CMPSCI 240: "Reasoning Under Uncertainty" Lecture 7

Prof. Hanna Wallach wallach@cs.umass.edu

February 14, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due on Friday

Recap

• Uniform: $p_X(k) = 1 / (b - a + 1)$ for k = a, a + 1, ..., b

- Uniform: $p_X(k) = 1 / (b a + 1)$ for k = a, a + 1, ..., b
- Bernoulli: $p_X(k) = p$ if k=1 and $p_X(k) = (1-p)$ if k=0

- Uniform: $p_X(k) = 1 / (b a + 1)$ for k = a, a + 1, ..., b
- Bernoulli: $p_X(k) = p$ if k=1 and $p_X(k) = (1-p)$ if k=0
- Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, 1, ..., n

- Uniform: $p_X(k) = 1 / (b a + 1)$ for k = a, a + 1, ..., b
- Bernoulli: $p_X(k) = p$ if k=1 and $p_X(k) = (1-p)$ if k=0
- Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, 1, ..., n
- Geometric: $p_X(k) = (1-p)^{k-1} p$ for k = 1, 2, 3, ...

- Uniform: $p_X(k) = 1 / (b a + 1)$ for k = a, a + 1, ..., b
- Bernoulli: $p_X(k) = p$ if k=1 and $p_X(k) = (1-p)$ if k=0
- Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, 1, ..., n
- Geometric: $p_X(k) = (1-p)^{k-1} p$ for k = 1, 2, 3, ...
- Poisson: $p_X(k) = e^{-\lambda} \lambda^k / k!$ for k = 0, 1, 2, ...

• Expected value (or expectation or mean) of X:

$$\mathbb{E}[X] = \sum_{x} x \, p_X(x)$$

• Expected value (or expectation or mean) of X:

$$\mathbb{E}[X] = \sum_{x} x \, p_X(x)$$

A weighted average of the possible values of X

Expected value (or expectation or mean) of X:

$$\mathbb{E}[X] = \sum_{x} x \, p_X(x)$$

- A weighted average of the possible values of X
- The value we'd "expect" to get for X "on average" if we repeated the same experiment (and calculated X) many times

• Expected value (or expectation or mean) of X:

$$\mathbb{E}[X] = \sum_{x} x \, p_X(x)$$

- A weighted average of the possible values of X
- The value we'd "expect" to get for X "on average" if we repeated the same experiment (and calculated X) many times
- Useful if we want a single number that "summarizes" p_X

Last Time: Expectations of Standard Random Variables

• Bernoulli random variable X: $\mathbb{E}[X] = p$

Last Time: Expectations of Standard Random Variables

- Bernoulli random variable X: $\mathbb{E}[X] = p$
- Discrete uniform random variable X: $\mathbb{E}[X] = (a+b)/2$

Last Time: Expectations of Standard Random Variables

- Bernoulli random variable X: $\mathbb{E}[X] = p$
- Discrete uniform random variable X: $\mathbb{E}[X] = (a+b)/2$
- Poisson random variable X: $\mathbb{E}[X] = \lambda$

Expectation (Cont.)

If X is a random variable, g(·) is some linear or nonlinear function, and random variable Y = g(X), what is E[Y]?

If X is a random variable, g(·) is some linear or nonlinear function, and random variable Y = g(X), what is E[Y]?

$$\mathbb{E}[Y] = \sum_{x} g(x) \, p_X(x)$$

If X is a random variable, g(·) is some linear or nonlinear function, and random variable Y = g(X), what is E[Y]?

$$\mathbb{E}[Y] = \sum_{x} g(x) \, p_X(x)$$

• Can compute $\mathbb{E}[Y]$ without computing p_Y directly!

If X is a random variable, g(·) is some linear or nonlinear function, and random variable Y = g(X), what is E[Y]?

$$\mathbb{E}[Y] = \sum_{x} g(x) \, p_X(x)$$

- Can compute $\mathbb{E}[Y]$ without computing p_Y directly!
- e.g., if Y = aX + b for any scalars *a* and *b*, what is $\mathbb{E}[Y]$?

Examples of Linearity of Expectation

e.g., Amherst's temperature is modeled by a random variable X with mean E[X] equal to 10 degrees Celsius. What is the mean temperature expressed in degrees Farenheit?

Variance

Variance

► Variance of X measures the dispersion of X around E[X]:
var(X) = E[(X - E[X])²] = E[X²] - E[X]²

$$\operatorname{var}(X) = \underbrace{\mathbb{E}[(X - \mathbb{E}[X])^2]}_{\geq 0} = \mathbb{E}[X^2] - \mathbb{E}[X]$$

Variance

▶ Variance of X measures the dispersion of X around $\mathbb{E}[X]$:

$$\operatorname{var}(X) = \underbrace{\mathbb{E}[(X - \mathbb{E}[X])^2]}_{\geq 0} = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Standard deviation of X is

$$\sigma_X = \sqrt{\operatorname{var}(X)}$$

Examples of Variance

► e.g., on any given day, with probability 0.2, I am not especially tired and will drink only 3 cups of coffee before work. With probability 0.8, however, I am VERY tired and will drink 6 cups of coffee before work. Let X be the number of cups that I will drink. E[X] = 5.4. What is var(X)? Variance of Standard Random Variables

• e.g., var(X) and σ_X for a Bernoulli random variable?

