CMPSCI 240: "Reasoning Under Uncertainty" Lecture 8

Prof. Hanna Wallach
wallach@cs.umass.edu

February 16, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due TOMORROW

Recap

Last Time: Expectation

- PMF: $p_{X}(x)=P(X=x)=P(\{X=x\})$

Last Time: Expectation

- PMF: $p_{X}(x)=P(X=x)=P(\{X=x\})$
- Expectation: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$

Last Time: Expectation

- PMF: $p_{X}(x)=P(X=x)=P(\{X=x\})$
- Expectation: $\mathbb{E}[X]=\sum_{x} \times p_{X}(x)$
- If $Y=g(X)$ then $\mathbb{E}[Y]=\sum_{x} g(x) p_{X}(x)$

Last Time: Expectation

- PMF: $p_{X}(x)=P(X=x)=P(\{X=x\})$
- Expectation: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
- If $Y=g(X)$ then $\mathbb{E}[Y]=\sum_{x} g(x) p_{X}(x)$
- If $Y=a X+b$ then $\mathbb{E}[Y]=a \mathbb{E}[X]+b$

Last Time: Variance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Last Time: Variance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- If $Y=a X+b$ then $\operatorname{var}(Y)=a^{2} \operatorname{var}(X)$

Last Time: Variance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- If $Y=a X+b$ then $\operatorname{var}(Y)=a^{2} \operatorname{var}(X)$
- Standard deviation: $\sigma_{X}=\sqrt{\operatorname{var}(X)}$

Last Time: Variance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- If $Y=a X+b$ then $\operatorname{var}(Y)=a^{2} \operatorname{var}(X)$
- Standard deviation: $\sigma_{X}=\sqrt{\operatorname{var}(X)}$
- If $Y=a X+b$ then $\sigma_{Y}=a \sigma_{X}$

Last Time: Multiple Random Variables

- Joint PMF: $p_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$

Last Time: Multiple Random Variables

- Joint PMF: $p_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$
- $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$ and $p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)$

Last Time: Multiple Random Variables

- Joint PMF: $p_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$
- $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$ and $p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)$
- If $Z=g(X, Y)$ then $\mathbb{E}[Z]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$

Last Time: Multiple Random Variables

- Joint PMF: $p_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$
- $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$ and $p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)$
- If $Z=g(X, Y)$ then $\mathbb{E}[Z]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$
- If $Z=a X+b Y+c$ then $\mathbb{E}[Z]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$

Multiple Random Variables (Cont.)

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

- The expected value of $g(X, Y, Z)$ is

$$
\mathbb{E}[g(X, Y, Z)]=\sum_{x} \sum_{y} \sum_{z} g(x, y, z) P_{X, Y, Z}(x, y, z)
$$

Three or More Random Variables

- The joint PMF of X, Y, and Z is denoted $p_{X, Y, Z}$ where

$$
p_{X, Y, Z}(x, y, z)=P(\{X=x\} \cap\{Y=y\} \cap\{Z=z\})
$$

- The expected value of $g(X, Y, Z)$ is

$$
\mathbb{E}[g(X, Y, Z)]=\sum_{x} \sum_{y} \sum_{z} g(x, y, z) P_{X, Y, Z}(x, y, z)
$$

- $\mathbb{E}[a X+b Y+c Z+d]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c \mathbb{E}[Z]+d$

Linearity of Expectation

- In general, the expectation of a sum of random variables is equal to the sum of their expectations, i.e.,

$$
\mathbb{E}\left[X_{1}+\ldots+X_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Linearity of Expectation

- In general, the expectation of a sum of random variables is equal to the sum of their expectations, i.e.,

$$
\mathbb{E}\left[X_{1}+\ldots+X_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

- If X_{i} has the same PMF as X_{j} they are identically distributed:

$$
\mathbb{E}\left[X_{i}\right]=\sum_{x} x p_{X_{i}}(x)=\sum_{x} x p_{X_{j}}(x)=\mathbb{E}\left[X_{j}\right]
$$

Examples of Three or More Random Variables

- e.g., an office party decides to do a gift exchange for their annual holiday party. Everyone in the office purchases a gift and places it in a box. Each person is then given a random gift drawn from the box. What is the expected number of people who get back the gift that they purchased?

