Topic Modeling: Beyond Bag-of-Words

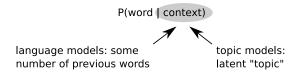
Hanna M. Wallach

University of Cambridge hmw26@cam.ac.uk

June 26, 2006

Generative Probabilistic Models of Text

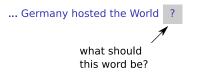
- Used in text compression, predictive text entry, information retrieval
- Estimate probability of a word in a given context:



- ▶ Here, both types of context are combined to improve performance
- This is done in a single Bayesian framework

Statistical Language Models

- Estimate the probability of a word occurring in a given context
- Context is normally some number of preceding words



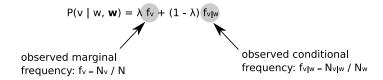
- Used in text compression, predictive text entry, speech recognition
- There are many different models of this sort

A Simple Bigram Language Model

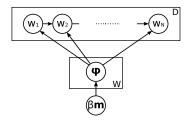
▶ Given a corpus **w** of *N* tokens, count

 $N_w = \#$ of times word w appears in \mathbf{w} $N_{v|w} = \#$ of times word v follows word w in \mathbf{w}

• Form the predictive distribution:

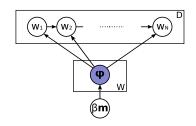


• Use, e.g., cross validation to estimate weight λ

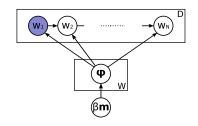


A bigram model based on principles of Bayesian inference:

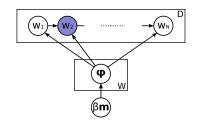
For each word w in the vocabulary, draw a distribution over words φ_w from Dir(φ_w; βm)



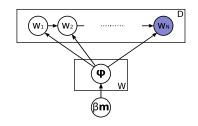
- For each word w in the vocabulary, draw a distribution over words φ_w from Dir(φ_w; βm)
- ► For each position *i* in document *d*, draw a word w_i from φ_{w_{i-1}}



- For each word w in the vocabulary, draw a distribution over words φ_w from Dir(φ_w; βm)
- ► For each position *i* in document *d*, draw a word w_i from φ_{w_{i-1}}



- For each word w in the vocabulary, draw a distribution over words φ_w from Dir(φ_w; βm)
- ► For each position *i* in document *d*, draw a word w_i from φ_{w_{i-1}}



HDLM: Predictive Distribution

• Integrate out each ϕ_w

Predictive probability of word v following word w is

$$P(v \mid w, w) = \lambda_w m_v + (1 - \lambda_w) f_{v|w}$$

$$m_v \text{ has taken on the role of the marginal statistic } f_v \text{ from the simple bigram language model}$$

• Weight per context: $\lambda_w = \frac{\beta}{N_w + \beta}$

Bayesian version of the simple bigram langauge model

Statistical Topic Models

- Documents are modeled as finite mixture of topics
- > The topic mixture provides an explicit representation of a document

... Germany hosted the World

- Each word is generated by a single topic
- Used in information retrieval, classification, collaborative filtering

Statistical Topic Models

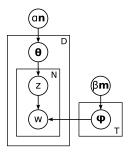
- Documents are modeled as finite mixture of topics
- The topic mixture provides an explicit representation of a document

... Germany hosted the World Beard and Mustache Championships $^{\scriptscriptstyle [1]}$

- Each word is generated by a single topic
- Used in information retrieval, classification, collaborative filtering

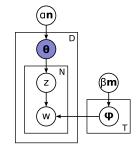
[1] http://www.worldbeardchampionships.com

Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"



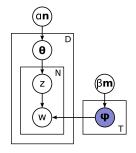
Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"

 For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)



Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"

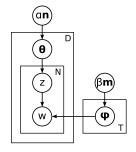
- For each document d, draw a topic mixture θ_d from Dir(θ_d; αn)
- For each topic t, draw a distribution over words φ_t from Dir(φ_t; βm)



Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"

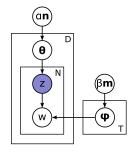
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each topic t, draw a distribution over words φ_t from Dir(φ_t; βm)

For each position *i* in document *d*:



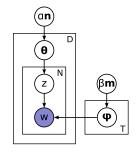
Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"

- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each topic t, draw a distribution over words φ_t from Dir(φ_t; βm)
- ▶ For each position *i* in document *d*:
 - Draw a topic z_i from θ_d



Models documents as mixtures of latent topics. Topics inferred from word correlations, independent of word order: "bag-of-words"

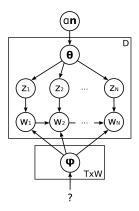
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each topic t, draw a distribution over words φ_t from Dir(φ_t; βm)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{z_i}



Combining Word Order and Topic

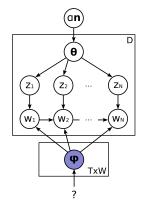
- Each type of model has something to offer the other
- Context-based language models can be improved by topics:

► Topic models can be improved by notion of word order:

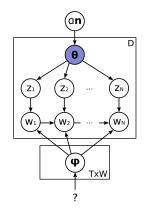


Combining ideas from HDLM and LDA gives a new topic model that moves beyond the bag-of-words assumption