Variance of Standard Random Variables

e.g., var(X) and σ_X for a Bernoulli random variable?
e.g., var(X) and σ_X for a Poisson random variable?

Variance of a Linear Function of a Random Variable

Let Y = aX + b for any random variable X and scalars a and b. E[Y] = a E[X] + b. What is var(Y)? What about σ_Y?

Examples of Linearity of Variance

e.g., Amherst's temperature is modeled by a random variable X with mean E[X] and standard deviation σ_X both equal to 10 degrees Celsius. A day is "typical" if it is within one standard deviation of the mean. What is the temperature range for a "typical" day expressed in degrees Farenheit?

Multiple Random Variables

Joint PMFs

If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by p_{X,Y}

Joint PMFs

- If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by p_{X,Y}
- ▶ $p_{X,Y}(x,y)$ is the probability of the event $\{X=x\} \cap \{Y=y\}$:

$$p_{X,Y}(x,y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\})$$

Joint PMFs

- If X and Y are discrete random variables associated with the same experiment, then their joint PMF is denoted by p_{X,Y}
- ▶ $p_{X,Y}(x,y)$ is the probability of the event $\{X=x\} \cap \{Y=y\}$:

$$p_{X,Y}(x,y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\})$$

 e.g., choosing a random faculty member in the department: X is the person's height, Y is the person's weight

Tabular Representation

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4
<i>x</i> ₁	0.1	0.1	0	0.2
<i>x</i> ₂	0.05	0.05	0.1	0
<i>x</i> 3	0	0.1	0.2	0.1

• e.g.,
$$p_{X,Y}(x_2, y_3) = 0.1$$
, $p_{X,Y}(x_3, y_1) = 0$, ...

Tabular Representation

	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>Y</i> 4
<i>x</i> ₁	0.1	0.1	0	0.2
<i>x</i> ₂	0.05	0.05	0.1	0
<i>x</i> 3	0	0.1	0.2	0.1

• e.g.,
$$p_{X,Y}(x_2, y_3) = 0.1$$
, $p_{X,Y}(x_3, y_1) = 0$, ...

▶ Is this a valid joint PMF for X and Y? How do we know?

Marginal PMFs

	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>Y</i> 4
<i>x</i> ₁	0.1	0.1	0	0.2
<i>x</i> ₂	0.05	0.05	0.1	0
<i>x</i> 3	0	0.1	0.2	0.1

• We can compute the PMFs of X and Y from $p_{X,Y}$

$$p_X(x) = \sum_{y} p_{X,Y}(x,y) \text{ and } p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

If X and Y are discrete random variables and g(·) is some linear or nonlinear function of X and Y, what is E[g(X, Y)]?

If X and Y are discrete random variables and g(·) is some linear or nonlinear function of X and Y, what is E[g(X, Y)]?

$$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \, p_{X,Y}(x,y)$$

If X and Y are discrete random variables and g(·) is some linear or nonlinear function of X and Y, what is E[g(X, Y)]?

$$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \, \rho_{X,Y}(x,y)$$

• e.g., what is $\mathbb{E}[aX + bY + c]$ for any scalars *a*, *b*, and *c*?

Three or More Random Variables

▶ The joint PMF of X, Y, and Z is denoted $p_{X,Y,Z}$ where

$$p_{X,Y,Z}(x,y,z) = P(\{X=x\} \cap \{Y=y\} \cap \{Z=z\})$$

Three or More Random Variables

► The joint PMF of X, Y, and Z is denoted $p_{X,Y,Z}$ where

$$p_{X,Y,Z}(x,y,z) = P(\{X=x\} \cap \{Y=y\} \cap \{Z=z\})$$

• The expected value of g(X, Y, Z) is

$$\mathbb{E}[g(X,Y,Z)] = \sum_{x} \sum_{y} \sum_{z} g(x,y,z) P_{X,Y,Z}(x,y,z)$$

Three or More Random Variables

The joint PMF of X, Y, and Z is denoted p_{X,Y,Z} where p_{X,Y,Z}(x,y,z) = P({X=x} ∩ {Y=y} ∩ {Z=z})
The expected value of g(X, Y, Z) is E[g(X,Y,Z)] = ∑_x ∑_y ∑_z g(x,y,z) P_{X,Y,Z}(x,y,z)
E[aX + bY + cZ + d] = a E[X] + bE[Y] + c E[Z] + d [Got to here in class...]

Examples of Three or More Random Variables

e.g., an office party decides to do a gift exchange for their annual holiday party. Everyone in the office purchases a gift and places it in a box. Each person is then given a random gift drawn from the box. What is the expected number of people who get back the gift that they purchased? Expectations of Standard Random Variables

• e.g., if X is a binomial random variable, what is $\mathbb{E}[X]$?

For Next Time

- Read B&T 2.6, 2.7, 2.8
- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due on Friday