CMPSCI 240: "Reasoning Under Uncertainty"

Lecture 20x

Not-A-Prof. Phil Kirlin
pkirlin@cs.umass.edu

April 5, 2012

Bayesian Reasoning (Recap)

- The maximum likelihood hypothesis is the hypothesis that assigns the highest probability to the observed data:

$$
H^{\mathrm{ML}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right)
$$

- The maximum a posteriori (MAP) hypothesis is the hypothesis that that maximizes the posterior probability given D :

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(H_{i} \mid D\right) \\
& =\underset{i}{\operatorname{argmax}} \frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& \propto \underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- $P\left(H_{i}\right)$ is called the prior probability (or just prior).
- $P\left(H_{i} \mid D\right)$ is called the posterior probability.

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_{1} and D_{2} that are are conditionally independent given H_{i}, then the probability of $D_{1} \cap D_{2}$ given H_{i} is

$$
\begin{aligned}
P\left(D_{1} \cap D_{2} \mid H_{i}\right) & =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid D_{1}, H_{i}\right) \\
& =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid H_{i}\right)
\end{aligned}
$$

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_{1} and D_{2} that are are conditionally independent given H_{i}, then the probability of $D_{1} \cap D_{2}$ given H_{i} is

$$
\begin{aligned}
P\left(D_{1} \cap D_{2} \mid H_{i}\right) & =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid D_{1}, H_{i}\right) \\
& =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid H_{i}\right)
\end{aligned}
$$

If we have m conditionally independent pieces of data D_{1}, \ldots, D_{m}, then

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_{1} and D_{2} that are are conditionally independent given H_{i}, then the probability of $D_{1} \cap D_{2}$ given H_{i} is

$$
\begin{aligned}
P\left(D_{1} \cap D_{2} \mid H_{i}\right) & =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid D_{1}, H_{i}\right) \\
& =P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid H_{i}\right)
\end{aligned}
$$

If we have m conditionally independent pieces of data D_{1}, \ldots, D_{m}, then

$$
P\left(D_{1} \cap \ldots \cap D_{m} \mid H_{i}\right)=\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)
$$

Combining Evidence (Recap)

Definition
If we have k disjoint, exhaustive hypotheses H_{1}, \ldots, H_{k} (e.g., rainy, dry) and m conditionally independent pieces of observed data D_{1}, \ldots, D_{m}, then the posterior probability $P\left(H_{i} \mid D_{1} \cap \ldots \cap D_{m}\right)$ of hypothesis $H_{i}(i=1, \ldots, k)$ given the observed data $D_{1} \cap \ldots \cap D_{m}$ is:

Combining Evidence (Recap)

Definition

If we have k disjoint, exhaustive hypotheses H_{1}, \ldots, H_{k} (e.g., rainy, dry) and m conditionally independent pieces of observed data D_{1}, \ldots, D_{m}, then the posterior probability $P\left(H_{i} \mid D_{1} \cap \ldots \cap D_{m}\right)$ of hypothesis $H_{i}(i=1, \ldots, k)$ given the observed data $D_{1} \cap \ldots \cap D_{m}$ is:

$$
P\left(H_{i} \mid D_{1} \cap \ldots \cap D_{m}\right)=\frac{\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1} \cap \ldots \cap D_{m}\right)}
$$

where

Combining Evidence (Recap)

Definition

If we have k disjoint, exhaustive hypotheses H_{1}, \ldots, H_{k} (e.g., rainy, dry) and m conditionally independent pieces of observed data D_{1}, \ldots, D_{m}, then the posterior probability
$P\left(H_{i} \mid D_{1} \cap \ldots \cap D_{m}\right)$ of hypothesis $H_{i}(i=1, \ldots, k)$ given the observed data $D_{1} \cap \ldots \cap D_{m}$ is:

$$
P\left(H_{i} \mid D_{1} \cap \ldots \cap D_{m}\right)=\frac{\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1} \cap \ldots \cap D_{m}\right)}
$$

where

$$
P\left(D_{1} \cap \ldots \cap D_{m}\right)=\sum_{i=1}^{k}\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)
$$

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
- Spam filtering (classes: spam, not spam)

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
- Spam filtering (classes: spam, not spam)
- Handwriting recognition \& OCR (classes: one for each letter, number, or symbol)

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
- Spam filtering (classes: spam, not spam)
- Handwriting recognition \& OCR (classes: one for each letter, number, or symbol)
- Text classification, image classification, music classification, etc.

