CMPSCI 240: "Reasoning Under Uncertainty" Lecture 8

Prof. Hanna Wallach wallach@cs.umass.edu

February 16, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due TOMORROW

Recap

• PMF:
$$p_X(x) = P(X = x) = P(\{X = x\})$$

• PMF:
$$p_X(x) = P(X=x) = P(\{X=x\})$$

• Expectation:
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

• PMF:
$$p_X(x) = P(X = x) = P(\{X = x\})$$

• Expectation:
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

• If
$$Y = g(X)$$
 then $\mathbb{E}[Y] = \sum_{x} g(x) p_X(x)$

• PMF:
$$p_X(x) = P(X = x) = P(\{X = x\})$$

• Expectation:
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

• If
$$Y = g(X)$$
 then $\mathbb{E}[Y] = \sum_{x} g(x) p_X(x)$

• If
$$Y = aX + b$$
 then $\mathbb{E}[Y] = a\mathbb{E}[X] + b$

► Variance: $\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

► Variance:
$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

• If
$$Y = aX + b$$
 then $var(Y) = a^2 var(X)$

- ► Variance: $\operatorname{var}(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- If Y = aX + b then $var(Y) = a^2 var(X)$
- Standard deviation: $\sigma_X = \sqrt{\operatorname{var}(X)}$

- ► Variance: $\operatorname{var}(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- If Y = aX + b then $var(Y) = a^2 var(X)$
- Standard deviation: $\sigma_X = \sqrt{\operatorname{var}(X)}$
- If Y = aX + b then $\sigma_Y = a\sigma_X$

• Joint PMF: $p_{X,Y}(x,y) = P(\{X=x\} \cap \{Y=y\})$

▶ Joint PMF:
$$p_{X,Y}(x,y) = P(\{X=x\} \cap \{Y=y\})$$

•
$$p_X(x) = \sum_y p_{X,Y}(x,y)$$
 and $p_Y(y) = \sum_x p_{X,Y}(x,y)$

• Joint PMF:
$$p_{X,Y}(x,y) = P(\{X=x\} \cap \{Y=y\})$$

▶
$$p_X(x) = \sum_y p_{X,Y}(x,y)$$
 and $p_Y(y) = \sum_x p_{X,Y}(x,y)$

• If
$$Z = g(X, Y)$$
 then $\mathbb{E}[Z] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)$

• Joint PMF:
$$p_{X,Y}(x,y) = P(\{X=x\} \cap \{Y=y\})$$

•
$$p_X(x) = \sum_y p_{X,Y}(x,y)$$
 and $p_Y(y) = \sum_x p_{X,Y}(x,y)$

• If
$$Z = g(X, Y)$$
 then $\mathbb{E}[Z] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)$

• If
$$Z = aX + bY + c$$
 then $\mathbb{E}[Z] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$

Multiple Random Variables (Cont.)

Three or More Random Variables

▶ The joint PMF of X, Y, and Z is denoted $p_{X,Y,Z}$ where

$$p_{X,Y,Z}(x,y,z) = P(\{X=x\} \cap \{Y=y\} \cap \{Z=z\})$$

Three or More Random Variables

► The joint PMF of X, Y, and Z is denoted $p_{X,Y,Z}$ where

$$p_{X,Y,Z}(x,y,z) = P(\{X=x\} \cap \{Y=y\} \cap \{Z=z\})$$

• The expected value of g(X, Y, Z) is

$$\mathbb{E}[g(X,Y,Z)] = \sum_{x} \sum_{y} \sum_{z} g(x,y,z) P_{X,Y,Z}(x,y,z)$$

Three or More Random Variables

The joint PMF of X, Y, and Z is denoted p_{X,Y,Z} where p_{X,Y,Z}(x,y,z) = P({X=x} ∩ {Y=y} ∩ {Z=z})
The expected value of g(X, Y, Z) is E[g(X,Y,Z)] = ∑_x ∑_y ∑_z g(x,y,z) P_{X,Y,Z}(x,y,z)
E[aX + bY + cZ + d] = a E[X] + bE[Y] + c E[Z] + d

