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Reminders

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Second homework is due TOMORROW

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/


Recap



Last Time: Expectation

I PMF: pX (x) = P(X =x) = P({X =x})

I Expectation: E[X ] =
∑

x x pX (x)

I If Y = g(X ) then E[Y ] =
∑

x g(x) pX (x)

I If Y = a X + b then E[Y ] = aE[X ] + b
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Last Time: Variance

I Variance: var(X ) = E[(X − E[X ])2] = E[X 2]− E[X ]2

I If Y = a X + b then var(Y ) = a2 var(X )

I Standard deviation: σX =
√

var(X )

I If Y = a X + b then σY = a σX
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Last Time: Multiple Random Variables

I Joint PMF: pX ,Y (x , y) = P({X =x} ∩ {Y =y})

I pX (x) =
∑

y pX ,Y (x , y) and pY (y) =
∑

x pX ,Y (x , y)

I If Z = g(X ,Y ) then E[Z ] =
∑

x

∑
y g(x , y) pX ,Y (x , y)

I If Z = aX + bY + c then E[Z ] = aE[X ] + bE[Y ] + c
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Multiple Random Variables (Cont.)



Three or More Random Variables

I The joint PMF of X , Y , and Z is denoted pX ,Y ,Z where

pX ,Y ,Z (x , y , z) = P({X =x} ∩ {Y =y} ∩ {Z =z})

I The expected value of g(X ,Y ,Z ) is

E[g(X ,Y ,Z )] =
∑
x

∑
y

∑
z

g(x , y , z)PX ,Y ,Z (x , y , z)

I E[aX + bY + cZ + d ] = aE[X ] + bE[Y ] + c E[Z ] + d
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Linearity of Expectation

I In general, the expectation of a sum of random variables is
equal to the sum of their expectations, i.e.,

E[X1 + . . .+ Xn] =
n∑

i=1

E[Xi ]

I If Xi has the same PMF as Xj they are identically distributed:

E[Xi ] =
∑
x

x pXi
(x) =

∑
x

x pXj
(x) = E[Xj ]
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Examples of Three or More Random Variables

I e.g., an office party decides to do a gift exchange for their
annual holiday party. Everyone in the office purchases a gift
and places it in a box. Each person is then given a random
gift drawn from the box. What is the expected number of
people who get back the gift that they purchased?



Expectations of Standard Random Variables

I e.g., if X is a binomial random variable, what is E[X ]?



Conditioning



Conditioning

I Conditional PMF of X given Y : denoted by pX |Y , where

pX |Y (x | y) = P(X =x |Y =y) = P({X =x} | {Y =y})

I Compute pX |Y using the definition of conditional probability:

P(A |B) =
P(A ∩ B)

P(B)
=⇒ pX |Y (x | y) =

pX ,Y (x , y)

pY (y)
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Conditioning and the Tabular Representation

y1 y2 y3 y4
x1 0.1 0.1 0 0.2
x2 0.05 0.05 0.1 0
x3 0 0.1 0.2 0.1

I Compute conditional PMF for Y given X =x by renormalizing
the values in the row for x and conditional PMF for X given
Y =y by renormalizing the values in the column for y



Conditioning and the Tabular Representation

y1 y2 y3 y4
x1 0.1 0.1 0 0.2
x2 0.05 0.05 0.1 0
x3 0 0.1 0.2 0.1

I e.g., to compute pX |Y (x1 | y2):

pX |Y (x1 | y2) =
pX ,Y (x1, y2)∑3
i=1 pX ,Y (xi , y2)

=
pX ,Y (x1, y2)

pY (y2)



Calculating Joint and Marginal PMFs

I Apply the multiplication rule using the underlying events
{X =x} ∩ {Y =y}, {X =x}, and {Y =y} to give

pX ,Y (x , y) = pX (x) pY |X (y | x) = pY (y) pX |Y (x | y)

I Divide-and-conquer approach to calculating marginal PMFs:

pX (x) =
∑
y

pX ,Y (x , y) =
∑
y

pY (y) pX |Y (x | y)
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Examples of Conditioning

I e.g., if my computer has a virus (which is true with probability
0.2) my antivirus program will detect this virus with
probability 0.7. If my computer does not have a virus, my
antivirus program will mistakenly detect a virus with
probability 0.1. Let X and Y be binary random variables that
are equal to 1 if my computer has a virus and the program
detects a virus, respectively, and 0 otherwise. What is pX ,Y ?



