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Abstract

We build on ideas from convex optimization to create a general framework for the
design of efficient prediction markets over very large outcome spaces.

1 Introduction

A prediction market is a financial market primarily focused on the aggregation of information. To
facilitate trades, prediction markets are often operated by automated market institutions. The market
institution, referred to as amarket maker, trades a set of securities. In the most simple case, each
security corresponds to the outcome of an event. The market maker might offer a security that pays
off $1 if and only if BP files for bankruptcy by the end of the year. A risk neutral trader who believes
that the probability of BP filing for bankruptcy isp should be willing to purchase this security at any
price belowp, or sell it at any price abovep. Based on this intuition, the current market price can be
viewed as the traders’ collective estimate of how likely it is that BP will file for bankruptcy. Market-
based probability estimates have proved to be accurate in a variety of domains including business,
entertainment, and politics [2, 13, 17].

Prediction market research has largely focused oncost function based marketsover completese-
curity spaces [5, 6]. Consider a future event withn mutually exclusive and exhaustive potential
outcomes, such as a contest withn possible winners. In a complete cost function based market,a
market maker buys and sells securities corresponding to each outcomei ∈ {1, · · · , n}. The security
associated with outcomei pays out$1 if i is the final outcome, and $0 otherwise. The market maker
determines how much each security should cost using a differentiablecost function. A cost function
C : Rn → R is simply a potential function specifying the amount of money currently wagered in
the market as a function of the number of outstanding securities. If qi is the number of securities
on outcomei currently held by traders, and a trader would like to purchase a bundle ofri securities
for eachi (where someri could be zero or even negative, representing a sale), the trader must pay
C(q + r) − C(q) to the market maker. The instantaneous price of securityi (that is, the price per
security of an infinitely small portion of a security) is then∂C(q)/∂qi, and is denotedpi(q).

The market designer is free to choose any differentiable cost functionC that satisfies a few basic
properties. First, it must be the case that for everyi ∈ {1, · · · , n} and everyq ∈ R

n, pi(q) ≥ 0.
This ensures that the price of a security is never negative. Second, it must be the case that for every
q ∈ R

n,
∑n

i=1 pi(q) = 1. If the instantaneous prices summed to something less than (respectively,
greater than) 1, then a trader could purchase (respectively, sell) small equal quantities of each secu-
rity for a guaranteed profit. These conditions ensure that there are no arbitrage opportunities within
the market. They also ensure that the current prices can be viewed as a probability distribution over
the outcome space, representing the market’s prediction based on the traders’ collective beliefs.

When the number of outcomes is very large, it might not be feasible to run a complete predic-
tion market over the full outcome space. There has been a surge of recent research examining the
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tractability of running standard prediction market mechanisms (such as the popular Logarithmic
Market Scoring Rule [10]) over combinatorial outcome spaces by limiting the space of available
securities [7–9, 15]. For example, if the outcome space contains all possiblen! rank orderings of
n horses in a race, a market maker might choose to sell only pairwise securities of the form “horse
A will finish the race ahead of horse B.” If the outcome space isa large Boolean space, the mar-
ket maker might sell securities on disjunctions of two events (“either a Democrat will win the 2012
senate race in Delaware or a Democrat will win in Ohio”). In these examples, running a naive imple-
mentation of the Logarithmic Market Scoring Rule over the full outcome space would be infeasible.

While this line of research has led to a few positive results (most notably, the tractability of pricing
certain types of securities for large, single-eliminationtournaments [8]), it has led more often to
hardness results [7] or to markets with undesirable properties such as unbounded worst case market
maker loss [9]. Building on recent work exploring mathematical connections between prediction
market mechanisms and algorithms for online learning [6], we take a different approach to mar-
ket design. Instead of beginning with an existing market mechanism and searching for a security
space for which it is tractable to calculate prices, we incorporate ideas from online convex optimiza-
tion [11, 16] to designnewcost function based markets tailored to any security space we have in
mind. This approach is more general and applies to a wide variety of settings.

2 A New Framework for Market-Making Over Complex Security Spaces

In the complete cost function based markets described above, the market maker offers a security
corresponding to each potential state of the world. We consider a market-design scenario where the
state spaceO could potentially be quite large, or even infinite, making itinfeasible to run such a mar-
ket. Instead, we allow the market maker to offer a menu ofK securities for some reasonably-sized
K, with the payoff of each security described by an arbitrary but efficiently-computable function
ρ : O → R

K
+ . Specifically, if a trader purchases a share of securityi and the outcome iso, then

the trader is paidρi(o). We call such security spacescomplex. A complex security space reduces
to the complete security space ifK = |O| and for eachi ∈ {1, · · · ,K}, ρi(o) = 1 if and only if
o is theith outcome. We consider traders that purchasesecurity bundlesr ∈ R

K . The payoff forr
upon outcomeo is exactlyρ(o) · r, whereρ(o) denotes the vector of payoffs for each security for
outcomeo. Letρ(O) = {ρ(o)|o ∈ O}.

We do not presuppose a cost function based market. However, we show that the use of a convex
potential function isnecessarygiven some minor assumptions.

2.1 Imposing Some Natural Restrictions on the Market Maker

In this section we introduce a sequence of conditions or axioms that one might expect a market to
satisfy, and show that these conditions lead to some naturalmathematical restrictions on the costs
of security bundles. (We consider relaxations of these conditions in the long version.) Similar
conditions were suggested for complete markets by Chen and Vaughan [6], who defined the notion
of a valid cost function, and by Othman et al. [14], who discussed properties similarto our notions
of path independence and expressiveness, among others.

Imagine a sequence of traders entering the marketplace and purchasing security bundles. Let
r1, r2, r3, . . . be the sequence of security bundles purchased. Aftert − 1 such purchases, thetth
trader should be able to enter the marketplace and query the market maker for the cost of arbitrary
bundles. The market maker must be able to furnish a costCost(r|r1, . . . , rt−1) for any bundler. If
the trader chooses to purchasert at a cost ofCost(rt|r1, . . . , rt−1), the market maker may update
the costs of each bundle accordingly. Our first condition requires that the cost of acquiring a bundle
r must be the same regardless of how the trader splits up the purchase.

Condition 1 (Path Independence). For anyr, r′, andr′′ such thatr = r′ + r′′, for anyr1, . . . , rt,
Cost(r|r1, . . . , rt) = Cost(r′|r1, . . . , rt) + Cost(r′′|r1, . . . , rt, r

′).

It turns out that this conditionaloneimplies that prices can be represented by a cost functionC, as
illustrated in the following theorem. The proof is by induction ont.

Theorem 1. Under Condition 1, there exists a cost functionC : RK → R such that we may always
write Cost(rt|r1, . . . , rt−1) = C(r1 + . . .+ rt−1 + rt)− C(r1 + . . .+ rt−1).
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With this in mind, we drop the cumbersomeCost(r|r1, . . . , rt) notation from now on, and write the
cost of a bundler asC(q+ r)−C(q), whereq = r1+ . . .+ rt is the vector of previous purchases.

We would like to aggregate traders’ beliefs into an accurateprediction. Each trader may have his
own (potentially secret) information about the future, which we can represent as some distribution
p ∈ ∆|O| over the outcome space. The pricing mechanism should therefore incentivize the traders
to revealp, while simultaneously avoid providing arbitrage opportunities. Towards this goal, we
introduce four additional conditions on our pricing mechanism.

The first condition ensures that the gradient ofC is always well-defined. If we imagine that a
trader can buy or sell an arbitrarily small bundle, we would like the cost of buying and selling
an infinitesimally small quantity of any bundle to be the same. If ∇C(q) is well-defined, it can
be interpreted as a vector of instantaneous prices for each security, with∂C(q)/∂qi representing
the price per share of an infinitesimally small amount of security i. Additionally, we can interpret
∇C(q) as the traders’ current estimates of the expected payoff of each security, in the same way that
∂C(q)/∂qi was interpreted as the probability of theith outcome for the complete security space.

Condition 2 (Existence of Instantaneous Prices). C is continuous and differentiable everywhere.

The next condition encompasses the idea that the market should react to trades in a sensible way in
order to incorporate the private information of the traders. In particular, it says that the purchase of a
security bundler should never cause the market to lower the price ofr. It is equivalent to requiring
that a trader with a distributionp ∈ ∆|O| can never find it simultaneously profitable (in expectation)
to buy a bundler or to buy the bundle−r.

Condition 3 (Information Incorporation). For any q and r ∈ R
K , C(q + 2r) − C(q + r) ≥

C(q+ r)− C(q).

The no arbitrage condition states that it is never possible for a trader to purchase a security bundler

and receive a positive profit regardless of the outcome.

Condition 4 (No Arbitrage). For all q, r ∈ R
K , ∃o ∈ O such thatC(q+ r)− C(q) ≥ r · ρ(o).

Finally, expressiveness specifies that a trader can set the market prices to reflect his beliefs about the
expected payoffs of each security if arbitrarily small portions of shares may be purchased.

Condition 5 (Expressiveness). For anyp ∈ ∆|O|, ∃q ∈ R
K ∪ {∞,−∞} for which∇C(q) =

Eo∼p[ρ(o)].

Let H(S) denote the convex hull of a setS ⊂ R
K . We characterize the form of the cost function

under these conditions.

Theorem 2. Under Conditions 2-5,C must be convex with{∇C(q) : q ∈ R
K} = H(ρ(O)).

Specifically, the existence of instantaneous prices implies that∇C(q) is well-defined. The incorpo-
ration of information condition implies thatC is convex. The convexity ofC and the no arbitrage
condition imply that{∇C(q) : q ∈ R

K} ⊆ H(ρ(O)). Finally, the expressiveness condition is
equivalent to requiring thatH(ρ(O)) ⊆ {∇C(q) : q ∈ R

K}.

This theorem tells us that to satisfy our conditions, the setof reachable prices of a market should be
exactlythe convex hull ofρ(O). For complete markets, this would imply that the set of reachable
prices should be precisely the set of all probability distributions over then outcomes.

2.2 Designing the Cost Function via Conjugate Duality

The natural conditions we introduced above imply that to design a market for a set ofK securities
with payoffs specified by an arbitrary payoff functionρ : O → R

K
+ , we should use a cost function

based market with a convex, differentiable cost function such that{∇C(q) : q ∈ R
K} = H(ρ(O)).

We now provide a general technique that can be used to design and compare properties of cost
functions that satisfy these criteria, using tools from convex analysis.

It is well known that any closed, convex, differentiable function C : RK → R can be written in
the formC(q) = sup

x∈dom(R) x · q − R(x) for a strictly convex functionR called theconjugate
of C [3, 12]. (The strict convexity ofR follows from the differentiability ofC.) Furthermore, any
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function that can be written in this form is convex. As we describe in the full version of this work, the
gradient ofC can be expressed in terms of this conjugate:∇C(q) = argmax

x∈dom(R) x ·q−R(x).
To generate a convex cost functionC such that∇C(q) ∈ Π for all q for some setΠ, it is therefore
sufficient to choose a conjugate functionR, restrict the domain ofR toΠ, and defineC as

C(q) = sup
x∈Π

x · q−R(x) . (1)

We call such a market acomplex cost function based market. To generate a cost functionC satisfying
our five conditions, we need only to setΠ = H(ρ(O)) and select a strictly convex functionR.

This method of definingC is convenient for several reasons. First, it leads to markets that are
efficient to implement wheneverΠ can be described by a polynomial number of simple constraints.
Similar techniques have been applied to design learning algorithms in the online convex optimization
framework [11, 16], whereR plays the role of a regularizer, and have been shown to be efficient in
a variety of combinatorial applications, including onlineshortest paths, online learning of perfect
matchings, and online cut set [4]. Second, it yields simple formulas for properties of markets that
help us choose the best market to run, such as worst-case monetary loss and information loss.

Note that both the LMSR and Quad-SCPM [1] are examples of complex cost function based markets,
though they are designed for the complete market setting only.

