CMPSCI 240: "Reasoning Under Uncertainty" Lecture 9

Prof. Hanna Wallach
wallach@cs.umass.edu

February 21, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due on Friday

Information Theory

Communication

- Communication: representing and transmitting information

Communication

- Communication: representing and transmitting information
- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." - Claude Shannon

Communication

- Communication: representing and transmitting information
- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." - Claude Shannon
- Information theory: the math behind this

Uses of Information Theory

- Measuring information content

Uses of Information Theory

- Measuring information content
- Compressing data (e.g., images, video, text, etc.)

Uses of Information Theory

- Measuring information content
- Compressing data (e.g., images, video, text, etc.)
- Communicating without errors over noisy, imperfect communication channels (e.g., phone lines, disk drives, etc.)

Information Content

Probability and Information: Intuition

- Probability and information content are inversely related

Probability and Information: Intuition

- Probability and information content are inversely related
- Less probable events have a greater information content

Probability and Information: Intuition

- Probability and information content are inversely related
- Less probable events have a greater information content
- The more certain you are that some event will occur, the less information you gain by knowing that it did indeed occur

Probability and Information: Intuition

- Probability and information content are inversely related
- Less probable events have a greater information content
- The more certain you are that some event will occur, the less information you gain by knowing that it did indeed occur
- e.g., sun rising vs. professor making a TurBacHenDuckEn

Desirable Properties of Information Content

- If $P(A)=1$ and $P\left(A^{c}\right)=0$, the information gained by learning that the outcome x is in A should be zero and the information gained by learning that $x \in A^{c}$ should be infinite

Desirable Properties of Information Content

- If $P(A)=1$ and $P\left(A^{c}\right)=0$, the information gained by learning that the outcome x is in A should be zero and the information gained by learning that $x \in A^{c}$ should be infinite
- If $P(A)=P\left(A^{c}\right)=1 / 2$, we are maximally uncertain about the outcome and we should gain one unit of information by learning that the event is in A and similarly for A^{c}

Asking Informative Questions

- If A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?

Asking Informative Questions

- If A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?
- e.g., suppose $n=4$ and $P\left(A_{i}\right)=1 / 4$ for $i=1, \ldots, 4$

Asking Informative Questions

- If A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?
- e.g., suppose $n=4$ and $P\left(A_{i}\right)=1 / 4$ for $i=1, \ldots, 4$
- e.g., suppose $n=4$ again but now we have $P\left(A_{1}\right)=1 / 2$, $P\left(A_{2}\right)=1 / 4, P\left(A_{3}\right)=1 / 8$, and $P\left(A_{4}\right)=1 / 8$

Asking Informative Questions

- Ask the questions that you will gain the most information from regardless of the answer obtained, i.e., those questions whose answers you have the most uncertainty about

Asking Informative Questions

- Ask the questions that you will gain the most information from regardless of the answer obtained, i.e., those questions whose answers you have the most uncertainty about
- Ask the questions that will eliminate the most remaining possibilities regardless of the answers obtained, i.e., those questions that divide the remaining probability equally

Asking Informative Questions

- Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A_{1}, \ldots, A_{n} as leaves

Asking Informative Questions

- Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A_{1}, \ldots, A_{n} as leaves
- The depth of A_{i} is equal to the number of equiprobable yes/no questions required to uniquely determine that $x \in A_{i}$

Asking Informative Questions

- Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A_{1}, \ldots, A_{n} as leaves
- The depth of A_{i} is equal to the number of equiprobable yes/no questions required to uniquely determine that $x \in A_{i}$
- Each yes/no question divides the remaining probability in half, so we know that if event A_{i} is at depth k, its probability $P\left(A_{i}\right)$ must be equal to $(1 / 2)^{k}=\left(2^{-1}\right)^{k}=2^{-k}$

Information Content

- Information content of A_{i} : number of equiprobable yes/no questions required to uniquely determine that $x \in A_{i}$

Information Content

- Information content of A_{i} : number of equiprobable yes/no questions required to uniquely determine that $x \in A_{i}$
- The information content $I\left(A_{i}\right)$ of event A_{i} is therefore

$$
I\left(A_{i}\right)=\log _{2} \frac{1}{P\left(A_{i}\right)}
$$

Information Content

- Information content of A_{i} : number of equiprobable yes/no questions required to uniquely determine that $x \in A_{i}$
- The information content $I\left(A_{i}\right)$ of event A_{i} is therefore

$$
I\left(A_{i}\right)=\log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- e.g., $I\left(A_{1}\right)=1, I\left(A_{2}\right)=2, I\left(A_{3}\right)=3, I\left(A_{4}\right)=3$

Properties of Information Content

- Probability and information content are inversely related

Properties of Information Content

- Probability and information content are inversely related
- Use of log means information content is additive

Properties of Information Content

- Probability and information content are inversely related
- Use of log means information content is additive

$$
\begin{aligned}
I(A \cap B) & =\log _{2} \frac{1}{P(A \cap B)} \\
& =\log _{2} \frac{1}{P(A) P(B \mid A)}=I(A)+I(B \mid A)
\end{aligned}
$$

Units of Information Content

- For any event A_{i}, the corresponding sequence of yes/no answers is a unique bit string that identifies A_{i}

