CMPSCI 240: "Reasoning Under Uncertainty"

 Lecture 10Prof. Hanna Wallach
wallach@cs.umass.edu

February 23, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework

Recap

Information Theory

- Probability and information content are inversely related

Last Time: Information Content

- If events A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, the information content $I\left(A_{i}\right)$ of event A_{i} is

$$
I\left(A_{i}\right)=\log _{2} \frac{1}{P\left(A_{i}\right)}
$$

Last Time: Information Content

- If events A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, the information content $I\left(A_{i}\right)$ of event A_{i} is

$$
I\left(A_{i}\right)=\log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that $x \in A_{i}$

Last Time: Information Content

- If events A_{1}, \ldots, A_{n} have probabilities $P\left(A_{1}\right), \ldots, P\left(A_{n}\right)$ and partition Ω, the information content $I\left(A_{i}\right)$ of event A_{i} is

$$
I\left(A_{i}\right)=\log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that $x \in A_{i}$
- Additive: $I(A \cap B)=I(A)+I(B \mid A)=I(B)+I(A \mid B)$

Last Time: Entropy

- Entropy: average information content of a set of n disjoint, mutually exclusive events A_{1}, \ldots, A_{n} that partition Ω

$$
H\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \log _{2} \frac{1}{P\left(A_{i}\right)}
$$

Last Time: Entropy

- Entropy: average information content of a set of n disjoint, mutually exclusive events A_{1}, \ldots, A_{n} that partition Ω

$$
H\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \log _{2} \frac{1}{P\left(A_{i}\right)}
$$

- Measure of uncertainty of the entire set of events: maximized when events are equiprobable, e.g., $P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$

Last Time: Information Rate

- Suppose A_{1}, \ldots, A_{n} are encoded using $L\left(A_{1}\right), \ldots, L\left(A_{n}\right)$ bits, the information rate is the average number of bits per event

$$
R\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) L\left(A_{i}\right)
$$

Last Time: Information Rate

- Suppose A_{1}, \ldots, A_{n} are encoded using $L\left(A_{1}\right), \ldots, L\left(A_{n}\right)$ bits, the information rate is the average number of bits per event

$$
R\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) L\left(A_{i}\right)
$$

- Entropy $H\left(A_{1}, \ldots, A_{n}\right)$ is the best achievable (lowest possible) information rate if events must be uniquely encoded

Last Time: Representing Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$

Last Time: Representing Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities

Last Time: Representing Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities
- Variable length codes: use different number of bits to encode each event, e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$

Last Time: Representing Events

- Fixed length codes: use same number of bits to encode each event, e.g., $A_{1}=11, A_{2}=10, A_{3}=01, A_{4}=00$
- Optimal for events with equal probabilities
- Variable length codes: use different number of bits to encode each event, e.g., $A_{1}=1, A_{2}=01, A_{3}=001, A_{4}=000$
- Optimal for events with unequal probabilities

Compression

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$
- Goal: represent messages using as few bits as possible

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$
- Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$
- Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^{k} events

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$
- Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^{k} events
- Variable length code: short bit strings for probable events

Compression

- Message: sequence of events, e.g., $A_{1} A_{1} A_{3} A_{1} A_{2} A_{4}$
- Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^{k} events
- Variable length code: short bit strings for probable events
- Compression limit: determined by entropy

Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes

Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_{1}=0, A_{2}=00, A_{3}=000$, what's 0000 ?

Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_{1}=0, A_{2}=00, A_{3}=000$, what's 0000?
- e.g., $A_{1}=0, A_{2}=01, A_{3}=011$, what's 00 ?

Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_{1}=0, A_{2}=00, A_{3}=000$, what's 0000?
- e.g., $A_{1}=0, A_{2}=01, A_{3}=011$, what's 00 ?
- Prefix code: no "code word" is a prefix of any other

Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_{1}=0, A_{2}=00, A_{3}=000$, what's 0000?
- e.g., $A_{1}=0, A_{2}=01, A_{3}=011$, what's 00 ?
- Prefix code: no "code word" is a prefix of any other
- e.g., $A_{1}=0, A_{2}=10, A_{3}=110, A_{4}=111$

Prefix Codes and Binary Trees

- Consider a binary tree with events A_{1}, \ldots, A_{n} as leaves

Prefix Codes and Binary Trees

- Consider a binary tree with events A_{1}, \ldots, A_{n} as leaves
- Encode each event A_{i} as the unique bit string that identifies A_{i} (i.e., represents the path from the root to A_{i})

Prefix Codes and Binary Trees

- Consider a binary tree with events A_{1}, \ldots, A_{n} as leaves
- Encode each event A_{i} as the unique bit string that identifies A_{i} (i.e., represents the path from the root to A_{i})
- Any code constructed this way will be a prefix code

Prefix Codes and Binary Trees

- Consider a binary tree with events A_{1}, \ldots, A_{n} as leaves
- Encode each event A_{i} as the unique bit string that identifies A_{i} (i.e., represents the path from the root to A_{i})
- Any code constructed this way will be a prefix code
- But not necessarily optimal (information rate \geq entropy)

Optimal Prefix Codes

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Goal: prefix code with information rate $=$ entropy $=1.93$

Optimal Prefix Codes

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Goal: prefix code with information rate $=$ entropy $=1.93$
- We've (kind of) seen this already...

Optimal Prefix Codes

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Goal: prefix code with information rate $=$ entropy $=1.93$
- We've (kind of) seen this already...
- A balanced binary tree \Longrightarrow shorter code words

Building Prefix Codes

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Top-down construction: build the tree from the root down

Building Prefix Codes

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Top-down construction: build the tree from the root down
- Does not nessarily result in an optimal prefix code:

$$
H\left(A_{1}, \ldots, A_{n}\right) \leq R\left(A_{1}, \ldots, A_{n}\right) \leq H\left(A_{1}, \ldots, A_{n}\right)+2
$$

Huffman Coding

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Bottom-up construction: build the tree from the leaves up

Huffman Coding

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Bottom-up construction: build the tree from the leaves up
- Upper bound on information rate is better:

$$
H\left(A_{1}, \ldots, A_{n}\right) \leq R\left(A_{1}, \ldots, A_{n}\right)<H\left(A_{1}, \ldots, A_{n}\right)+1
$$

Huffman Coding

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
$P\left(A_{i}\right)$	0.01	0.24	0.05	0.20	0.47	0.01	0.02

- Bottom-up construction: build the tree from the leaves up
- Upper bound on information rate is better:

$$
H\left(A_{1}, \ldots, A_{n}\right) \leq R\left(A_{1}, \ldots, A_{n}\right)<H\left(A_{1}, \ldots, A_{n}\right)+1
$$

- Can prove this is optimal for a prefix code
[Got to here in class...]

Communicating Perfectly

Transmitting Information

- Goal: transmit some message, encoded in binary

Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme

Examples of Error Probability

- e.g., 8 events represented as $000,001,010, \ldots 111$, probability of a single bit flip is $1 / 10$, what is the error probability?

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones

Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111

Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped

Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped

Examples of Parity Check Codes

- e.g., 8 events represented as $0000,0011, \ldots, 1111$, probability of a single bit flip is $1 / 10$, what is the error probability?

Hamming Distance

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other

Hamming Distance

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other

Hamming Distance

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011

Hamming Distance

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011
- Can only detect odd number of bit flips, can't correct errors

Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as $0000,0001, \ldots, 1111$

Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as $0000,0001, \ldots, 1111$
- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as $0000,0001, \ldots, 1111$
- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

- e.g., what do 0000, 0001, ..., 0101, ..., 1111 become?

Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3

Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected

Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word

Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word
- 2 bit flips can be detected using a global parity bit $\Longrightarrow 8 / 4$

Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles

Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)

Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1

Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?

Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
- If so, flipping this bit accounts for the parity violation

Examples of Decoding 7/4 Hamming Codes

- e.g., suppose 1000101 was transmitted but a) 1000001 , b) $1 \underline{100101, ~ c) ~} 1010101$, d) $10 \underline{10100}$ were received?

Examples of Error Probability

- e.g., 16 events represented as 0000, 0001, ... 1111, probability of a single bit flip is $1 / 10$, what is the error probability?

Examples of Error Probability

- e.g., 16 events now represented as 0000000, 0001011, ..., 1111111, now what is the error probability?

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework

