the total number of choices (i.e., outcomes for the entire process) is *n*₁ *n*₂ *n*₃...*n_r*

Examples of the Counting Principle

e.g., a local phone number is a 7 digit sequence, but the first digit can't be a 0 or 1. How many local numbers are there?

Examples of the Counting Principle

- e.g., a local phone number is a 7 digit sequence, but the first digit can't be a 0 or 1. How many local numbers are there?
- e.g., if $A = \{x_1, \ldots, x_n\}$ how many subsets does A have?

Sampling with Replacement

▶ e.g., drawing r = 5 cards from a deck of n = 52 cards with replacement: n₁ = n₂ = ... n₅ = n = 52, so there are n^r = 52⁵ ways of drawing 5 cards with replacement

Permutations

Permutations

e.g., how many ways can we assign n threads to n processors, such that each thread is assigned to exactly one processor and each processor is assigned exactly one thread?

k-Permutations

► e.g., how many ways can we assign n threads to k ≤ n processors such that no thread is assigned to multiple processors and each processor is assigned exactly one thread?

Examples of Permutations

e.g., suppose you have 4 books about competitive eating, 10 books about Linux, and 2 books about roller derby. How many ways can you arrange these books on a shelf such that all of the books on a given subject are grouped together?

Combinations

When Order Doesn't Matter

Combination: order of the selected elements doesn't matter

When Order Doesn't Matter

- Combination: order of the selected elements doesn't matter
- When order doesn't matter some permutations are indistinguishable from others, e.g., pizza toppings: bacon, ham, and sausage vs. sausage, bacon, and ham

Combinations

If we take a set of k-permutations and group "duplicates" then k! permutations will correspond to each combination

Combinations

- If we take a set of k-permutations and group "duplicates" then k! permutations will correspond to each combination
- ▶ When order doesn't matter, the number of ways to choose k elements from a set of n elements (i.e., combinations) is

$$\frac{\# \ k\text{-permutations}}{k!} = \frac{n!}{k! \ (n-k)!} = \binom{n}{k}$$

Examples of Combinations

e.g., Antonios offers fifteen different toppings. How many ways can you create a pizza with three distinct toppings?

Real-World Examples of Combinations

▶ 4food claims "more than a million" burger combinations

Real-World Examples of Combinations

- 4food claims "more than a million" burger combinations
- Last year, CNN Money decided to verify this claim...

▶ 5 buns (bagel, brioche, multigrain, ...): can have 1

- ▶ 5 buns (bagel, brioche, multigrain, ...): can have 1
- ▶ 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4

- ▶ 5 buns (bagel, brioche, multigrain, ...): can have 1
- ▶ 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- ▶ 12 sauces (mustard, mayo, ketchup, ...): can have 0-3

- ▶ 5 buns (bagel, brioche, multigrain, ...): can have 1
- ▶ 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- ▶ 12 sauces (mustard, mayo, ketchup, ...): can have 0-3
- ▶ 7 cheeses (blue, goat, cheddar, ...): can have 0-2

- ▶ 5 buns (bagel, brioche, multigrain, ...): can have 1
- ▶ 4 add-ons (lettuce, pickle, tomato, onion): can have 0-4
- ▶ 12 sauces (mustard, mayo, ketchup, ...): can have 0-3
- ▶ 7 cheeses (blue, goat, cheddar, ...): can have 0-2
- 8 patties (beef, pork, egg, lamb, ...): can have 1

Less Exciting Examples of Combinations

e.g., a system contains 2x disks divided into x pairs, where each pair of disks contains the same data. If one of the disks in a pair fails, the data can be recovered, but if both disks fail, it cannot. Suppose two random disks fail. What is the probability that some data is inaccessible? [Got to here in class...]

Binomial Probabilities

Sequences of Independent Trials

Suppose we have a biased coin that lands heads with probability p. If we flip this coin 5 times, what is the probability that the outcome is HHTTH?

Sequences of Independent Trials

- Suppose we have a biased coin that lands heads with probability p. If we flip this coin 5 times, what is the probability that the outcome is HHTTH?
- If we flip the coin 5 times, what is the probability that the outcome consists of 3 heads and 2 tails in any order?

► Consider a sequence of *n* independent trials, each with a "success" probability *p*. The probability of any particular sequence with *k* successes is p^k (1 − p)^{n−k}

Binomial Probabilities

- ► Consider a sequence of *n* independent trials, each with a "success" probability *p*. The probability of any particular sequence with *k* successes is p^k (1 − p)^{n−k}
- The probability of exactly k successful trials is

$$\binom{n}{k} p^k (1-p)^{n-k}$$

Examples of Sequences of Independent Trials

A cell phone provider can handle up to r data requests at once. Assume that every minute, each of the provider's n customers makes a request with probability p, independent of the behavior of the other customers. What is the probability that exactly x customers will make a data request during a particular minute? What is the probability that > r customers will make a data request during a particular minute?

Combinations and Partitions

Combination: *k* elements from a *n* element set, ignoring order

Combinations and Partitions

- Combination: k elements from a n element set, ignoring order
- A combination partitions the set in two: elements that belong to the k-element combination, and elements that don't

Combinations and Partitions

- Combination: k elements from a n element set, ignoring order
- A combination partitions the set in two: elements that belong to the k-element combination, and elements that don't
- What about partitioning n elements into r disjoint subsets of sizes n₁, n₂, ..., n_r? How many ways can we do this?

▶ Form the subsets one at a time using a *r*-stage process

- ▶ Form the subsets one at a time using a *r*-stage process
- There are $\binom{n}{n_1}$ ways to form the first subset

- Form the subsets one at a time using a r-stage process
- There are $\binom{n}{n_1}$ ways to form the first subset
- ▶ For each of these, there are $\binom{n-n_1}{n_2}$ ways to form subset 2

- Form the subsets one at a time using a r-stage process
- There are $\binom{n}{n}$ ways to form the first subset
- For each of these, there are $\binom{n-n_1}{n_2}$ ways to form subset 2
- ▶ In general, for each possible way to form subset i 1, there are $\binom{n-n_1-\ldots-n_{i-1}}{n_i}$ ways to form subset $i \implies$ there are $\frac{n!}{n_1! n_2! \dots n_r!} = \binom{n}{n_1, n_2, \dots, n_r}$ ways to partition the set

For Next Time

- Read B&T 2.1, 2.2, 2.3
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- First homework will be assigned tomorrow