CMPSCI 240: "Reasoning Under Uncertainty" Lecture 20x

Not-A-Prof. Phil Kirlin pkirlin@cs.umass.edu

April 5, 2012

Bayesian Reasoning (Recap)

The maximum likelihood hypothesis is the hypothesis that assigns the highest probability to the observed data:

$$H^{\mathsf{ML}} = \operatorname*{argmax}_{i} P(D \mid H_i)$$

The maximum a posteriori (MAP) hypothesis is the hypothesis that that maximizes the posterior probability given D:

$$H^{MAP} = \operatorname{argmax}_{i} P(H_i \mid D)$$

= $\operatorname{argmax}_{i} \frac{P(D \mid H_i) P(H_i)}{P(D)}$
 $\propto \operatorname{argmax}_{i} P(D \mid H_i) P(H_i)$

- $P(H_i)$ is called the prior probability (or just prior).
- $P(H_i|D)$ is called the posterior probability.

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_1 and D_2 that are are conditionally independent given H_i , then the probability of $D_1 \cap D_2$ given H_i is

$$P(D_1 \cap D_2 | H_i) = P(D_1 | H_i)P(D_2 | D_1, H_i) = P(D_1 | H_i)P(D_2 | H_i)$$

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_1 and D_2 that are are conditionally independent given H_i , then the probability of $D_1 \cap D_2$ given H_i is

$$P(D_1 \cap D_2 | H_i) = P(D_1 | H_i)P(D_2 | D_1, H_i) = P(D_1 | H_i)P(D_2 | H_i)$$

If we have m conditionally independent pieces of data D_1, \ldots, D_m , then

Independent Pieces of Data (Recap)

Definition

If we have 2 pieces of data D_1 and D_2 that are are conditionally independent given H_i , then the probability of $D_1 \cap D_2$ given H_i is

$$P(D_1 \cap D_2 | H_i) = P(D_1 | H_i)P(D_2 | D_1, H_i) = P(D_1 | H_i)P(D_2 | H_i)$$

If we have m conditionally independent pieces of data D_1, \ldots, D_m , then

$$P(D_1 \cap \ldots \cap D_m | H_i) = \prod_{j=1}^m P(D_j | H_i)$$

Combining Evidence (Recap)

Definition

If we have k disjoint, exhaustive hypotheses H_1, \ldots, H_k (e.g., rainy, dry) and m conditionally independent pieces of observed data D_1, \ldots, D_m , then the posterior probability $P(H_i | D_1 \cap \ldots \cap D_m)$ of hypothesis H_i $(i = 1, \ldots, k)$ given the observed data $D_1 \cap \ldots \cap D_m$ is:

Combining Evidence (Recap)

Definition

If we have k disjoint, exhaustive hypotheses H_1, \ldots, H_k (e.g., rainy, dry) and m conditionally independent pieces of observed data D_1, \ldots, D_m , then the posterior probability $P(H_i | D_1 \cap \ldots \cap D_m)$ of hypothesis H_i $(i = 1, \ldots, k)$ given the observed data $D_1 \cap \ldots \cap D_m$ is:

$$P(H_i \mid D_1 \cap \ldots \cap D_m) = \frac{\left(\prod_{j=1}^m P(D_j \mid H_i)\right) P(H_i)}{P(D_1 \cap \ldots \cap D_m)}$$

where

Combining Evidence (Recap)

Definition

If we have k disjoint, exhaustive hypotheses H_1, \ldots, H_k (e.g., rainy, dry) and m conditionally independent pieces of observed data D_1, \ldots, D_m , then the posterior probability $P(H_i | D_1 \cap \ldots \cap D_m)$ of hypothesis H_i $(i = 1, \ldots, k)$ given the observed data $D_1 \cap \ldots \cap D_m$ is:

$$P(H_i \mid D_1 \cap \ldots \cap D_m) = \frac{\left(\prod_{j=1}^m P(D_j \mid H_i)\right) P(H_i)}{P(D_1 \cap \ldots \cap D_m)}$$

where

$$P(D_1 \cap \ldots \cap D_m) = \sum_{i=1}^k \left(\prod_{j=1}^m P(D_j \mid H_i) \right) P(H_i)$$

 Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
 - Spam filtering (classes: spam, not spam)

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
 - Spam filtering (classes: spam, not spam)
 - Handwriting recognition & OCR (classes: one for each letter, number, or symbol)

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
 - Spam filtering (classes: spam, not spam)
 - Handwriting recognition & OCR (classes: one for each letter, number, or symbol)
 - Text classification, image classification, music classification, etc.