Classification

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
- Spam filtering (classes: spam, not spam)
- Handwriting recognition \& OCR (classes: one for each letter, number, or symbol)
- Text classification, image classification, music classification, etc.
- Almost any problem where you are assigning some sort of label to items can be set up as a classification task.

Classification

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.

Classification

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:

Classification

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
- The classes become the hypotheses that are being tested.

Classification

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
- The classes become the hypotheses that are being tested.
- The item being classified is turned into a collection of data called features. Useful features are attributes of the item that imply a strong connection to certain classes.

Classification

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
- The classes become the hypotheses that are being tested.
- The item being classified is turned into a collection of data called features. Useful features are attributes of the item that imply a strong connection to certain classes.
- The classification algorithm is typically either maximum likelihood or MAP, depending on what data we have available.

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email
- F_{3}, F_{3}^{c} : "cash" appears/does not appear in the email

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email
- F_{3}, F_{3}^{c} : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email
- F_{3}, F_{3}^{c} : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_{1}, F_{2}^{c}, and F_{3}.

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email
- F_{3}, F_{3}^{c} : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_{1}, F_{2}^{c}, and F_{3}.
- If we use the MAP rule for classification, we need to compute

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, notspam }\}}{\operatorname{argmax}} P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

Example: Spam Classification

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
- F_{1}, F_{1}^{c} : "Wallach" appears/does not appear in the email
- F_{2}, F_{2}^{c} : "viagra" appears/does not appear in the email
- F_{3}, F_{3}^{c} : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_{1}, F_{2}^{c}, and F_{3}.
- If we use the MAP rule for classification, we need to compute

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, notspam }\}}{\operatorname{argmax}} P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- But where do these probabilities come from?

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- How can we estimate $P($ spam $)$?

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- How can we estimate $P($ spam $)$?
- $P($ spam $)=\frac{\# \text { of emails labeled as spam }}{\# \text { of total emails }}$

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- How can we estimate $P($ spam $)$?
- $P($ spam $)=\frac{\# \text { of emails labeled as spam }}{\# \text { of total emails }}$
- How can we estimate $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$?

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- How can we estimate $P($ spam $)$?
- $P($ spam $)=\frac{\# \text { of emails labeled as spam }}{\# \text { of total emails }}$
- How can we estimate $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$?
- $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)=$ \# of emails labeled as spam with those exact features \# of total spam emails

Learning Probabilities From Data

- To use MAP, we need probabilities for $P\left(H_{i}\right)$; that is, $P($ spam $)$ and $P($ not spam $)$, as well as $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid H_{i}\right)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- How can we estimate $P($ spam $)$?
- $P($ spam $)=\frac{\# \text { of emails labeled as spam }}{\# \text { of total emails }}$
- How can we estimate $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$?
- $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)=$ \# of emails labeled as spam with those exact features \# of total spam emails
- Why is that last estimate going to be a problem?

Conditional Independence to the Rescue!

Conditional Independence to the Rescue!

- It is unlikely that we would ever have enough email to get a good estimate of $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$ using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.

Conditional Independence to the Rescue!

- It is unlikely that we would ever have enough email to get a good estimate of $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$ using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).

Conditional Independence to the Rescue!

- It is unlikely that we would ever have enough email to get a good estimate of $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$ using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- Therefore,
$P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)=$ $P\left(F_{1} \mid\right.$ spam $) \cdot P\left(F_{2}^{c} \mid\right.$ spam $) \cdot P\left(F_{3} \mid\right.$ spam $)$

Conditional Independence to the Rescue!

