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Abstract

We build on ideas from convex optimization to create a gdriexmework for the
design of efficient prediction markets over very large omtecspaces.

1 Introduction

A prediction market is a financial market primarily focusadtbe aggregation of information. To
facilitate trades, prediction markets are often operajegiitomated market institutions. The market
institution, referred to as market makertrades a set of securities. In the most simple case, each
security corresponds to the outcome of an event. The markde¢énmight offer a security that pays
off $1 if and only if BP files for bankruptcy by the end of the year. skrneutral trader who believes
that the probability of BP filing for bankruptcy jsshould be willing to purchase this security at any
price belowp, or sell it at any price above Based on this intuition, the current market price can be
viewed as the traders’ collective estimate of how likelgithiat BP will file for bankruptcy. Market-
based probability estimates have proved to be accurate amiety of domains including business,
entertainment, and politics [2, 13, 17].

Prediction market research has largely focuseaast function based marketser completese-
curity spaces [5, 6]. Consider a future event withmutually exclusive and exhaustive potential
outcomes, such as a contest witlpossible winners. In a complete cost function based maaket,
market maker buys and sells securities corresponding to@#tcome € {1,--- ,n}. The security
associated with outcomigpays out1 if  is the final outcome, and $0 otherwise. The market maker
determines how much each security should cost using aeliffiablecost function A cost function

C : R" — R is simply a potential function specifying the amount of mprearrently wagered in
the market as a function of the number of outstanding seéesuritf ¢; is the number of securities
on outcome currently held by traders, and a trader would like to puretebundle of-; securities
for eachi (where some; could be zero or even negative, representing a sale), ttiertraust pay
C(q+r) — C(q) to the market maker. The instantaneous price of secilityat is, the price per
security of an infinitely small portion of a security) is the@’'(q)/9dq;, and is denoted; (q).

The market designer is free to choose any differentiablé foogtion C' that satisfies a few basic
properties. First, it must be the case that for evieey {1,--- ,n} and everyg € R™, p;(q) > 0.
This ensures that the price of a security is never negatieeoi®l, it must be the case that for every
q € R, > pi(q) = 1. If the instantaneous prices summed to something less thapectively,
greater than) 1, then a trader could purchase (respectaaly small equal quantities of each secu-
rity for a guaranteed profit. These conditions ensure thekthre no arbitrage opportunities within
the market. They also ensure that the current prices carelbesdias a probability distribution over
the outcome space, representing the market’s predictisadban the traders’ collective beliefs.

When the number of outcomes is very large, it might not be ld&atb run a complete predic-
tion market over the full outcome space. There has been & sifingecent research examining the
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tractability of running standard prediction market medkars (such as the popular Logarithmic
Market Scoring Rule [10]) over combinatorial outcome spalog limiting the space of available
securities [7-9, 15]. For example, if the outcome spaceatositall possible:! rank orderings of
n horses in a race, a market maker might choose to sell onlwisa&isecurities of the form “horse
A will finish the race ahead of horse B.” If the outcome spaca iarge Boolean space, the mar-
ket maker might sell securities on disjunctions of two esdfeither a Democrat will win the 2012
senate race in Delaware or a Democrat will win in Ohio”). lagl examples, running a naive imple-
mentation of the Logarithmic Market Scoring Rule over thiédutcome space would be infeasible.

While this line of research has led to a few positive resultsginmotably, the tractability of pricing
certain types of securities for large, single-eliminattoornaments [8]), it has led more often to
hardness results [7] or to markets with undesirable pragsestich as unbounded worst case market
maker loss [9]. Building on recent work exploring mathermaticonnections between prediction
market mechanisms and algorithms for online learning [&],take a different approach to mar-
ket design. Instead of beginning with an existing marketmaetsm and searching for a security
space for which it is tractable to calculate prices, we ipooate ideas from online convex optimiza-
tion [11, 16] to desigmewcost function based markets tailored to any security spacéave in
mind. This approach is more general and applies to a widetyaof settings.

2 A New Framework for Market-Making Over Complex Security Spaces

In the complete cost function based markets described altlogenarket maker offers a security
corresponding to each potential state of the world. We clemsi market-design scenario where the
state spacé® could potentially be quite large, or even infinite, makinigfeasible to run such a mar-
ket. Instead, we allow the market maker to offer a menik afecurities for some reasonably-sized
K, with the payoff of each security described by an arbitraut éfficiently-computable function
p : O — RE. Specifically, if a trader purchases a share of securityd the outcome is, then
the trader is paigh; (o). We call such security spacesmplex A complex security space reduces
to the complete security spacefif = |O| and for each € {1,---, K}, p;(0) = 1 if and only if

o is theith outcome. We consider traders that purcheeszurity bundles € R¥. The payoff forr
upon outcome is exactlyp(o) - r, wherep(o) denotes the vector of payoffs for each security for
outcomev. Let p(O) = {p(o)]o € O}.