2.3 An Example

To illustrate the use of our framework for market design, we consider the following example. An
object orbiting the planet, perhaps a satellite, is predicted to fall to earth in the near future and will
land at an unknown location, which we would like to predict. We represent locations on the earth
as unit vectorsu ∈ R

3. We will design a market with three securities, each corresponding to one
coordinate of the final location of the object. In particular, securityi will pay off ui + 1 dollars
if the object lands in locationu. (The addition of1, while not strictly necessary, ensures that the
payoffs, and therefore prices, remain positive, though it will be necessary for traders to sell securities
to express certain beliefs.) This means that traders can purchase security bundlesr ∈ R

3 and, when
the object lands at a locationu, receive a payoff(u+ 1) · r. Note that in this example, the outcome
space is infinite, but the security space is small.

The price spaceH(ρ(O)) for this market will be theℓ2-norm unit ball centered at1. We shall use
‖ · ‖ to refer to theℓ2-norm. To construct a market for this scenario, let us make the simple choice
of R(x) = λ‖x − 1‖2 for some parameterλ > 0. When‖q‖ ≤ 2λ, there exists anx such that
∇R(x) = q. In particular, this is true forx = (1/2)q/λ + 1, andq · x − R(x) is minimized
at this point. When‖q‖ > 2λ, q · x − R(x) is minimized at anx on the boundary ofH(ρ(O)).
Specifically, it is minimized atx = q/||q||+ 1. From this, we can compute

C(q) =

{

1
4λ‖q‖

2 + q · 1, when‖q‖ ≤ 2λ,

‖q‖+ q · 1− λ, when‖q‖ > 2λ.

We can show that the worst-case monetary loss of the market maker is no more than2λ, and the
information loss, defined as the bid-ask spread of a bundler, scales linearly with‖r‖2/λ; see the
longer version for details.

By relaxing our “no-arbitrage” condition, we can also use this framework to design a new efficient
market maker for pair betting (“horse A ahead of horse B”), which is known to be #P-hard to price
using LMSR [7]. Surprisingly, this relaxation does not increase the market maker’s worst-case loss,
and can actually lead to a profit.

3 Conclusion

Leveraging techniques from convex optimization, we propose a general framework to design mar-
ket maker mechanisms on arbitrary security spaces. While past research on combinatorial prediction
markets has focused on finding security spaces that are tractable to price using popular market mech-
anisms, our framework opens up the possibility of designingnewefficient market maker mechanisms
for security spaces of interest, such as pair betting markets. We believe that this framework will lead
to fruitful new directions of research in prediction marketdesign and implementation.

4



References

[1] S. Agrawal, E. Delage, M. Peters, Z. Wang, and Y. Ye. A unified framework for dynamic
prediction market design.Operations Research, to appear, 2010.

[2] J. E. Berg, R. Forsythe, F. D. Nelson, and T. A. Rietz. Results from a dozen years of election
futures markets research. In C. A. Plott and V. Smith, editors, Handbook of Experimental
Economic Results. 2001.

[3] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.
[4] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. In submission, January 2010.
[5] Y. Chen and D. M. Pennock. A utility framework for bounded-loss market makers. InPro-

ceedings of the 23rd Conference on Uncertainty in ArtificialIntelligence, 2007.
[6] Y. Chen and J. Wortman Vaughan. A new understanding of prediction markets via no-regret

learning. InProceedings of the 11th ACM Conference on Electronic Commerce, 2010.
[7] Y. Chen, L. Fortnow, N. Lambert, D. M. Pennock, and J. Wortman. Complexity of combina-

torial market makers. InProceedings of the 9th ACM Conference on Electronic Commerce,
2008.

[8] Y. Chen, S. Goel, and D. M. Pennock. Pricing combinatorial markets for tournaments. In
Proceedings of the 40th ACM Symposium on Theory of Computing, 2008.

[9] X. Gao, Y. Chen, and D. M. Pennock. Betting on the real line. In Proceedings of the 5th
Workshop on Internet and Network Economics, 2009.

[10] R. Hanson. Combinatorial information market design.Information Systems Frontiers, 5(1):
105–119, 2003.

[11] E. Hazan. A survey: The convex optimization approach toregret minimization. Draft, Sept.
2009.
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