Conditioning on Events

I We can condition random variables on events too

I If X is associated with the same experiment as event A then

pX |A(k) = P(X =k |A) = P({X =k} |A)

I e.g., X = “sum of two rolls”, A = “first roll is odd”

I Nothing fancy here – this is just notation – when in doubt,
think about the underlying events and outcomes
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Examples of Conditioning on Events

I e.g., a student will take a test repeatedly up to a maximum of
n times, each time with a probability p of passing,
independent of previous attempts. What is the PMF of the
number of attempts, given that the student passes the test?



Conditional Expectation

I Conditional version of expectation:

E[X |Y =y ] =
∑
x

x pX |Y (x | y)

I For any function g(·) of X , what is E[g(X ) |Y =y ]?

E[g(X ) |Y =y ] =
∑
x

g(x) pX |Y (x | y)

I Expectations can be conditioned on events too
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Conditional Variance and Standard Deviation

I Conditional variance of X given Y =y :

var(X |Y =y) = E[X 2 |Y =y ]− E[X |Y =y ]2

I What is the conditional standard deviation of X given Y =y?

σX |Y=y =
√

var(X |Y =y)

I Both can be conditioned on events too
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Total Expectation Theorem

I Total expectation theorem: for any random variables X and Y

E[X ] =
∑
y

pY (y)E[X |Y =y ]

I For any disjoint events A1, . . . ,An that partition Ω:

E[X ] =
n∑

i=1

P(Ai )E[X |Ai ]
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I Total expectation theorem: for any random variables X and Y

E[X ] =
∑
y

pY (y)E[X |Y =y ]
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Expectations of Standard Random Variables

I e.g., if X is a geometric random variable, what is E[X ]?



Independence



Independence of Events

I Two events A and B are independent if and only if

P(A ∩ B) = P(A)P(B)

I If P(B) > 0 this is equivalent to

P(A ∩ B)

P(B)
= P(A |B) = P(A)

I If P(A) > 0 this is equivalent to P(B |A) = P(B)
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Independence of Random Variables

I X and Y are independent if and only if for all x and y

pX ,Y (x , y) = pX (x) pY (y)

I Equivalently if for all x and y such that pY (y) > 0

pX ,Y (x , y)

pY (y)
= pX |Y (x | y) = pX (x)

I Or if pY |X (y | x) = pY (y) for all x and y such that pX (x) > 0
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Independence of Random Variables

I X and Y are independent if and only if for all x and y

pX ,Y (x , y) = pX (x) pY (y)

I Equivalently if for all x and y such that pY (y) > 0

pX ,Y (x , y)

pY (y)
= pX |Y (x | y) = pX (x)

I Or if pY |X (y | x) = pY (y) for all x and y such that pX (x) > 0



Independence and the Tabular Representation

y1 y2 y3 y4
x1 0.05 0.15 0 0.2
x2 0.025 0.075 0 0.1
x3 05 0.15 0 0.2

I Are X and Y independent? How can we tell?



Expectation and Independence

I If X and Y are independent then

E[XY ] =
∑
x

∑
y

x y pX ,Y (x , y)

=
∑
x

∑
y

x y pX (x) pY (y) = E[X ]E[Y ]

I This is only true if X and Y are independent
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Independence and Three or More Random Variables

I X , Y , and Z are independent if and only if for all x , y , and z

pX ,Y ,Z (x , y , z) = pX (x) pY (y) pZ (z)

I If random variables X , Y , and Z are independent then so are
random variables of the form f (X ), g(Y ), and h(Z )
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Variance and Independence

I If X1,X2, . . . ,Xn are independent then

var(X1 + X2 + . . .+ Xn) =
n∑

i=1

var(Xi )

I If X1,X2, . . . ,Xn are independent and identically distributed,
then var(X1) = var(X2) = . . . = var(Xn) and

var(X1 + X2 + . . .+ Xn) = n var(X1)
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For Next Time

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Second homework is due TOMORROW
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