We do not presuppose a cost function based market. Howeeeshaw that the use of a convex
potential function imecessargiven some minor assumptions.

2.1 Imposing Some Natural Restrictionson the Market Maker

In this section we introduce a sequence of conditions ormagithat one might expect a market to
satisfy, and show that these conditions lead to some nanatiematical restrictions on the costs
of security bundles. (We consider relaxations of these itiond in the long version.) Similar
conditions were suggested for complete markets by Chen anghén [6], who defined the notion
of avalid cost functionand by Othman et al. [14], who discussed properties sinolaur notions
of path independence and expressiveness, among others.

Imagine a sequence of traders entering the marketplace amthgsing security bundles. Let
ri,ro, T3, ... be the sequence of security bundles purchased. Aftei such purchases, thth
trader should be able to enter the marketplace and query d@ihleestmaker for the cost of arbitrary
bundles. The market maker must be able to furnish a@est(r|ry,...,r;—1) for any bundler. If
the trader chooses to purchaseat a cost ofCost(r;|ry,...,r;_1), the market maker may update
the costs of each bundle accordingly. Our first conditionires that the cost of acquiring a bundle
r must be the same regardless of how the trader splits up tlcbqme:.

Condition 1 (Path Independencefor anyr, r’, andr” such thatr = r’ + r”, for anyry,...,r;,
Cost(r|ry,...,r;) = Cost(r|ry,...,rs) + Cost(r”|ry, ..., 1, 17).

It turns out that this conditioaloneimplies that prices can be represented by a cost functions
illustrated in the following theorem. The proof is by indiact ont.

Theorem 1. Under Condition 1, there exists a cost function R¥ — R such that we may always
write Cost(r¢|ry,...,rs1) =C(r1+ ... +rie1+1) —C(r1 + ... +121).



With this in mind, we drop the cumbersorest(r|ry, ..., r;) notation from now on, and write the
cost of a bundle asC(q +r) — C(q), whereq = ry + ... +r; is the vector of previous purchases.

We would like to aggregate traders’ beliefs into an accupageliction. Each trader may have his
own (potentially secret) information about the future, g¥hive can represent as some distribution
p € Ajp| over the outcome space. The pricing mechanism should trergfcentivize the traders
to revealp, while simultaneously avoid providing arbitrage oppoitieés. Towards this goal, we
introduce four additional conditions on our pricing medisan

The first condition ensures that the gradient(dfis always well-defined. If we imagine that a
trader can buy or sell an arbitrarily small bundle, we woule lthe cost of buying and selling
an infinitesimally small quantity of any bundle to be the sanfeVC(q) is well-defined, it can
be interpreted as a vector of instantaneous prices for esmlriy, with 9C(q)/0q; representing
the price per share of an infinitesimally small amount of sigcd. Additionally, we can interpret
VC(q) as the traders’ current estimates of the expected payoéaf security, in the same way that
0C(q)/0q; was interpreted as the probability of tith outcome for the complete security space.

Condition 2 (Existence of Instantaneous Prices) is continuous and differentiable everywhere.

The next condition encompasses the idea that the markeldsteact to trades in a sensible way in
order to incorporate the private information of the tradénsparticular, it says that the purchase of a
security bundle: should never cause the market to lower the price. d¢f is equivalent to requiring
that a trader with a distributiop € A | can never find it simultaneously profitable (in expectation)
to buy a bundle or to buy the bundle-r.

Condition 3 (Information Incorporation) For any q andr € RX, C(q + 2r) — C(q +r) >
Cla+r) - Cla).

The no arbitrage condition states that it is never possible trader to purchase a security bundle
and receive a positive profit regardless of the outcome.

Condition 4 (No Arbitrage) For all q,r € R¥, 30 € O such thatC(q+1r) — C(q) > r - p(o).

Finally, expressiveness specifies that a trader can setahetprices to reflect his beliefs about the
expected payoffs of each security if arbitrarily small pars of shares may be purchased.

Condition 5 (Expressiveness)For anyp € Ao, Iq € RE U {c0, —oco} for which VC(q) =
Eonplp(0)].

Let H(S) denote the convex hull of a sétc RX. We characterize the form of the cost function
under these conditions.

Theorem 2. Under Conditions 2-5' must be convex withVC(q) : q € RE} = H(p(O)).

Specifically, the existence of instantaneous prices iraphatVC(q) is well-defined. The incorpo-
ration of information condition implies that is convex. The convexity of' and the no arbitrage
condition imply that{VC(q) : q € RX} C H(p(0)). Finally, the expressiveness condition is
equivalent to requiring that (p(0)) C {VC(q) : q € RX}.