- Classification is the problem of identifying which of a set of categories (called classes) a particular item belongs.
- Lots of real-world problems can be set up as classification tasks:
 - Spam filtering (classes: spam, not spam)
 - Handwriting recognition & OCR (classes: one for each letter, number, or symbol)
 - Text classification, image classification, music classification, etc.
- Almost any problem where you are assigning some sort of label to items can be set up as a classification task.

 An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
 - The classes become the hypotheses that are being tested.

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
 - The classes become the hypotheses that are being tested.
 - The item being classified is turned into a collection of data called features. Useful features are attributes of the item that imply a strong connection to certain classes.

- An algorithm that does classification is called a classifier. Classifiers take some sort of item as input and output the class it thinks that item belongs to.
- Lots of classifiers are based on Bayesian reasoning:
 - The classes become the hypotheses that are being tested.
 - The item being classified is turned into a collection of data called features. Useful features are attributes of the item that imply a strong connection to certain classes.
 - The classification algorithm is typically either maximum likelihood or MAP, depending on what data we have available.

When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - F_2, F_2^c : "viagra" appears/does not appear in the email

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - ▶ F_2, F_2^c : "viagra" appears/does not appear in the email
 - F_3, F_3^c : "cash" appears/does not appear in the email

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - ▶ F_2, F_2^c : "viagra" appears/does not appear in the email
 - F_3, F_3^c : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - ▶ F_2, F_2^c : "viagra" appears/does not appear in the email
 - F_3, F_3^c : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_1 , F_2^c , and F_3 .

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - ▶ F_2, F_2^c : "viagra" appears/does not appear in the email
 - ▶ F_3, F_3^c : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_1 , F_2^c , and F_3 .
- If we use the MAP rule for classification, we need to compute

- When a new email arrives, we want to label it as either spam or not spam (our two classes or hypotheses).
- A useful set of features might be events corresponding to whether or not certain words appear in the email:
 - F_1, F_1^c : "Wallach" appears/does not appear in the email
 - ▶ F_2, F_2^c : "viagra" appears/does not appear in the email
 - ▶ F_3, F_3^c : "cash" appears/does not appear in the email
- Let's say this email contains the words "Wallach" and "cash," but not "viagra."
- Therefore, the features for this email are F_1 , F_2^c , and F_3 .
- If we use the MAP rule for classification, we need to compute

$$\begin{aligned} \mathcal{H}^{\mathsf{MAP}} &= \operatorname*{argmax}_{i} P(D \mid \mathcal{H}_{i}) P(\mathcal{H}_{i}) \\ &= \operatorname*{argmax}_{i \in \{spam, notspam\}} P(\mathcal{F}_{1} \cap \mathcal{F}_{2}^{c} \cap \mathcal{F}_{3} \mid \mathcal{H}_{i}) P(\mathcal{H}_{i}) \end{aligned}$$

But where do these probabilities come from?

▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.

- ▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

- ▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.
- ▶ How can we estimate *P*(*spam*)?

- ▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

- ▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

- To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

- ► P(spam) = # of emails labeled as spam # of total emails
- How can we estimate $P(F_1 \cap F_2^c \cap F_3 | spam)$?
- \blacktriangleright $P(F_1 \cap F_2^c \cap F_3 | spam) =$ # of emails labeled as spam with those exact features # of total spam emails

- ▶ To use MAP, we need probabilities for $P(H_i)$; that is, P(spam) and P(not spam), as well as $P(F_1 \cap F_2^c \cap F_3 | H_i)$.
- We can estimate these probabilities if we have access to a lot of email that has already been classified as spam or not spam.

- ► P(spam) = # of emails labeled as spam # of total emails
- How can we estimate $P(F_1 \cap F_2^c \cap F_3 | spam)$?
- \blacktriangleright $P(F_1 \cap F_2^c \cap F_3 | spam) =$ # of emails labeled as spam with those exact features # of total spam emails
- Why is that last estimate going to be a problem?

Conditional Independence to the Rescue!

It is unlikely that we would ever have enough email to get a good estimate of P(F₁ ∩ F₂^c ∩ F₃ | spam) using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.

- It is unlikely that we would ever have enough email to get a good estimate of P(F₁ ∩ F₂^c ∩ F₃ | spam) using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).

- It is unlikely that we would ever have enough email to get a good estimate of P(F₁ ∩ F₂^c ∩ F₃ | spam) using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- Therefore,
 - $P(F_1 \cap F_2^c \cap F_3 | spam) = P(F_1 | spam) \cdot P(F_2^c | spam) \cdot P(F_3 | spam)$

- It is unlikely that we would ever have enough email to get a good estimate of P(F₁ ∩ F₂^c ∩ F₃ | spam) using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- ► Therefore, $P(F_1 \cap F_2^c \cap F_3 | spam) =$ $P(F_1 | spam) \cdot P(F_2^c | spam) \cdot P(F_3 | spam)$
- Those probabilities are easier to get good estimates for!

- It is unlikely that we would ever have enough email to get a good estimate of P(F₁ ∩ F₂^c ∩ F₃ | spam) using the previous idea because the number of emails in our collection with the exact same feature set as our new email is probably very small, or zero.
- Therefore, we will assume all our features are conditionally independent of each other, given the hypothesis (spam or not spam).
- ► Therefore, $P(F_1 \cap F_2^c \cap F_3 | spam) =$ $P(F_1 | spam) \cdot P(F_2^c | spam) \cdot P(F_3 | spam)$
- Those probabilities are easier to get good estimates for!
- A classifier that makes this assumption is called a Naive Bayes classifier.

► How would we estimate P(F₁ | spam), or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)

- ► How would we estimate P(F₁ | spam), or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- ► $P(F_1 | spam) =$ # of emails labeled as spam containing the word Wallach

of total spam emails

- How would we estimate P(F₁ | spam), or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- ▶ $P(F_1 | spam) =$ # of emails labeled as spam containing the word Wallach

of total spam emails

Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?

- How would we estimate P(F₁ | spam), or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- ► $P(F_1 | spam) =$ # of emails labeled as spam containing the word Wallach

of total spam emails

- Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?
- ► $P(F_1 | spam) =$ # of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2

- How would we estimate P(F₁ | spam), or equivalently, the probability an email contains the word "Wallach," given that it's a spam email? (Remember, we have a lot of existing emails already classified as spam or not spam.)
- ▶ $P(F_1 | spam) =$ # of emails labeled as spam containing the word Wallach

of total spam emails

- Spam filters typically operate so every word in an email is its own feature. What happens if we see a word we've never encountered before?
- P(F₁ | spam) = <u># of emails labeled as spam containing the word Wallach + 1</u> <u># of total spam emails + 2</u>
- This is called smoothing, and it removes the chance that a zero probability will wipe out the entire calculation.

Summary of Naive Bayes Classification

The email can be classified by computing:

$$H^{MAP} = \operatorname{argmax}_{i} P(D \mid H_i) P(H_i)$$

= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} (F_1 \cap \dots \cap F_m \mid H_i) P(H_i)$
= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} (F_1 \mid H_i) \dots (F_m \mid H_i) P(H_i)$
= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} \left(\prod_{j=1}^m P(F_j \mid H_i)\right) P(H_i)$

Summary of Naive Bayes Classification

The email can be classified by computing:

$$H^{MAP} = \operatorname{argmax}_{i} P(D | H_i) P(H_i)$$

= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} (F_1 \cap \dots \cap F_m | H_i) P(H_i)$
= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} (F_1 | H_i) \dots (F_m | H_i) P(H_i)$
= $\operatorname{argmax}_{i \in \{\text{spam, not spam}\}} \left(\prod_{j=1}^m P(F_j | H_i)\right) P(H_i)$

In other words, compute likelihood × prior for each hypothesis (spam vs. not spam) and see which has a greater value

Summary

Estimate the priors using:

$$P(H_i) = \frac{\# \text{ emails labeled as } H_i}{\text{total } \# \text{ of emails}}$$

Summary

Estimate the priors using:

$$P(H_i) = \frac{\# \text{ emails labeled as } H_i}{\text{total } \# \text{ of emails}}$$

Estimate the probability of a feature given a class using:

$$P(F_j | H_i) = \frac{\# \text{ of emails labeled as } H_i \text{ containing } F_j + 1}{\# \text{ of emails labeled as } H_i + 2}$$