Linearity of Expectation

In general, the expectation of a sum of random variables is equal to the sum of their expectations, i.e.,

$$\mathbb{E}[X_1 + \ldots + X_n] = \sum_{i=1}^n \mathbb{E}[X_i]$$

Linearity of Expectation

In general, the expectation of a sum of random variables is equal to the sum of their expectations, i.e.,

$$\mathbb{E}[X_1 + \ldots + X_n] = \sum_{i=1}^n \mathbb{E}[X_i]$$

▶ If X_i has the same PMF as X_j they are identically distributed:

$$\mathbb{E}[X_i] = \sum_{x} x \, p_{X_i}(x) = \sum_{x} x \, p_{X_j}(x) = \mathbb{E}[X_j]$$

Examples of Three or More Random Variables

e.g., an office party decides to do a gift exchange for their annual holiday party. Everyone in the office purchases a gift and places it in a box. Each person is then given a random gift drawn from the box. What is the expected number of people who get back the gift that they purchased? Expectations of Standard Random Variables

• e.g., if X is a binomial random variable, what is $\mathbb{E}[X]$?

Conditioning

Conditioning

► Conditional PMF of X given Y: denoted by $p_{X|Y}$, where $p_{X|Y}(x|y) = P(X=x|Y=y) = P({X=x}|{Y=y})$

Conditioning

► Conditional PMF of X given Y: denoted by $p_{X|Y}$, where

$$p_{X|Y}(x|y) = P(X = x | Y = y) = P(\{X = x\} | \{Y = y\})$$

• Compute $p_{X|Y}$ using the definition of conditional probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \implies p_{X \mid Y}(x \mid y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$

Conditioning and the Tabular Representation

	<i>y</i> 1	<i>y</i> ₂	<i>Y</i> 3	<i>Y</i> 4	
<i>x</i> ₁	0.1	0.1	0	0.2	
<i>x</i> ₂	0.05	0.05	0.1	0	
X3	0	0.1	0.2	0.1	

Compute conditional PMF for Y given X = x by renormalizing the values in the row for x and conditional PMF for X given Y = y by renormalizing the values in the column for y

Conditioning and the Tabular Representation

	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4
<i>x</i> ₁	0.1	0.1	0	0.2
<i>x</i> ₂	0.05	0.05	0.1	0
<i>x</i> 3	0	0.1	0.2	0.1

• e.g., to compute $p_{X|Y}(x_1 | y_2)$:

$$p_{X|Y}(x_1 | y_2) = \frac{p_{X,Y}(x_1, y_2)}{\sum_{i=1}^3 p_{X,Y}(x_i, y_2)} = \frac{p_{X,Y}(x_1, y_2)}{p_Y(y_2)}$$

Calculating Joint and Marginal PMFs

Apply the multiplication rule using the underlying events {X=x} ∩ {Y=y}, {X=x}, and {Y=y} to give

$$p_{X,Y}(x,y) = p_X(x) \, p_{Y|X}(y \,|\, x) = p_Y(y) \, p_{X|Y}(x \,|\, y)$$

Calculating Joint and Marginal PMFs

Apply the multiplication rule using the underlying events $\{X=x\} \cap \{Y=y\}, \{X=x\}, \text{ and } \{Y=y\}$ to give

$$p_{X,Y}(x,y) = p_X(x) \, p_{Y|X}(y \,|\, x) = p_Y(y) \, p_{X|Y}(x \,|\, y)$$

Divide-and-conquer approach to calculating marginal PMFs:

$$p_X(x) = \sum_{y} p_{X,Y}(x,y) = \sum_{y} p_Y(y) p_{X|Y}(x|y)$$

Examples of Conditioning

e.g., if my computer has a virus (which is true with probability 0.2) my antivirus program will detect this virus with probability 0.7. If my computer does not have a virus, my antivirus program will mistakenly detect a virus with probability 0.1. Let X and Y be binary random variables that are equal to 1 if my computer has a virus and the program detects a virus, respectively, and 0 otherwise. What is p_{X,Y}?

