CMPSCI 240: "Reasoning Under Uncertainty" Lecture 7

Prof. Hanna Wallach
wallach@cs.umass.edu

February 14, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due on Friday

Recap

Last Time: Common Discrete Random Variables

- Uniform: $p_{X}(k)=1 /(b-a+1)$ for $k=a, a+1, \ldots, b$

Last Time: Common Discrete Random Variables

- Uniform: $p_{X}(k)=1 /(b-a+1)$ for $k=a, a+1, \ldots, b$
- Bernoulli: $p_{X}(k)=p$ if $k=1$ and $p_{X}(k)=(1-p)$ if $k=0$

Last Time: Common Discrete Random Variables

- Uniform: $p_{X}(k)=1 /(b-a+1)$ for $k=a, a+1, \ldots, b$
- Bernoulli: $p_{X}(k)=p$ if $k=1$ and $p_{X}(k)=(1-p)$ if $k=0$
- Binomial: $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$

Last Time: Common Discrete Random Variables

- Uniform: $p_{X}(k)=1 /(b-a+1)$ for $k=a, a+1, \ldots, b$
- Bernoulli: $p_{X}(k)=p$ if $k=1$ and $p_{X}(k)=(1-p)$ if $k=0$
- Binomial: $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$
- Geometric: $p_{X}(k)=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$

Last Time: Common Discrete Random Variables

- Uniform: $p_{X}(k)=1 /(b-a+1)$ for $k=a, a+1, \ldots, b$
- Bernoulli: $p_{X}(k)=p$ if $k=1$ and $p_{X}(k)=(1-p)$ if $k=0$
- Binomial: $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$
- Geometric: $p_{X}(k)=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$
- Poisson: $p_{X}(k)=e^{-\lambda} \lambda^{k} / k$! for $k=0,1,2, \ldots$

Last Time: Expectation

- Expected value (or expectation or mean) of X :

$$
\mathbb{E}[X]=\sum_{x} x p_{X}(x)
$$

Last Time: Expectation

- Expected value (or expectation or mean) of X :

$$
\mathbb{E}[X]=\sum_{x} x p_{X}(x)
$$

- A weighted average of the possible values of X

Last Time: Expectation

- Expected value (or expectation or mean) of X :

$$
\mathbb{E}[X]=\sum_{x} x p_{X}(x)
$$

- A weighted average of the possible values of X
- The value we'd "expect" to get for X "on average" if we repeated the same experiment (and calculated X) many times

Last Time: Expectation

- Expected value (or expectation or mean) of X :

$$
\mathbb{E}[X]=\sum_{x} x p_{X}(x)
$$

- A weighted average of the possible values of X
- The value we'd "expect" to get for X "on average" if we repeated the same experiment (and calculated X) many times
- Useful if we want a single number that "summarizes" p_{X}

Last Time: Expectations of Standard Random Variables

- Bernoulli random variable $X: \mathbb{E}[X]=p$

Last Time: Expectations of Standard Random Variables

- Bernoulli random variable $X: \mathbb{E}[X]=p$
- Discrete uniform random variable $X: \mathbb{E}[X]=(a+b) / 2$

Last Time: Expectations of Standard Random Variables

- Bernoulli random variable $X: \mathbb{E}[X]=p$
- Discrete uniform random variable $X: \mathbb{E}[X]=(a+b) / 2$
- Poisson random variable $X: \mathbb{E}[X]=\lambda$

Expectation (Cont.)

Expected Value Rule and Linearity of Expectation

- If X is a random variable, $g(\cdot)$ is some linear or nonlinear function, and random variable $Y=g(X)$, what is $\mathbb{E}[Y]$?

Expected Value Rule and Linearity of Expectation

- If X is a random variable, $g(\cdot)$ is some linear or nonlinear function, and random variable $Y=g(X)$, what is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=\sum_{x} g(x) p_{X}(x)
$$

Expected Value Rule and Linearity of Expectation

- If X is a random variable, $g(\cdot)$ is some linear or nonlinear function, and random variable $Y=g(X)$, what is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=\sum_{x} g(x) p_{X}(x)
$$

- Can compute $\mathbb{E}[Y]$ without computing p_{Y} directly!

Expected Value Rule and Linearity of Expectation

- If X is a random variable, $g(\cdot)$ is some linear or nonlinear function, and random variable $Y=g(X)$, what is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=\sum_{x} g(x) p_{X}(x)
$$

- Can compute $\mathbb{E}[Y]$ without computing p_{Y} directly!
- e.g., if $Y=a X+b$ for any scalars a and b, what is $\mathbb{E}[Y]$?

Examples of Linearity of Expectation

- e.g., Amherst's temperature is modeled by a random variable X with mean $\mathbb{E}[X]$ equal to 10 degrees Celsius. What is the mean temperature expressed in degrees Farenheit?