This theorem tells us that to satisfy our conditions, theo§etachable prices of a market should be
exactlythe convex hull ofp(©). For complete markets, this would imply that the set of redid
prices should be precisely the set of all probability dsttions over the: outcomes.

2.2 Designing the Cost Function via Conjugate Duality

The natural conditions we introduced above imply that tagfea market for a set oK™ securities
with payoffs specified by an arbitrary payoff functipn. © — R, we should use a cost function
based market with a convex, differentiable cost functicchshat{ VC(q) : q € RX} = H(p(0)).
We now provide a general technique that can be used to desijic@npare properties of cost
functions that satisfy these criteria, using tools fromvemanalysis.

It is well known that any closed, convex, differentiable dtion C' : RX — R can be written in
the formC'(q) = supxegomr) X - d — L(x) for a strictly convex functionz called theconjugate
of C'[3, 12]. (The strict convexity of? follows from the differentiability ofC'.) Furthermore, any



function that can be written in this form is convex. As we d#xein the full version of this work, the
gradient ofC' can be expressed in terms of this conjugatéi(q) = argmaXycdom(r) X A — R(x).
To generate a convex cost functiéhsuch thatvC'(q) € II for all g for some sefl, it is therefore
sufficient to choose a conjugate functi@prestrict the domain ok to I1, and define” as

C(q) =supx-q— R(x) . 1)
xell

We call such a market@mplex cost function based mark& generate a cost functignsatisfying
our five conditions, we need only to dét= H(p(O)) and select a strictly convex functidi

This method of defining” is convenient for several reasons. First, it leads to marktet are
efficient to implement whenevéf can be described by a polynomial number of simple constaint
Similar techniques have been applied to design learnirggitihgns in the online convex optimization
framework [11, 16], wher&? plays the role of a regularizer, and have been shown to béeeffim

a variety of combinatorial applications, including onlisieortest paths, online learning of perfect
matchings, and online cut set [4]. Second, it yields simptenfilas for properties of markets that
help us choose the best market to run, such as worst-case¢anpluss and information loss.

Note that both the LMSR and Quad-SCPM [1] are examples of tengost function based markets,
though they are designed for the complete market setting onl

2.3 An Example

To illustrate the use of our framework for market design, wesider the following example. An
object orbiting the planet, perhaps a satellite, is predi¢o fall to earth in the near future and will
land at an unknown location, which we would like to predicte Yépresent locations on the earth
as unit vectorar € R3. We will design a market with three securities, each coweemng to one
coordinate of the final location of the object. In particulsecurity: will pay off v, + 1 dollars

if the object lands in locatiom. (The addition ofl, while not strictly necessary, ensures that the
payoffs, and therefore prices, remain positive, thoughlitag necessary for traders to sell securities
to express certain beliefs.) This means that traders carhase security bundlesc R? and, when
the object lands at a locatian receive a payoffu + 1) - r. Note that in this example, the outcome
space is infinite, but the security space is small.

The price spacé{(p(0O)) for this market will be thes-norm unit ball centered at. We shall use
|| - || to refer to the/s-norm. To construct a market for this scenario, let us makestimple choice
of R(x) = Al|x — 1||? for some parametex > 0. When||q| < 2), there exists ax such that
VR(x) = q. In particular, this is true fox = (1/2)q/A + 1, andq - x — R(x) is minimized
at this point. Wherj|q|| > 2, q - x — R(x) is minimized at anx on the boundary ot (p(O)).
Specifically, it is minimized ak = q/||q|| + 1. From this, we can compute

Cla) = {Aq ta-1 when|q] <2
lall +a-1—2X,  whenlq| > 2X.

We can show that the worst-case monetary loss of the marketmmno more tharz), and the
information loss, defined as the bid-ask spread of a bundéeales linearly with|r||%/)\; see the
longer version for details.

By relaxing our “no-arbitrage” condition, we can also usis framework to design a new efficient
market maker for pair betting (“horse A ahead of horse B”)ialiis known to be #P-hard to price
using LMSR [7]. Surprisingly, this relaxation does not iease the market maker’s worst-case loss,
and can actually lead to a profit.

3 Conclusion

Leveraging technigues from convex optimization, we prepageneral framework to design mar-
ket maker mechanisms on arbitrary security spaces. Whitegssarch on combinatorial prediction
markets has focused on finding security spaces that aralitado price using popular market mech-
anisms, our framework opens up the possibility of designgefficient market maker mechanisms
for security spaces of interest, such as pair betting markee believe that this framework will lead

to fruitful new directions of research in prediction markesign and implementation.
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