Expectations of Standard Random Variables

- e.g., if X is a binomial random variable, what is $\mathbb{E}[X]$?

Conditioning

Conditioning

- Conditional PMF of X given Y : denoted by $p_{X \mid Y}$, where

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=P(\{X=x\} \mid\{Y=y\})
$$

Conditioning

- Conditional PMF of X given Y : denoted by $p_{X \mid Y}$, where

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=P(\{X=x\} \mid\{Y=y\})
$$

- Compute $p_{X \mid Y}$ using the definition of conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Longrightarrow p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

Conditioning and the Tabular Representation

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.1	0.1	0	0.2
x_{2}	0.05	0.05	0.1	0
x_{3}	0	0.1	0.2	0.1

- Compute conditional PMF for Y given $X=x$ by renormalizing the values in the row for x and conditional PMF for X given $Y=y$ by renormalizing the values in the column for y

Conditioning and the Tabular Representation

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.1	0.1	0	0.2
x_{2}	0.05	0.05	0.1	0
x_{3}	0	0.1	0.2	0.1

- e.g., to compute $p_{X \mid Y}\left(x_{1} \mid y_{2}\right)$:

$$
p_{X \mid Y}\left(x_{1} \mid y_{2}\right)=\frac{p_{X, Y}\left(x_{1}, y_{2}\right)}{\sum_{i=1}^{3} p_{X, Y}\left(x_{i}, y_{2}\right)}=\frac{p_{X, Y}\left(x_{1}, y_{2}\right)}{p_{Y}\left(y_{2}\right)}
$$

Calculating Joint and Marginal PMFs

- Apply the multiplication rule using the underlying events $\{X=x\} \cap\{Y=y\},\{X=x\}$, and $\{Y=y\}$ to give

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x)=p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

Calculating Joint and Marginal PMFs

- Apply the multiplication rule using the underlying events $\{X=x\} \cap\{Y=y\},\{X=x\}$, and $\{Y=y\}$ to give

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x)=p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

- Divide-and-conquer approach to calculating marginal PMFs:

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)=\sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

Examples of Conditioning

- e.g., if my computer has a virus (which is true with probability 0.2) my antivirus program will detect this virus with probability 0.7 . If my computer does not have a virus, my antivirus program will mistakenly detect a virus with probability 0.1 . Let X and Y be binary random variables that are equal to 1 if my computer has a virus and the program detects a virus, respectively, and 0 otherwise. What is $p_{X, Y}$?

Conditioning on Events

- We can condition random variables on events too

Conditioning on Events

- We can condition random variables on events too
- If X is associated with the same experiment as event A then

$$
p_{X \mid A}(k)=P(X=k \mid A)=P(\{X=k\} \mid A)
$$

Conditioning on Events

- We can condition random variables on events too
- If X is associated with the same experiment as event A then

$$
p_{X \mid A}(k)=P(X=k \mid A)=P(\{X=k\} \mid A)
$$

- e.g., $X=$ "sum of two rolls", $A=$ "first roll is odd"

Conditioning on Events

- We can condition random variables on events too
- If X is associated with the same experiment as event A then

$$
p_{X \mid A}(k)=P(X=k \mid A)=P(\{X=k\} \mid A)
$$

- e.g., $X=$ "sum of two rolls", $A=$ "first roll is odd"
- Nothing fancy here - this is just notation - when in doubt, think about the underlying events and outcomes

Examples of Conditioning on Events

- e.g., a student will take a test repeatedly up to a maximum of n times, each time with a probability p of passing, independent of previous attempts. What is the PMF of the number of attempts, given that the student passes the test?

Conditional Expectation

- Conditional version of expectation:

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Conditional Expectation

- Conditional version of expectation:

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) \mid Y=y]$?

Conditional Expectation

- Conditional version of expectation:

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) \mid Y=y]$?

$$
\mathbb{E}[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y)
$$

Conditional Expectation

- Conditional version of expectation:

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- For any function $g(\cdot)$ of X, what is $\mathbb{E}[g(X) \mid Y=y]$?

$$
\mathbb{E}[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y)
$$

- Expectations can be conditioned on events too

Conditional Variance and Standard Deviation

- Conditional variance of X given $Y=y$:

$$
\operatorname{var}(X \mid Y=y)=\mathbb{E}\left[X^{2} \mid Y=y\right]-\mathbb{E}[X \mid Y=y]^{2}
$$

Conditional Variance and Standard Deviation

- Conditional variance of X given $Y=y$:

$$
\operatorname{var}(X \mid Y=y)=\mathbb{E}\left[X^{2} \mid Y=y\right]-\mathbb{E}[X \mid Y=y]^{2}
$$

- What is the conditional standard deviation of X given $Y=y$?