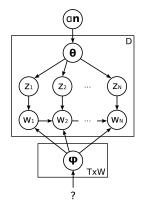
► For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior



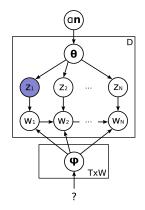
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)



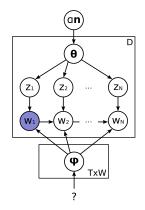
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:



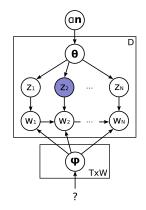
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d



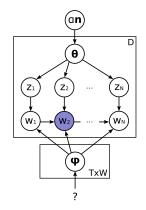
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{w_{i-1},z_i}



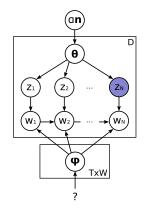
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{w_{i-1},z_i}



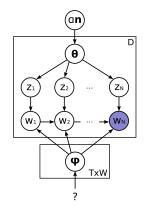
- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{w_{i-1},z_i}



- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; α**n**)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{w_{i-1},z_i}

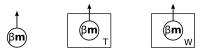


- For each topic t and word w, draw a distribution over words φ_{w,t} from a Dirichlet prior
- For each document d, draw a topic mixture θ_d from Dir(θ_d; αn)
- For each position *i* in document *d*:
 - Draw a topic z_i from θ_d
 - Draw a word w_i from ϕ_{w_{i-1},z_i}



Prior over $\{\phi_{w,t}\}$

- Prior over {\$\phi_{w,t}\$} must be "coupled" so that learning about one \$\phi_{w,t}\$ gives information about others
- Coupling comes from hyperparameter sharing
- Several ways of doing this:
 - ► Single: Only one *β***m**
 - Per topic: $\beta_t \mathbf{m}_t$ for each topic t
 - Per word: $\beta_w \mathbf{m}_w$ for each possible previous word w



Inference of Hyperparameters

- Integrate over $\phi_{w,t}$ and θ_d
- Let $U = \{\alpha \mathbf{n}, \beta \mathbf{m}\}$ or $U = \{\alpha \mathbf{n}, \{\beta_t \mathbf{m}_t\}\}$
- Assume uniform hyperpriors over all hyperparameters
- Find the maximum of the evidence

$$U^{\mathsf{MP}} = \operatorname{arg\,max} \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | U)$$

using a Gibbs EM algorithm

Comparing Predictive Accuracy

Information rate of unseen test data w^{*} in bits per word:

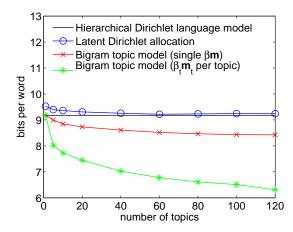
$$R = -rac{\log_2 P(\mathbf{w}^\star | \mathbf{w})}{N^\star}$$

- Lower information rate = better predictive accuracy
- Direct measure of text compressibility
- Use Gibbs sampling to approximate $P(\mathbf{w}^*|\mathbf{w})$

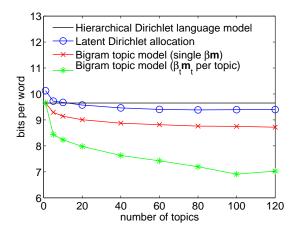
Data Sets

- 150 abstracts from Psychological Review
 - Vocabulary size: 1,374 words
 - 13,414 tokens in training data, 6,521 in test data
- 150 postings from 20 Newsgroups data set
 - Vocabulary size: 2,281 words
 - 27,478 tokens in training data, 13,579 in test data

Information Rate: Psychological Review



Information Rate: 20 Newsgroups



Inferred Topics: Latent Dirichlet Allocation

the	i	that	easter
[number]	is	proteins	ishtar
in	satan	the	а
to	the	of	the
espn	which	to	have
hockey	and	i	with
а	of	if	but
this	metaphorical	[number]	english
as	evil	you	and
run	there	fact	is

Inferred Topics: Bigram Topic Model (Single β **m**)

to	the	the	the
party	god	and	а
arab	is	between	to
not	belief	warrior	i
power	believe	enemy	of
any	use	battlefield	[number]
i	there	а	is
is	strong	of	in
this	make	there	and
things	i	way	it

Inferred topics: Bigram Topic Model ($\beta_t \mathbf{m}_t$ per topic)

party	god	[number]	the
arab	believe	the	to
power	about	tower	а
as	atheism	clock	and
arabs	gods	а	of
political	before	power	i
are	see	motherboard	is
rolling	atheist	mhz	[number]
london	most	socket	it
security	shafts	plastic	that

Findings and Future Work

Findings:

- Combining latent topics and word order improves predictive accuracy
- The quality of inferred topics is improved

Future work:

- ▶ Per word: $\beta_w \mathbf{m}_w$ for each possible previous word w
- Other model structures
- Evaluation on larger corpora

Questions?

hmw26@cam.ac.uk http://www.inference.phy.cam.ac.uk/hmw26/

Work conducted in part at the University of Pennsylvania, supported by NSF ITR grant EIA-0205456 and DARPA contract NBCHD030010.