Variance

Variance

- Variance of X measures the dispersion of X around $\mathbb{E}[X]$:

$$
\operatorname{var}(X)=\underbrace{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}_{\geq 0}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Variance

- Variance of X measures the dispersion of X around $\mathbb{E}[X]$:

$$
\operatorname{var}(X)=\underbrace{\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]}_{\geq 0}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- Standard deviation of X is

$$
\sigma_{X}=\sqrt{\operatorname{var}(X)}
$$

Examples of Variance

- e.g., on any given day, with probability 0.2 , I am not especially tired and will drink only 3 cups of coffee before work. With probability 0.8 , however, I am VERY tired and will drink 6 cups of coffee before work. Let X be the number of cups that I will drink. $\mathbb{E}[X]=5.4$. What is $\operatorname{var}(X)$?

Variance of Standard Random Variables

- e.g., $\operatorname{var}(X)$ and σ_{X} for a Bernoulli random variable?

Variance of Standard Random Variables

- e.g., $\operatorname{var}(X)$ and σ_{X} for a Bernoulli random variable?
- e.g., $\operatorname{var}(X)$ and σ_{X} for a Poisson random variable?

Variance of a Linear Function of a Random Variable

- Let $Y=a X+b$ for any random variable X and scalars a and b. $\mathbb{E}[Y]=a \mathbb{E}[X]+b$. What is $\operatorname{var}(Y)$? What about σ_{Y} ?

Examples of Linearity of Variance

- e.g., Amherst's temperature is modeled by a random variable X with mean $\mathbb{E}[X]$ and standard deviation σ_{X} both equal to 10 degrees Celsius. A day is "typical" if it is within one standard deviation of the mean. What is the temperature range for a "typical" day expressed in degrees Farenheit?

Multiple Random Variables

Joint PMFs

- If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by $p_{X, Y}$

Joint PMFs

- If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by $p_{X, Y}$
- $p_{X, Y}(x, y)$ is the probability of the event $\{X=x\} \cap\{Y=y\}$:

$$
p_{X, Y}(x, y)=P(X=x, Y=y)=P(\{X=x\} \cap\{Y=y\})
$$

Joint PMFs

- If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by $p_{X, Y}$
- $p_{X, Y}(x, y)$ is the probability of the event $\{X=x\} \cap\{Y=y\}$:

$$
p_{X, Y}(x, y)=P(X=x, Y=y)=P(\{X=x\} \cap\{Y=y\})
$$

- e.g., choosing a random faculty member in the department: X is the person's height, Y is the person's weight

Tabular Representation

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.1	0.1	0	0.2
x_{2}	0.05	0.05	0.1	0
x_{3}	0	0.1	0.2	0.1

- e.g., $p_{X, Y}\left(x_{2}, y_{3}\right)=0.1, p_{X, Y}\left(x_{3}, y_{1}\right)=0, \ldots$

Tabular Representation

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.1	0.1	0	0.2
x_{2}	0.05	0.05	0.1	0
x_{3}	0	0.1	0.2	0.1

- e.g., $p_{X, Y}\left(x_{2}, y_{3}\right)=0.1, p_{X, Y}\left(x_{3}, y_{1}\right)=0, \ldots$
- Is this a valid joint PMF for X and Y ? How do we know?

Marginal PMFs

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.1	0.1	0	0.2
x_{2}	0.05	0.05	0.1	0
x_{3}	0	0.1	0.2	0.1

- We can compute the PMFs of X and Y from $p_{X, Y}$

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y) \text { and } p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

Expected Value Rule and Linearity of Expectation

- If X and Y are discrete random variables and $g(\cdot)$ is some linear or nonlinear function of X and Y, what is $\mathbb{E}[g(X, Y)]$?

Expected Value Rule and Linearity of Expectation

- If X and Y are discrete random variables and $g(\cdot)$ is some linear or nonlinear function of X and Y, what is $\mathbb{E}[g(X, Y)]$?

$$
\mathbb{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

Expected Value Rule and Linearity of Expectation

- If X and Y are discrete random variables and $g(\cdot)$ is some linear or nonlinear function of X and Y, what is $\mathbb{E}[g(X, Y)]$?

$$
\mathbb{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

- e.g., what is $\mathbb{E}[a X+b Y+c]$ for any scalars a, b, and c ?

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

- The expected value of $g(X, Y, Z)$ is

$$
\mathbb{E}[g(X, Y, Z)]=\sum_{x} \sum_{y} \sum_{z} g(x, y, z) P_{X, Y, Z}(x, y, z)
$$

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

- The expected value of $g(X, Y, Z)$ is

$$
\mathbb{E}[g(X, Y, Z)]=\sum_{x} \sum_{y} \sum_{z} g(x, y, z) P_{X, Y, Z}(x, y, z)
$$

- $\mathbb{E}[a X+b Y+c Z+d]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c \mathbb{E}[Z]+d$
[Got to here in class...]

Examples of Three or More Random Variables

- e.g., an office party decides to do a gift exchange for their annual holiday party. Everyone in the office purchases a gift and places it in a box. Each person is then given a random gift drawn from the box. What is the expected number of people who get back the gift that they purchased?

Expectations of Standard Random Variables

- e.g., if X is a binomial random variable, what is $\mathbb{E}[X]$?

For Next Time

- Read B\&T 2.6, 2.7, 2.8
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due on Friday