Conditional Variance and Standard Deviation

- Conditional variance of X given $Y=y$:

$$
\operatorname{var}(X \mid Y=y)=\mathbb{E}\left[X^{2} \mid Y=y\right]-\mathbb{E}[X \mid Y=y]^{2}
$$

- What is the conditional standard deviation of X given $Y=y$?

$$
\sigma_{X \mid Y=y}=\sqrt{\operatorname{var}(X \mid Y=y)}
$$

Conditional Variance and Standard Deviation

- Conditional variance of X given $Y=y$:

$$
\operatorname{var}(X \mid Y=y)=\mathbb{E}\left[X^{2} \mid Y=y\right]-\mathbb{E}[X \mid Y=y]^{2}
$$

- What is the conditional standard deviation of X given $Y=y$?

$$
\sigma_{X \mid Y=y}=\sqrt{\operatorname{var}(X \mid Y=y)}
$$

- Both can be conditioned on events too

Total Expectation Theorem

- Total expectation theorem: for any random variables X and Y

$$
\mathbb{E}[X]=\sum_{y} p_{Y}(y) \mathbb{E}[X \mid Y=y]
$$

Total Expectation Theorem

- Total expectation theorem: for any random variables X and Y

$$
\mathbb{E}[X]=\sum_{y} p_{Y}(y) \mathbb{E}[X \mid Y=y]
$$

- For any disjoint events A_{1}, \ldots, A_{n} that partition Ω :

$$
\mathbb{E}[X]=\sum_{i=1}^{n} P\left(A_{i}\right) \mathbb{E}\left[X \mid A_{i}\right]
$$

Expectations of Standard Random Variables

- e.g., if X is a geometric random variable, what is $\mathbb{E}[X]$?

Independence

Independence of Events

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Independence of Events

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

Independence of Events

- Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- If $P(B)>0$ this is equivalent to

$$
\frac{P(A \cap B)}{P(B)}=P(A \mid B)=P(A)
$$

- If $P(A)>0$ this is equivalent to $P(B \mid A)=P(B)$

Independence of Random Variables

- X and Y are independent if and only if for all x and y

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

Independence of Random Variables

- X and Y are independent if and only if for all x and y

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

- Equivalently if for all x and y such that $p_{Y}(y)>0$

$$
\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

Independence of Random Variables

- X and Y are independent if and only if for all x and y

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

- Equivalently if for all x and y such that $p_{Y}(y)>0$

$$
\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

- Or if $p_{Y \mid X}(y \mid x)=p_{Y}(y)$ for all x and y such that $p_{X}(x)>0$

Independence and the Tabular Representation

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0.05	0.15	0	0.2
x_{2}	0.025	0.075	0	0.1
x_{3}	05	0.15	0	0.2

- Are X and Y independent? How can we tell?

Expectation and Independence

- If X and Y are independent then

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} x y p_{X}(x) p_{Y}(y)=\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Expectation and Independence

- If X and Y are independent then

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} x y p_{X}(x) p_{Y}(y)=\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

- This is only true if X and Y are independent

Independence and Three or More Random Variables

- X, Y, and Z are independent if and only if for all x, y, and z

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y}(y) p_{Z}(z)
$$

Independence and Three or More Random Variables

- X, Y, and Z are independent if and only if for all x, y, and z

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y}(y) p_{Z}(z)
$$

- If random variables X, Y, and Z are independent then so are random variables of the form $f(X), g(Y)$, and $h(Z)$

Variance and Independence

- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent then

$$
\operatorname{var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)
$$

Variance and Independence

- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent then

$$
\operatorname{var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)
$$

- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed, then $\operatorname{var}\left(X_{1}\right)=\operatorname{var}\left(X_{2}\right)=\ldots=\operatorname{var}\left(X_{n}\right)$ and

$$
\operatorname{var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=n \operatorname{var}\left(X_{1}\right)
$$

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Second homework is due TOMORROW

