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Recap



Hypothesis Testing

I Let D be the event that we have observed some data, e.g., D
= observed an email containing “ca$h” and “viagra”

I Let H1, . . . ,Hk be disjoint, exhaustive events representing
hypotheses that we want to choose between, e.g., H1 = event
that email is spam, H2 = event that email is not spam

I How do we use D to decide which hypothesis is most likely?
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Bayesian Reasoning (Recap)

I If we have k disjoint, exhaustive hypotheses H1, . . . ,Hk (e.g.,
spam, not spam) and some observed data D (e.g., certain
words in an email), we can use Bayes’ theorem to compute
the conditional probability P(Hi |D) of hypothesis Hi

(i = 1, . . . , k) given D:

P(Hi |D) =
P(D |Hi )P(Hi )

P(D)

where

P(D) =
k∑

i=1

P(Hi )P(D |Hi )
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Choosing the “Best” Hypothesis (Recap)

I Sometimes we have all those pieces of information, sometimes
we don’t.

I There are two ways to pick the “best” hypothesis, depending
on what information we have available.



Maximum Likelihood (Recap)

Definition
The maximum likelihood hypothesis HML for observed data D is
the hypothesis Hi (i = 1, . . . , k) that maximizes the likelihood:

HML = argmax
i

P(D |Hi )

The maximum likelihood hypothesis HML is the hypothesis that
assigns the highest probability to the observed data D

How to use it: compute the P(D |Hi ) for all i = 1, . . . , k
hypotheses and then select the hypothesis with the greatest value
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Maximum A Posteriori (MAP) Hypothesis

Definition
The MAP hypothesis HMAP for observed data D is the hypothesis
Hi (i = 1, . . . , k) that maximizes the posterior probability:

HMAP = argmax
i

P(Hi |D)

= argmax
i

P(D |Hi )P(Hi )

P(D)

∝ argmax
i

P(D |Hi )P(Hi )

The likelihoods are now weighted by the prior probabilities; unlikely
hypotheses are therefore downweighted accordingly.
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One Slide To Rule Them All

I The maximum likelihood hypothesis is the hypothesis that
assigns the highest probability to the observed data:

HML = argmax
i

P(D |Hi )

I The maximum a posteriori (MAP) hypothesis is the hypothesis
that that maximizes the posterior probability given D:

HMAP = argmax
i

P(Hi |D)

= argmax
i

P(D |Hi ) P(Hi )

P(D)

∝ argmax
i

P(D |Hi ) P(Hi )

I P(Hi ) is called the prior probability (or just prior).

I P(Hi |D) is called the posterior probability.



Example

A patient comes to visit Dr. Gregory House because they have a
cough. After insulting and belittling the patient, House consults
with his team of diagnosticians, who tell him that if a patient has a
cold, then there’s a 75% chance they will have a cough. But if a
patient has the Ebola virus, there’s a 80% chance they will have a
cough.

What is the maximum likelihood hypothesis for the diagnosis?



Example

After concluding the patient has Ebola, House fires all his
diagnosticians for their poor hypothesis testing skills and hires new
ones. This new team does some background research and discovers
if they are only going to consider the common cold and Ebola,
then before the symptoms are even considered, there’s a 1%
chance the patient has Ebola and a 99% chance they have a cold.

What is the MAP hypothesis for the diagnosis? What is the
posterior probability the patient has Ebola?



Combining Evidence Example

Suppose you’re a CS grad student and therefore work in a
windowless office. You want to know whether it’s raining outside.
The chance of rain is 70%. Your advisor walks in wearing his
raincoat. If it’s raining, there’s a 65% chance he’ll be wearing a
raincoat. Since he’s very unfashionable, there’s a 45% chance he’ll
be wearing his raincoat even if it’s not raining. Your officemate
walks in with wet hair. When it’s raining there’s a 90% chance her
hair will be wet. However, since she sometimes goes to the gym
before work, there’s a 40% chance her hair will be wet even if it’s
not raining. What’s the posterior probability that it’s raining?



Combining Evidence

I We can’t solve this problem because we don’t have any
information about the probability of your advisor wearing a
raincoat and your colleague having wet hair occurring
simultaneously.

I However, it is reasonable to assume that once we know
whether it is raining or not, those events are conditionally
independent of each other.

I This means P(C ∩W | R) = P(C | R) · P(W | R) (and
similarly for the complementary event combinations).
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Combining Evidence: Conditionally Independent Evidence

Definition
If we have k disjoint, exhaustive hypotheses H1, . . . ,Hk (e.g.,
rainy, dry) and m pieces of observed data that are conditionally
independent given a hypothesis D1, . . . ,Dm, then the posterior
probability P(Hi |D1 ∩ . . . ∩ Dm) of hypothesis Hi (i = 1, . . . , k)
given the observed data D1 ∩ . . . ∩ Dm is:

P(Hi |D1 ∩ . . . ∩ Dm) =

(∏m
j=1 P(Dj |Hi )

)
P(Hi )

P(D)

where
P(D) =

∑k
i=1 P(Hi )

(∏m
j=1 P(Dj |Hi )

)
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This Can Get You Into Trouble Sometimes

I Sally Clark was convicted in 1999 for the murder of her two
infant children. Her first baby died with no evidence of foul
play, so it was assumed sudden infant death syndrome (SIDS)
was to blame. However, she had a second child and that baby
also died. She was arrested for murder, tried, and convicted.



