CMPSCI 240: "Reasoning Under Uncertainty" Lecture 10

Prof. Hanna Wallach wallach@cs.umass.edu

February 23, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework

Recap

Information Theory

Probability and information content are inversely related

Last Time: Information Content

 If events A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, the information content I(A_i) of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

Last Time: Information Content

If events A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, the information content I(A_i) of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that x ∈ A_i

Last Time: Information Content

If events A₁,..., A_n have probabilities P(A₁),..., P(A_n) and partition Ω, the information content I(A_i) of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

- ► Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that x ∈ A_i
- Additive: $I(A \cap B) = I(A) + I(B | A) = I(B) + I(A | B)$

Last Time: Entropy

Entropy: average information content of a set of n disjoint, mutually exclusive events A₁,..., A_n that partition Ω

$$H(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) \log_2 \frac{1}{P(A_i)}$$

Last Time: Entropy

Entropy: average information content of a set of n disjoint, mutually exclusive events A₁,..., A_n that partition Ω

$$H(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) \log_2 \frac{1}{P(A_i)}$$

► Measure of uncertainty of the entire set of events: maximized when events are equiprobable, e.g., P(A₁) = P(A₂) = 1/2

Last Time: Information Rate

Suppose A₁,..., A_n are encoded using L(A₁),..., L(A_n) bits, the information rate is the average number of bits per event

$$R(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) L(A_i)$$

Last Time: Information Rate

Suppose A₁,..., A_n are encoded using L(A₁),..., L(A_n) bits, the information rate is the average number of bits per event

$$R(A_1,\ldots,A_n)=\sum_{i=1}^n P(A_i) L(A_i)$$

Entropy H(A₁,..., A_n) is the best achievable (lowest possible) information rate if events must be uniquely encoded

Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000
- Optimal for events with unequal probabilities

• Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$

- Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- ► Goal: represent messages using as few bits as possible

- Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- ► Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable

- Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- ► Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^k events

- Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- ► Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^k events
- Variable length code: short bit strings for probable events

- Message: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- Goal: represent messages using as few bits as possible
- Compressed messages must be uniquely decodeable
- Simplest binary code: fixed length, k bits to encode 2^k events
- Variable length code: short bit strings for probable events
- Compression limit: determined by entropy

Decompressing messages is hard for variable-length codes

- Decompressing messages is hard for variable-length codes
- ▶ e.g., A₁ = 0, A₂ = 00, A₃ = 000, what's 0000?

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0$, $A_2 = 00$, $A_3 = 000$, what's 0000?
- ▶ e.g., A₁ = 0, A₂ = 01, A₃ = 011, what's 00?

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0$, $A_2 = 00$, $A_3 = 000$, what's 0000?
- e.g., $A_1 = 0$, $A_2 = 01$, $A_3 = 011$, what's 00?
- Prefix code: no "code word" is a prefix of any other

- Decompressing messages is hard for variable-length codes
- ▶ e.g., A₁ = 0, A₂ = 00, A₃ = 000, what's 0000?
- e.g., $A_1 = 0$, $A_2 = 01$, $A_3 = 011$, what's 00?
- Prefix code: no "code word" is a prefix of any other
- ▶ e.g., *A*₁ = 0, *A*₂ = 10, *A*₃ = 110, *A*₄ = 111

• Consider a binary tree with events A_1, \ldots, A_n as leaves

- Consider a binary tree with events A_1, \ldots, A_n as leaves
- Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i)

- Consider a binary tree with events A_1, \ldots, A_n as leaves
- Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i)
- Any code constructed this way will be a prefix code

- Consider a binary tree with events A_1, \ldots, A_n as leaves
- Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i)
- Any code constructed this way will be a prefix code
- But not necessarily optimal (information rate ≥ entropy)

Optimal Prefix Codes

▶ Goal: prefix code with information rate = entropy = 1.93

Optimal Prefix Codes

- ▶ Goal: prefix code with information rate = entropy = 1.93
- We've (kind of) seen this already...

Optimal Prefix Codes

- ▶ Goal: prefix code with information rate = entropy = 1.93
- We've (kind of) seen this already...
- ► A balanced binary tree ⇒ shorter code words

Building Prefix Codes

Top-down construction: build the tree from the root down

Building Prefix Codes

- Top-down construction: build the tree from the root down
- Does not nessarily result in an optimal prefix code:

$$H(A_1,\ldots,A_n) \leq R(A_1,\ldots,A_n) \leq H(A_1,\ldots,A_n) + 2$$

Huffman Coding

Bottom-up construction: build the tree from the leaves up

Huffman Coding

Bottom-up construction: build the tree from the leaves up
Upper bound on information rate is better:

$$H(A_1,\ldots,A_n) \leq R(A_1,\ldots,A_n) < H(A_1,\ldots,A_n) + 1$$

Huffman Coding

Bottom-up construction: build the tree from the leaves up
Upper bound on information rate is better:

$$H(A_1,\ldots,A_n) \leq R(A_1,\ldots,A_n) < H(A_1,\ldots,A_n) + 1$$

Can prove this is optimal for a prefix code

[Got to here in class...]

Communicating Perfectly

► Goal: transmit some message, encoded in binary

- ► Goal: transmit some message, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

- Goal: transmit some message, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme

Examples of Error Probability

e.g., 8 events represented as 000, 001, 010, ... 111, probability of a single bit flip is 1 / 10, what is the error probability?

Encoding with Redundancy

Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Append a parity bit to each code word such that every code word always contains an even number of ones

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped

- Append a parity bit to each code word such that every code word always contains an even number of ones
- ▶ e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped

Examples of Parity Check Codes

e.g., 8 events represented as 0000, 0011, ..., 1111, probability of a single bit flip is 1 / 10, what is the error probability?

Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011
- Can only detect odd number of bit flips, can't correct errors

▶ e.g., 16 events represented as 0000, 0001, ..., 1111

- ▶ e.g., 16 events represented as 0000, 0001, ..., 1111
- Add 3 bits $t_5 t_6 t_7$ to each code word $s_1 s_2 s_3 s_4$ such that

$$t_5 = s_1 + s_2 + s_3 \pmod{2}$$

$$t_6 = s_2 + s_3 + s_4 \pmod{2}$$

$$t_7 = s_3 + s_4 + s_1 \pmod{2}$$

- e.g., 16 events represented as 0000, 0001, ..., 1111
- Add 3 bits $t_5 t_6 t_7$ to each code word $s_1 s_2 s_3 s_4$ such that

$$t_5 = s_1 + s_2 + s_3 \pmod{2}$$

$$t_6 = s_2 + s_3 + s_4 \pmod{2}$$

$$t_7 = s_3 + s_4 + s_1 \pmod{2}$$

▶ e.g., what do 0000, 0001, ..., 0101, ..., 1111 become?

• Any two code words have a Hamming distance of \geq 3

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected
- \blacktriangleright \geq 2 bit flips will be corrected to the wrong code word

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected
- \blacktriangleright 2 bit flips will be corrected to the wrong code word
- ▶ 2 bit flips can be detected using a global parity bit \implies 8/4

Write the received code word in 3 overlapping circles

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
- If so, flipping this bit accounts for the parity violation

Examples of Decoding 7/4 Hamming Codes

e.g., suppose 1000101 was transmitted but a) 1000001, b) 1100101, c) 1010101, d) 1010100 were received?

Examples of Error Probability

e.g., 16 events represented as 0000, 0001, ... 1111, probability of a single bit flip is 1 / 10, what is the error probability?

Examples of Error Probability

e.g., 16 events now represented as 0000000, 0001011, ..., 11111111, now what is the error probability?

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework