CMPSCI 240: "Reasoning Under Uncertainty"

Lecture 12

Prof. Hanna Wallach
wallach@cs.umass.edu

March 1, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Fourth homework is due TOMORROW at 11:59pm

Recap

Last Time: Transmitting Information

- Goal: transmit some message, encoded in binary

Last Time: Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

Last Time: Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

Last Time: Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme

Last Time: Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission

Last Time: Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes, e.g., parity check codes

Last Time: Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes, e.g., parity check codes
- Error correcting codes, e.g., Hamming codes

Last Time: Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes, e.g., parity check codes
- Error correcting codes, e.g., Hamming codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Last Time: 7/4 Hamming Codes

Last Time: 7/4 Hamming Codes

- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

Last Time: 7/4 Hamming Codes

- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

- 1 bit flip can be detected and corrected

Last Time: 7/4 Hamming Codes

- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word

Last Time: 7/4 Hamming Codes

- Add 3 bits $t_{5} t_{6} t_{7}$ to each code word $s_{1} s_{2} s_{3} s_{4}$ such that

$$
\begin{aligned}
& t_{5}=s_{1}+s_{2}+s_{3}(\bmod 2) \\
& t_{6}=s_{2}+s_{3}+s_{4}(\bmod 2) \\
& t_{7}=s_{3}+s_{4}+s_{1}(\bmod 2)
\end{aligned}
$$

- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word
- 2 bit flips can be detected using a global parity bit $\Longrightarrow 8 / 4$

Last Time: Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles

Last Time: Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)

Last Time: Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1

Last Time: Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?

Last Time: Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
- If so, flipping this bit accounts for the parity violation

Correlation and Covariance

Covariance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Covariance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- Covariance of two random variables X and Y :

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Covariance

- Variance: $\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- Covariance of two random variables X and Y :

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

- e.g., what is $\operatorname{cov}(X, X)$?

Correlation

- Negative correlation: $\operatorname{cov}(X, Y)<0$

Correlation

- Negative correlation: $\operatorname{cov}(X, Y)<0$
- Implies that the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained the same experiment tend to have opposite sign

Correlation

- Negative correlation: $\operatorname{cov}(X, Y)<0$
- Implies that the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained the same experiment tend to have opposite sign
- Positive correlation: $\operatorname{cov}(X, Y)>0$

Correlation

- Negative correlation: $\operatorname{cov}(X, Y)<0$
- Implies that the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained the same experiment tend to have opposite sign
- Positive correlation: $\operatorname{cov}(X, Y)>0$
- Implies that the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the same sign

Independence and Correlation

- When $\operatorname{cov}(X, Y)=0, X$ and Y are uncorrelated

Independence and Correlation

- When $\operatorname{cov}(X, Y)=0, X$ and Y are uncorrelated
- If X and Y are independent, what is $\operatorname{cov}(X, Y)$?

Independence and Correlation

- When $\operatorname{cov}(X, Y)=0, X$ and Y are uncorrelated
- If X and Y are independent, what is $\operatorname{cov}(X, Y)$?
- If $\operatorname{cov}(X, Y)=0$, are necessarily X and Y independent?

Examples of Independence and Correlation

- e.g., suppose the pair of random variables (X, Y) take on values $(0,0),(0,1),(1,0)$, and $(1,1)$ each with probability $1 / 4$. What is the joint PMF of X and Y ? What is the marginal PMF of X ? What is the marginal PMF of Y ? What are $\mathbb{E}[X]$ and $\mathbb{E}[Y]$? What is the covariance of X and Y ?

Correlation Coefficient

- The correlation coefficient of random variables X and Y is

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

Correlation Coefficient

- The correlation coefficient of random variables X and Y is

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- What is $\rho(X, X)$? What about $\rho(X,-X)$?

Correlation Coefficient

- The correlation coefficient of random variables X and Y is

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- What is $\rho(X, X)$? What about $\rho(X,-X)$?
- What is $\rho(X, Y)$ if X and Y are independent?

Interpreting the Correlation Coefficient

- If $\rho>0$, the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the same sign

Interpreting the Correlation Coefficient

- If $\rho>0$, the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the same sign
- If $\rho<0$, the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the opposite sign

Interpreting the Correlation Coefficient

- If $\rho>0$, the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the same sign
- If $\rho<0$, the values of $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ obtained in the same experiment tend to have the opposite sign
- $|\rho|$ is a measure of how true this is

Examples of the Correlation Coefficient

- e.g., consider n independent coin flips, where p is the probability of heads. Let X and Y be the number of heads and tails. What is $X+Y$? What about $\mathbb{E}[X+Y]$? What does this tell us about the relationship between $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$? What is $\operatorname{cov}(X, Y)$? What is $\rho(X, Y)$?

Variance of the Sum of Random Variables

- In general, for any $X_{1}, X_{2}, \ldots, X_{n}$

$$
\operatorname{var}\left(X_{1}+\ldots+X_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j) \mid i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Variance of the Sum of Random Variables

- In general, for any $X_{1}, X_{2}, \ldots, X_{n}$

$$
\operatorname{var}\left(X_{1}+\ldots+X_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j) \mid i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

- What if $X_{1}, X_{2}, \ldots, X_{n}$ are independent?

Causation

Correlation Does Not Imply Causation

- X might cause Y (i.e., causation)

Correlation Does Not Imply Causation

- X might cause Y (i.e., causation)
- Y might cause X (i.e., reverse causation)

Correlation Does Not Imply Causation

- X might cause Y (i.e., causation)
- Y might cause X (i.e., reverse causation)
- Z might cause X and Y (i.e., common cause)

Correlation Does Not Imply Causation

- X might cause Y (i.e., causation)
- Y might cause X (i.e., reverse causation)
- Z might cause X and Y (i.e., common cause)
- Some combination of these (e.g., self-reinforcing)

Correlation Does Not Imply Causation

- X might cause Y (i.e., causation)
- Y might cause X (i.e., reverse causation)
- Z might cause X and Y (i.e., common cause)
- Some combination of these (e.g., self-reinforcing)
- "Relationship" is a coincidence or very complex/indirect...

Correlation vs. Coincidence

Correlation vs. Coincidence

Correlation vs. Coincidence

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Fourth homework is due TOMORROW at 11:59pm

