CMPSCI 240: "Reasoning Under Uncertainty" Lecture 9

Prof. Hanna Wallach wallach@cs.umass.edu

February 21, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due on Friday

Information Theory

Communication

Communication: representing and transmitting information

Communication

- Communication: representing and transmitting information
- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." — Claude Shannon

Communication

- Communication: representing and transmitting information
- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." — Claude Shannon
- Information theory: the math behind this

Uses of Information Theory

Measuring information content

Uses of Information Theory

- Measuring information content
- Compressing data (e.g., images, video, text, etc.)

Uses of Information Theory

- Measuring information content
- Compressing data (e.g., images, video, text, etc.)
- Communicating without errors over noisy, imperfect communication channels (e.g., phone lines, disk drives, etc.)

Probability and information content are inversely related

- Probability and information content are inversely related
- Less probable events have a greater information content

- Probability and information content are inversely related
- Less probable events have a greater information content
- The more certain you are that some event will occur, the less information you gain by knowing that it did indeed occur

- Probability and information content are inversely related
- Less probable events have a greater information content
- The more certain you are that some event will occur, the less information you gain by knowing that it did indeed occur
- e.g., sun rising vs. professor making a TurBacHenDuckEn

Desirable Properties of Information Content

If P(A) = 1 and P(A^c) = 0, the information gained by learning that the outcome x is in A should be zero and the information gained by learning that x ∈ A^c should be infinite

Desirable Properties of Information Content

- If P(A) = 1 and P(A^c) = 0, the information gained by learning that the outcome x is in A should be zero and the information gained by learning that x ∈ A^c should be infinite
- ► If P(A) = P(A^c) = 1 / 2, we are maximally uncertain about the outcome and we should gain one unit of information by learning that the event is in A and similarly for A^c

If A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?

If A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?

• e.g., suppose
$$n = 4$$
 and $P(A_i) = 1/4$ for $i = 1, \dots, 4$

If A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, how would you identify the event containing outcome x using as few yes/no questions as possible?

• e.g., suppose
$$n = 4$$
 and $P(A_i) = 1/4$ for $i = 1, \dots, 4$

• e.g., suppose n = 4 again but now we have $P(A_1) = 1/2$, $P(A_2) = 1/4$, $P(A_3) = 1/8$, and $P(A_4) = 1/8$

Ask the questions that you will gain the most information from regardless of the answer obtained, i.e., those questions whose answers you have the most uncertainty about

- Ask the questions that you will gain the most information from regardless of the answer obtained, i.e., those questions whose answers you have the most uncertainty about
- Ask the questions that will eliminate the most remaining possibilities regardless of the answers obtained, i.e., those questions that divide the remaining probability equally

Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A₁,..., A_n as leaves

- Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A₁,..., A_n as leaves
- ► The depth of A_i is equal to the number of equiprobable yes/no questions required to uniquely determine that x ∈ A_i

- Think of the equiprobable yes/no questions as defining a (weighted, binary) tree with events A₁,..., A_n as leaves
- ► The depth of A_i is equal to the number of equiprobable yes/no questions required to uniquely determine that x ∈ A_i
- ► Each yes/no question divides the remaining probability in half, so we know that if event A_i is at depth k, its probability P(A_i) must be equal to (1/2)^k = (2⁻¹)^k = 2^{-k}

► Information content of A_i: number of equiprobable yes/no questions required to uniquely determine that x ∈ A_i

- ► Information content of A_i: number of equiprobable yes/no questions required to uniquely determine that x ∈ A_i
- The information content $I(A_i)$ of event A_i is therefore

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

- Information content of A_i: number of equiprobable yes/no questions required to uniquely determine that x ∈ A_i
- The information content $I(A_i)$ of event A_i is therefore

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

• e.g.,
$$I(A_1) = 1$$
, $I(A_2) = 2$, $I(A_3) = 3$, $I(A_4) = 3$

Properties of Information Content

Probability and information content are inversely related

Properties of Information Content

- Probability and information content are inversely related
- Use of log means information content is additive

Properties of Information Content

1

- Probability and information content are inversely related
- Use of log means information content is additive

$$(A \cap B) = \log_2 \frac{1}{P(A \cap B)}$$
$$= \log_2 \frac{1}{P(A) P(B \mid A)} = I(A) + I(B \mid A)$$

For any event A_i, the corresponding sequence of yes/no answers is a unique bit string that identifies A_i

- For any event A_i, the corresponding sequence of yes/no answers is a unique bit string that identifies A_i
- e.g., $A_1 = 1$, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$

- For any event A_i, the corresponding sequence of yes/no answers is a unique bit string that identifies A_i
- e.g., $A_1 = 1$, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$
- More probable events are identified via fewer equiprobable yes/no questions (i.e., shorter bit strings) while less probable events require more questions (i.e., longer bit strings)

- For any event A_i, the corresponding sequence of yes/no answers is a unique bit string that identifies A_i
- e.g., $A_1 = 1$, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$
- More probable events are identified via fewer equiprobable yes/no questions (i.e., shorter bit strings) while less probable events require more questions (i.e., longer bit strings)
- Information content is therefore measured in bits

Examples of Information Content

Entropy: average information content of a set of n disjoint, mutually exclusive events A₁,..., A_n that partition Ω

$$H(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) \log_2 \frac{1}{P(A_i)}$$

Entropy

Entropy: average information content of a set of n disjoint, mutually exclusive events A₁,..., A_n that partition Ω

$$H(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i)\log_2\frac{1}{P(A_i)}$$

Average number of equiprobable yes/no questions required to uniquely determine that outcome x is in any event A_i

Entropy

Entropy: average information content of a set of n disjoint, mutually exclusive events A₁,..., A_n that partition Ω

$$H(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i)\log_2\frac{1}{P(A_i)}$$

- Average number of equiprobable yes/no questions required to uniquely determine that outcome x is in any event A_i
- Measure of uncertainty of the entire set of events

Examples of Entropy

Information Rate

Suppose we have some encoding of events A₁,..., A_n such that each event A_i is represented using L(A_i) bits

Information Rate

- Suppose we have some encoding of events A₁,..., A_n such that each event A_i is represented using L(A_i) bits
- Information rate: average number of bits per event

$$R(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) L(A_i)$$

Information Rate

- Suppose we have some encoding of events A₁,..., A_n such that each event A_i is represented using L(A_i) bits
- Information rate: average number of bits per event

$$R(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) L(A_i)$$

Entropy H(A₁,..., A_n) is the best achievable (lowest possible) information rate if events must be uniquely encoded

Examples of Information Rate

• e.g., suppose
$$P(A_1) = 1/2$$
, $P(A_2) = 1/4$,
 $P(A_3) = P(A_4) = 1/8$, what is the information rate of
 $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 10$?

Examples of Information Rate

• e.g., suppose
$$P(A_1) = 1/2$$
, $P(A_2) = 1/4$,
 $P(A_3) = P(A_4) = 1/8$, what is the information rate of
 $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 10$?

• e.g.,
$$A_1 = 1$$
, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$?

Examples of Information Rate

• e.g., suppose
$$P(A_1) = 1/2$$
, $P(A_2) = 1/4$,
 $P(A_3) = P(A_4) = 1/8$, what is the information rate of
 $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 10$?

• e.g.,
$$A_1 = 1$$
, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$?

• e.g.,
$$A_1 = 01$$
, $A_2 = 000$, $A_3 = 001$, $A_4 = 1$?

Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000
- Optimal for events with unequal probabilities

Communicating Perfectly

▶ Goal: transmit one of *n* messages, encoded in binary

- ▶ Goal: transmit one of *n* messages, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

- ▶ Goal: transmit one of *n* messages, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

- ▶ Goal: transmit one of *n* messages, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme

[Got to here in class...]

Examples of Error Probability

e.g., 8 events represented as 000, 001, 010, ... 111, probability of a single bit flip is 1 / 10, what is the error probability?

Encoding with Redundancy

Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission

Encoding with Redundancy

- Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes

Encoding with Redundancy

- Can use additional bits when encoding messages to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Append a parity bit to each binary string such that every binary string always contains an even number of ones

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped

- Append a parity bit to each binary string such that every binary string always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped

Examples of Parity Check Codes

e.g., 8 events represented as 0000, 0011, ..., 1111, probability of a single bit flip is 1 / 10, what is the error probability?

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due on Friday
- IMPORTANT: check you can log into the EdLab in preparation for next week's homework