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Reminders

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Third homework is due on Friday

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/


Information Theory



Communication

I Communication: representing and transmitting information

I “The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point.” — Claude Shannon

I Information theory: the math behind this
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Uses of Information Theory

I Measuring information content

I Compressing data (e.g., images, video, text, etc.)

I Communicating without errors over noisy, imperfect
communication channels (e.g., phone lines, disk drives, etc.)
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Information Content



Probability and Information: Intuition

I Probability and information content are inversely related

I Less probable events have a greater information content

I The more certain you are that some event will occur, the less
information you gain by knowing that it did indeed occur

I e.g., sun rising vs. professor making a TurBacHenDuckEn
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Desirable Properties of Information Content

I If P(A) = 1 and P(Ac) = 0, the information gained by
learning that the outcome x is in A should be zero and the
information gained by learning that x ∈ Ac should be infinite

I If P(A) = P(Ac) = 1 / 2, we are maximally uncertain about
the outcome and we should gain one unit of information by
learning that the event is in A and similarly for Ac
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Asking Informative Questions

I If A1, . . . ,An have probabilities P(A1), . . . ,P(An) and
partition Ω, how would you identify the event containing
outcome x using as few yes/no questions as possible?

I e.g., suppose n = 4 and P(Ai ) = 1 / 4 for i = 1, . . . , 4

I e.g., suppose n = 4 again but now we have P(A1) = 1 / 2,
P(A2) = 1 / 4, P(A3) = 1 / 8, and P(A4) = 1 / 8
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Asking Informative Questions

I Ask the questions that you will gain the most information
from regardless of the answer obtained, i.e., those questions
whose answers you have the most uncertainty about

I Ask the questions that will eliminate the most remaining
possibilities regardless of the answers obtained, i.e., those
questions that divide the remaining probability equally
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Asking Informative Questions

I Think of the equiprobable yes/no questions as defining a
(weighted, binary) tree with events A1, . . . ,An as leaves

I The depth of Ai is equal to the number of equiprobable
yes/no questions required to uniquely determine that x ∈ Ai

I Each yes/no question divides the remaining probability in half,
so we know that if event Ai is at depth k, its probability
P(Ai ) must be equal to (1 / 2)k = (2−1)k = 2−k
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Information Content

I Information content of Ai : number of equiprobable yes/no
questions required to uniquely determine that x ∈ Ai

I The information content I (Ai ) of event Ai is therefore

I (Ai ) = log2
1

P(Ai )

I e.g., I (A1) = 1, I (A2) = 2, I (A3) = 3, I (A4) = 3
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Properties of Information Content

I Probability and information content are inversely related

I Use of log means information content is additive

I (A ∩ B) = log2
1

P(A ∩ B)

= log2
1

P(A)P(B |A)
= I (A) + I (B |A)
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Units of Information Content

I For any event Ai , the corresponding sequence of yes/no
answers is a unique bit string that identifies Ai

I e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I More probable events are identified via fewer equiprobable
yes/no questions (i.e., shorter bit strings) while less probable
events require more questions (i.e., longer bit strings)

I Information content is therefore measured in bits
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Examples of Information Content

I e.g., P(A1) = P(A2) = 1 / 2

I e.g., P(A1) = P(A2) = P(A3) = P(A4) = 1 / 4
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Entropy

I Entropy: average information content of a set of n disjoint,
mutually exclusive events A1, . . . ,An that partition Ω

H(A1, . . . ,An) =
n∑

i=1

P(Ai ) log2
1

P(Ai )

I Average number of equiprobable yes/no questions required to
uniquely determine that outcome x is in any event Ai

I Measure of uncertainty of the entire set of events
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Examples of Entropy

I e.g., P(A1) = P(A2) = 1 / 2

I e.g., P(A1) = P(A2) = P(A3) = P(A4) = 1 / 4
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Information Rate

I Suppose we have some encoding of events A1, . . . ,An such
that each event Ai is represented using L(Ai ) bits

I Information rate: average number of bits per event

R(A1, . . . ,An) =
n∑

i=1

P(Ai ) L(Ai )

I Entropy H(A1, . . . ,An) is the best achievable (lowest possible)
information rate if events must be uniquely encoded
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Examples of Information Rate

I e.g., suppose P(A1) = 1 / 2, P(A2) = 1 / 4,
P(A3) = P(A4) = 1 / 8, what is the information rate of
A1 = 11, A2 = 10, A3 = 01, A4 = 10?

I e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000?

I e.g., A1 = 01, A2 = 000, A3 = 001, A4 = 1?
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Representing (Encoding) Events

I Fixed length codes: use same number of bits to encode each
event, e.g., A1 = 11, A2 = 10, A3 = 01, A4 = 00

I Optimal for events with equal probabilities

I Variable length codes: use different number of bits to encode
each event, e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I Optimal for events with unequal probabilities
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Communicating Perfectly



Transmitting Information

I Goal: transmit one of n messages, encoded in binary

I Want to make sure the correct message is received even if
there are transmission errors (e.g., static, disk failure, ...)

I Probability of a single bit being flipped is p

I Error probability: overall probability of there being an
undetected error when using some encoding scheme
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[Got to here in class...]



Examples of Error Probability

I e.g., 8 events represented as 000, 001, 010, . . . 111, probability
of a single bit flip is 1 / 10, what is the error probability?



Encoding with Redundancy

I Can use additional bits when encoding messages to ensure
that they are “protected” against errors in transmission

I Error detecting codes vs. error correcting codes

I Fundamental trade-off: want encoding schemes that minimize
both the error probability and the information rate
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Error-Detecting Codes: Parity Check

I Append a parity bit to each binary string such that every
binary string always contains an even number of ones

I e.g., 0000, 0011, 0101, . . . , 1100, 1111

I Can detect error if an odd number of bits get flipped

I Cannot detect error if an even number of bits get flipped
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Examples of Parity Check Codes

I e.g., 8 events represented as 0000, 0011, . . . , 1111, probability
of a single bit flip is 1 / 10, what is the error probability?



For Next Time

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Third homework is due on Friday

I IMPORTANT: check you can log into the EdLab in
preparation for next week’s homework

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/