- It is unlikely that we would ever have enough email to get a good estimate of $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$ using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- Therefore,
$P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)=$
$P\left(F_{1} \mid\right.$ spam $) \cdot P\left(F_{2}^{c} \mid\right.$ spam $) \cdot P\left(F_{3} \mid\right.$ spam $)$
- Those probabilities are easier to get good estimates for!

Conditional Independence to the Rescue!

- It is unlikely that we would ever have enough email to get a good estimate of $P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)$ using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- Therefore,
$P\left(F_{1} \cap F_{2}^{c} \cap F_{3} \mid\right.$ spam $)=$
$P\left(F_{1} \mid\right.$ spam $) \cdot P\left(F_{2}^{c} \mid\right.$ spam $) \cdot P\left(F_{3} \mid\right.$ spam $)$
- Those probabilities are easier to get good estimates for!
- A classifier that makes this assumption is called a Naive Bayes classifier.

Learning Probabilities From Data

Learning Probabilities From Data

- How would we estimate $P\left(F_{1} \mid\right.$ spam $)$, or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)

Learning Probabilities From Data

- How would we estimate $P\left(F_{1} \mid\right.$ spam $)$, or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- $P\left(F_{1} \mid\right.$ spam $)=$
\# of emails labeled as spam containing the word Wallach
\# of total spam emails

Learning Probabilities From Data

- How would we estimate $P\left(F_{1} \mid\right.$ spam $)$, or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- $P\left(F_{1} \mid\right.$ spam $)=$
\# of emails labeled as spam containing the word Wallach
\# of total spam emails
- Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?

Learning Probabilities From Data

- How would we estimate $P\left(F_{1} \mid\right.$ spam $)$, or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- $P\left(F_{1} \mid\right.$ spam $)=$
\# of emails labeled as spam containing the word Wallach
\# of total spam emails
- Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?
- $P\left(F_{1} \mid\right.$ spam $)=$ \# of emails labeled as spam containing the word Wallach +1 \# of total spam emails +2

Learning Probabilities From Data

- How would we estimate $P\left(F_{1} \mid\right.$ spam $)$, or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- $P\left(F_{1} \mid\right.$ spam $)=$
\# of emails labeled as spam containing the word Wallach
\# of total spam emails
- Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?
- $P\left(F_{1} \mid\right.$ spam $)=$ \# of emails labeled as spam containing the word Wallach +1

$$
\text { \# of total spam emails }+2
$$

- This is called smoothing, and it removes the chance that a zero probability will wipe out the entire calculation.

Summary of Naive Bayes Classification

- The email can be classified by computing:

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(F_{1} \cap \cdots \cap F_{m} \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(F_{1} \mid H_{i}\right) \cdots\left(F_{m} \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(\prod_{j=1}^{m} P\left(F_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)
\end{aligned}
$$

Summary of Naive Bayes Classification

- The email can be classified by computing:

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(F_{1} \cap \cdots \cap F_{m} \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(F_{1} \mid H_{i}\right) \cdots\left(F_{m} \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam, not spam }\}}{\operatorname{argmax}}\left(\prod_{j=1}^{m} P\left(F_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)
\end{aligned}
$$

- In other words, compute likelihood \times prior for each hypothesis (spam vs. not spam) and see which has a greater value

Summary

- Estimate the priors using:

$$
P\left(H_{i}\right)=\frac{\# \text { emails labeled as } H_{i}}{\text { total } \# \text { of emails }}
$$

Summary

- Estimate the priors using:

$$
P\left(H_{i}\right)=\frac{\# \text { emails labeled as } H_{i}}{\text { total } \# \text { of emails }}
$$

- Estimate the probability of a feature given a class using:

$$
P\left(F_{j} \mid H_{i}\right)=\frac{\# \text { of emails labeled as } H_{i} \text { containing } F_{j}+1}{\# \text { of emails labeled as } H_{i}+2}
$$