• We can condition random variables on events too

- We can condition random variables on events too
- ▶ If X is associated with the same experiment as event A then

$$p_{X|A}(k) = P(X = k | A) = P(\{X = k\} | A)$$

- We can condition random variables on events too
- ▶ If X is associated with the same experiment as event A then

$$p_{X|A}(k) = P(X = k | A) = P(\{X = k\} | A)$$

• e.g., X = "sum of two rolls", A = "first roll is odd"

- We can condition random variables on events too
- ▶ If X is associated with the same experiment as event A then

$$p_{X|A}(k) = P(X = k | A) = P(\{X = k\} | A)$$

Nothing fancy here – this is just notation – when in doubt, think about the underlying events and outcomes

Examples of Conditioning on Events

e.g., a student will take a test repeatedly up to a maximum of *n* times, each time with a probability *p* of passing, independent of previous attempts. What is the PMF of the number of attempts, given that the student passes the test?

Conditional version of expectation:

$$\mathbb{E}[X \mid Y = y] = \sum_{x} x \, p_{X \mid Y}(x \mid y)$$

Conditional version of expectation:

$$\mathbb{E}[X \mid Y = y] = \sum_{x} x \, p_{X|Y}(x \mid y)$$

▶ For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) | Y = y]$?

Conditional version of expectation:

$$\mathbb{E}[X \mid Y = y] = \sum_{x} x \, p_{X|Y}(x \mid y)$$

▶ For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) | Y = y]$?

$$\mathbb{E}[g(X) \mid Y = y] = \sum_{x} g(x) p_{X|Y}(x \mid y)$$

Conditional version of expectation:

$$\mathbb{E}[X \mid Y = y] = \sum_{x} x \, p_{X \mid Y}(x \mid y)$$

▶ For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) | Y = y]$?

$$\mathbb{E}[g(X) \mid Y = y] = \sum_{x} g(x) p_{X|Y}(x \mid y)$$

Expectations can be conditioned on events too

• Conditional variance of X given Y = y:

$$\operatorname{var}(X \mid Y = y) = \mathbb{E}[X^2 \mid Y = y] - \mathbb{E}[X \mid Y = y]^2$$

• Conditional variance of X given Y = y:

$$\operatorname{var}(X \mid Y = y) = \mathbb{E}[X^2 \mid Y = y] - \mathbb{E}[X \mid Y = y]^2$$

• What is the conditional standard deviation of X given Y = y?

• Conditional variance of X given Y = y:

$$\operatorname{var}(X \mid Y = y) = \mathbb{E}[X^2 \mid Y = y] - \mathbb{E}[X \mid Y = y]^2$$

• What is the conditional standard deviation of X given Y = y?

$$\sigma_{X|Y=y} = \sqrt{\operatorname{var}(X \mid Y=y)}$$

• Conditional variance of X given Y = y:

$$\operatorname{var}(X \mid Y = y) = \mathbb{E}[X^2 \mid Y = y] - \mathbb{E}[X \mid Y = y]^2$$

• What is the conditional standard deviation of X given Y = y?

$$\sigma_{X|Y=y} = \sqrt{\operatorname{var}(X \mid Y=y)}$$

Both can be conditioned on events too

Total Expectation Theorem

▶ Total expectation theorem: for any random variables X and Y

$$\mathbb{E}[X] = \sum_{y} p_{Y}(y) \mathbb{E}[X | Y = y]$$

Total Expectation Theorem

Total expectation theorem: for any random variables X and Y

$$\mathbb{E}[X] = \sum_{y} p_{Y}(y) \mathbb{E}[X \mid Y = y]$$

For any disjoint events A₁,..., A_n that partition Ω:

$$\mathbb{E}[X] = \sum_{i=1}^{n} P(A_i) \mathbb{E}[X \mid A_i]$$

Expectations of Standard Random Variables

• e.g., if X is a geometric random variable, what is $\mathbb{E}[X]$?