Units of Information Content

- For any event A_{i}, the corresponding sequence of yes/no answers is a unique bit string that identifies A_{i}
- e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$

Units of Information Content

- For any event A_{i}, the corresponding sequence of yes/no answers is a unique bit string that identifies A_{i}
- e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$
- More probable events are identified via fewer equiprobable yes/no questions (i.e., shorter bit strings) while less probable events require more questions (i.e., longer bit strings)

Units of Information Content

- For any event A_{i}, the corresponding sequence of yes/no answers is a unique bit string that identifies A_{i}
- e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$
- More probable events are identified via fewer equiprobable yes/no questions (i.e., shorter bit strings) while less probable events require more questions (i.e., longer bit strings)
- Information content is therefore measured in bits

Examples of Information Content

- e.g., $P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$
- e.g., $P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 4$
- e.g., $P\left(A_{1}\right)=1 / 2, P\left(A_{2}\right)=3 / 8, P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 16$
- e.g., $P\left(A_{1}\right)=1, P\left(A_{2}\right)=P\left(A_{3}\right)=P\left(A_{4}\right)=0$

Entropy

- Entropy: average information content of a set of n disjoint, mutually exclusive events A_{1}, \ldots, A_{n} that partition Ω

$$
H\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \log _{2} \frac{1}{P\left(A_{i}\right)}
$$

Entropy

- Entropy: average information content of a set of n disjoint, mutually exclusive events A_{1}, \ldots, A_{n} that partition Ω

$$
H\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- Average number of equiprobable yes/no questions required to uniquely determine that outcome x is in any event A_{i}

Entropy

- Entropy: average information content of a set of n disjoint, mutually exclusive events A_{1}, \ldots, A_{n} that partition Ω

$$
H\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- Average number of equiprobable yes/no questions required to uniquely determine that outcome x is in any event A_{i}
- Measure of uncertainty of the entire set of events

Examples of Entropy

- e.g., $P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$
- e.g., $P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 4$
- e.g., $P\left(A_{1}\right)=1 / 2, P\left(A_{2}\right)=3 / 8, P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 16$
- e.g., $P\left(A_{1}\right)=1, P\left(A_{2}\right)=P\left(A_{3}\right)=0$

Information Rate

- Suppose we have some encoding of events A_{1}, \ldots, A_{n} such that each event A_{i} is represented using $L\left(A_{i}\right)$ bits

Information Rate

- Suppose we have some encoding of events A_{1}, \ldots, A_{n} such that each event A_{i} is represented using $L\left(A_{i}\right)$ bits
- Information rate: average number of bits per event

$$
R\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) L\left(A_{i}\right)
$$

Information Rate

- Suppose we have some encoding of events A_{1}, \ldots, A_{n} such that each event A_{i} is represented using $L\left(A_{i}\right)$ bits
- Information rate: average number of bits per event

$$
R\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) L\left(A_{i}\right)
$$

- Entropy $H\left(A_{1}, \ldots, A_{n}\right)$ is the best achievable (lowest possible) information rate if events must be uniquely encoded

Examples of Information Rate

- e.g., suppose $P\left(A_{1}\right)=1 / 2, P\left(A_{2}\right)=1 / 4$, $P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 8$, what is the information rate of $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=10$?

Examples of Information Rate

- e.g., suppose $P\left(A_{1}\right)=1 / 2, P\left(A_{2}\right)=1 / 4$, $P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 8$, what is the information rate of $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=10$?
- e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$?

Examples of Information Rate

- e.g., suppose $P\left(A_{1}\right)=1 / 2, P\left(A_{2}\right)=1 / 4$, $P\left(A_{3}\right)=P\left(A_{4}\right)=1 / 8$, what is the information rate of $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=10$?
- e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$?
- e.g., $A_{1}=01, A_{2}=000, A_{3}=001, A_{4}=1$?

Representing (Encoding) Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$

Representing (Encoding) Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities

Representing (Encoding) Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities
- Variable length codes: use different number of bits to encode each event, e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$

Representing (Encoding) Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities
- Variable length codes: use different number of bits to encode each event, e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$
- Optimal for events with unequal probabilities

Communicating Perfectly

Transmitting Information

- Goal: transmit one of n messages, encoded in binary

Transmitting Information

- Goal: transmit one of n messages, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

Transmitting Information

- Goal: transmit one of n messages, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

Transmitting Information

- Goal: transmit one of n messages, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme
[Got to here in class...]

Examples of Error Probability

- e.g., 8 events represented as $000,001,010, \ldots 111$, probability of a single bit flip is $1 / 10$, what is the error probability?

Encoding with Redundancy

- Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission

Encoding with Redundancy

- Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes

Encoding with Redundancy

- Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Error-Detecting Codes: Parity Check

- Append a parity bit to each binary string such that every binary string always contains an even number of ones

Error-Detecting Codes: Parity Check

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, $\ldots, 1100,1111$

Error-Detecting Codes: Parity Check

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped

Error-Detecting Codes: Parity Check

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, ... , 1100, 1111
- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped

Examples of Parity Check Codes

- e.g., 8 events represented as $0000,0011, \ldots, 1111$, probability of a single bit flip is $1 / 10$, what is the error probability?

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due on Friday
- IMPORTANT: check you can log into the EdLab in preparation for next week's homework