This Can Get You Into Trouble Sometimes

I The statistical evidence that the prosecution presented
reasoned the probability of two deaths from SIDS was equal
to the probability of a single death squared:

I P(D1 ∩ D2|SIDS) = P(D1|SIDS) · P(D2|SIDS)

I P(D1 ∩ D2|SIDS) = P(Death|SIDS)2 = very small.

I However, there is evidence that if a baby dies from SIDS, the
chances of it happening again are greatly increased.

I The prosecutor also argued that since P(D1 ∩ D2|SIDS) is
small, P(SIDS |D1 ∩ D2) was also small. This is a mistake
because it doesn’t take into account the prior probabilities of
SIDS (presumably small) and murder (probably smaller!).



This Can Get You Into Trouble Sometimes

I The statistical evidence that the prosecution presented
reasoned the probability of two deaths from SIDS was equal
to the probability of a single death squared:

I P(D1 ∩ D2|SIDS) = P(D1|SIDS) · P(D2|SIDS)

I P(D1 ∩ D2|SIDS) = P(Death|SIDS)2 = very small.

I However, there is evidence that if a baby dies from SIDS, the
chances of it happening again are greatly increased.

I The prosecutor also argued that since P(D1 ∩ D2|SIDS) is
small, P(SIDS |D1 ∩ D2) was also small. This is a mistake
because it doesn’t take into account the prior probabilities of
SIDS (presumably small) and murder (probably smaller!).



This Can Get You Into Trouble Sometimes

I The statistical evidence that the prosecution presented
reasoned the probability of two deaths from SIDS was equal
to the probability of a single death squared:

I P(D1 ∩ D2|SIDS) = P(D1|SIDS) · P(D2|SIDS)

I P(D1 ∩ D2|SIDS) = P(Death|SIDS)2 = very small.

I However, there is evidence that if a baby dies from SIDS, the
chances of it happening again are greatly increased.

I The prosecutor also argued that since P(D1 ∩ D2|SIDS) is
small, P(SIDS |D1 ∩ D2) was also small. This is a mistake
because it doesn’t take into account the prior probabilities of
SIDS (presumably small) and murder (probably smaller!).



This Can Get You Into Trouble Sometimes

I The statistical evidence that the prosecution presented
reasoned the probability of two deaths from SIDS was equal
to the probability of a single death squared:

I P(D1 ∩ D2|SIDS) = P(D1|SIDS) · P(D2|SIDS)

I P(D1 ∩ D2|SIDS) = P(Death|SIDS)2 = very small.

I However, there is evidence that if a baby dies from SIDS, the
chances of it happening again are greatly increased.

I The prosecutor also argued that since P(D1 ∩ D2|SIDS) is
small, P(SIDS |D1 ∩ D2) was also small. This is a mistake
because it doesn’t take into account the prior probabilities of
SIDS (presumably small) and murder (probably smaller!).



This Can Get You Into Trouble Sometimes

I The statistical evidence that the prosecution presented
reasoned the probability of two deaths from SIDS was equal
to the probability of a single death squared:

I P(D1 ∩ D2|SIDS) = P(D1|SIDS) · P(D2|SIDS)

I P(D1 ∩ D2|SIDS) = P(Death|SIDS)2 = very small.

I However, there is evidence that if a baby dies from SIDS, the
chances of it happening again are greatly increased.

I The prosecutor also argued that since P(D1 ∩ D2|SIDS) is
small, P(SIDS |D1 ∩ D2) was also small. This is a mistake
because it doesn’t take into account the prior probabilities of
SIDS (presumably small) and murder (probably smaller!).



Classifying Spam

I Suppose you have an email and you want to know if it’s spam

I In general the probability of an email being spam is 20%

I You can compute various “features” of the email, which you
can use as pieces of observed data, e.g., the presence of
particular words like viagra, cialis, cashcashcash, . . .

I You have access to a lot of previously-labeled emails

I How can you compute the probability that this email’s spam?
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More Formally...

I You have 2 disjoint, exhaustive hypotheses, spam and not
spam, and their associated priors, P(spam) and P(not spam)

I You have m pieces of observed data F1, . . . ,Fm

I If you assume F1, . . . ,Fm are conditionally independent given
the spam label, and you can compute P(Fj | spam) and
P(Fj | not spam), then

P(spam |F1 ∩ . . . ∩ Fm) =

(∏m
j=1 P(Fj | spam)

)
P(spam)

P(F1 ∩ . . . ∩ Fm)

I This equation is the basis of a näıve Bayes classifier
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