Independence

Independence of Events

► Two events A and B are independent if and only if $P(A \cap B) = P(A) P(B)$

Independence of Events

► Two events *A* and *B* are independent if and only if

$$P(A \cap B) = P(A) P(B)$$

• If P(B) > 0 this is equivalent to

$$\frac{P(A \cap B)}{P(B)} = P(A \mid B) = P(A)$$

Independence of Events

Two events A and B are independent if and only if

$$P(A \cap B) = P(A) P(B)$$

• If P(B) > 0 this is equivalent to

$$\frac{P(A \cap B)}{P(B)} = P(A \mid B) = P(A)$$

• If P(A) > 0 this is equivalent to P(B | A) = P(B)

Independence of Random Variables

X and Y are independent if and only if for all x and y

 $p_{X,Y}(x,y) = p_X(x) \, p_Y(y)$

Independence of Random Variables

X and Y are independent if and only if for all x and y

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$

• Equivalently if for all x and y such that $p_Y(y) > 0$

$$\frac{p_{X,Y}(x,y)}{p_Y(y)} = p_{X|Y}(x \,|\, y) = p_X(x)$$

Independence of Random Variables

X and Y are independent if and only if for all x and y

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$

• Equivalently if for all x and y such that $p_Y(y) > 0$

$$\frac{p_{X,Y}(x,y)}{p_Y(y)} = p_{X|Y}(x \,|\, y) = p_X(x)$$

• Or if $p_{Y|X}(y | x) = p_Y(y)$ for all x and y such that $p_X(x) > 0$

Independence and the Tabular Representation

	<i>Y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4
<i>x</i> ₁	0.05	0.15	0	0.2
<i>x</i> ₂	0.025	0.075	0	0.1
<i>x</i> 3	05	0.15	0	0.2

► Are X and Y independent? How can we tell?

Expectation and Independence

▶ If X and Y are independent then

$$\mathbb{E}[XY] = \sum_{x} \sum_{y} x y p_{X,Y}(x,y)$$
$$= \sum_{x} \sum_{y} x y p_{X}(x) p_{Y}(y) = \mathbb{E}[X] \mathbb{E}[Y]$$

Expectation and Independence

▶ If X and Y are independent then

$$\mathbb{E}[XY] = \sum_{x} \sum_{y} x y p_{X,Y}(x,y)$$
$$= \sum_{x} \sum_{y} x y p_{X}(x) p_{Y}(y) = \mathbb{E}[X] \mathbb{E}[Y]$$

This is only true if X and Y are independent

Independence and Three or More Random Variables

> X, Y, and Z are independent if and only if for all x, y, and z

$$p_{X,Y,Z}(x,y,z) = p_X(x) p_Y(y) p_Z(z)$$

Independence and Three or More Random Variables

 \blacktriangleright X, Y, and Z are independent if and only if for all x, y, and z

$$p_{X,Y,Z}(x,y,z) = p_X(x) p_Y(y) p_Z(z)$$

► If random variables X, Y, and Z are independent then so are random variables of the form f(X), g(Y), and h(Z)

Variance and Independence

• If X_1, X_2, \ldots, X_n are independent then

$$\operatorname{var}(X_1 + X_2 + \ldots + X_n) = \sum_{i=1}^n \operatorname{var}(X_i)$$

Variance and Independence

• If
$$X_1, X_2, \ldots, X_n$$
 are independent then

$$\operatorname{var}(X_1 + X_2 + \ldots + X_n) = \sum_{i=1}^n \operatorname{var}(X_i)$$

If X₁, X₂,..., X_n are independent and identically distributed, then var(X₁) = var(X₂) = ... = var(X_n) and

$$\operatorname{var}(X_1 + X_2 + \ldots + X_n) = n \operatorname{var}(X_1)$$

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due TOMORROW