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Abstract

Applicants to degree courses in Irish colleges and universities rank up to ten de-
gree courses from a list of over five hundred. These data provide a wealth of
information concerning applicant degree choices. A Dirichlet process mixture of
generalized Mallows models are used to explore data from a cohort of applicants.
We find strong and diverse clusters, which in turn gains us important insights into
the workings of the system. No previously tried models or analysis technique are
able to model the data with comparable accuracy.

1 Introduction

Applications to degree courses! in Irish colleges and universities are processed by the centralized
College Applications Office (CAO). When applying for college degrees, students select up to ten
courses in order of preference. Courses are subsequently allocated to applicants using these prefer-
ences and the applicant’s points score in an exam. Each course has a points requirement (PR) for
admission; this depends heavily on the number of spaces in the course and the points scores for
those who wish to do the course.

The CAO data is an example of rank data and such data arises in a number of other contexts including
voting [2, 8], food marketing [12] and economic choice modeling [17]. So, the clustering of rank
data is a topic of considerable interest beyond the application outlined herein, especially where the
number of alternatives is large but expressed preferences are incomplete.

We study data from N = 55737 applications to the CAO system in the year 2000. Since every
person has their own goals, utilities, and abilities, there is no complete consensus on the ranking of
programs. However, we expect to find groups of applicants with similar preferences. Some clusters
will be large (engineering, medicine) partly because large degree programs exist, and because of
prestige and other benefits associated with certain careers. Other groups will be small because of the
diversity in the population and the existence of niche careers, small programs and the geographical
location of the third level institutions.

2 Model

We choose to implement a non-parametric Bayesian clustering via a Dirichlet Process Mixture
(DPM) [1]. Because the data are top-t rankings, we need an appropriate statistical model for the
clusters. For this we choose the Generalized Mallows (GM) model [5], that we briefly describe in
this section. For a detailed presentation of the GM, the reader should consult [5, 13].

"Equivalently, majors, in the United States education system.



Denote by m = (i1,12,...1;) a top-t ranking of length t over a set of n items (or alternatives). In
our data, n = 533 courses, and ¢ < 10. Under the GM model, the probability of 7 is

—

GMM;, (r) = ¢ 2= 55017 1y (1)

In the above, 0 = (61, ...06;) are (non-negative) concentration parameters, one for each rank, while
o is the central permutation of the distribution, representing its mode. Note that unlike 7, o is a
complete permutation of the n items. The features (or codes) {s;(w|o), j =1 :t} of m w.r.t o are
defined as s;(w|o) = Zl>,,ij i<, ;- Thus, s; is the number indicating one less than the rank of ;

—

in o'\ {411} Finally, ¢)(0) is a tractable normalization constant that does not depend on o [5]. The
GM models are well studied and have received growing interest recently, for their interpretability
and good computational properties. In particular, they have sufficient statistics [12], a conjugate
prior [6], and a recently introduced algorithm for estimating DPM models via a partially collapsed
Gibbs sampler [13]. We use this sampler, in conjunction with a prior which is uninformative w.r.t to
the central permutation. The prior for the 6; parameters is informative, and is described by hyper-
parameters 7 = [r1 7o ... 7¢], r; > 0. We set these values to 1, which centers our 6, priors around
0.6, a value that represents strong consensus in the clusters.

3 Experiment and statistical findings

First, we ran the DPM Gibbs sampler of [13], obtaining an ensemble of clusterings, each associated
with a set of parameters for each cluster. Secondly, we use the estimated model, the original data, and
additional information (about the courses, institutions, points requirements and applicant gender) to
characterize the clusters and to probe their structure.

DPM clustering Because we expected many small clusters, we tuned the parameter of the DPM
responsible for the prior granularity of the sampled clusterings, to a large value oo = 100. The Gibbs
sampling was initialized with NV singleton clusters. The number of clusters, K, after burn-in, varied
between 150 and 250 clusters. Many of the clusters persisted for hundreds of Gibbs iterations;
hence, for simplicity, the results presented here are obtained using the final clustering only.

Significance of ranks Each cluster ¢ has a parameter vector 9_; of length 10, and a central permu-
tation o, of length n = 533. But most of these 533 ranks are noise. We designed a method to
determine, for each cluster, the cutoff rank ¢, past which o, is noise. This cannot be determined
from the candidate input lengths alone, but it can be inferred by a statistical method based on the
estimated 01 and the cluster size, and briefly described here. We set a tail probability e = 0.2, and
we determine 7;, the number of items that gives 1 — e coverage for the exponential distribution of
rank j; this is given by 7; = (1/6.,;)In1/e. For 6, > 0.6, 7, = 1, i.e. a single item will occupy
rank j w.p. 1 — ¢, and for 0; = 0.35, 7; = 2. The number ¢, = max; j + 7; for all j that have
sufficient data and 6; > 0.1 = 0,,;, is our truncation value. It represents the tail of o, which falls
outside the 1 — € coverage.

We obtain a range of ¢, € [1, 12] for the largest 33 clusters. For these clusters, we also examined the

o.’s and 01 one by one, and found a remarkable agreement between our automatically determined
t, with the courses topics and intuitive coherence of the clusters.

Results We found 33 clusters containing at least nine observations in each?. The cutoff point is not
arbitrary: every applicant in the smallest of these clusters applied for either two or three of the home
economics teaching degree courses available; this cluster would not have been found using the finite
mixture models proposed in [7] or the exploratory analyses of [10, 18].

The 20 largest clusters have sizes 4500, ..., 850 and contain 92% of the data. This agrees remark-
ably well with the previous work of [7] which also found around 20 clusters. These clusters are
strikingly very coherent, with all 8;’s for the first 5 ranks above 0.6 and 93% of them above 1. This
again validates our model. The remaining clusters have typically even stronger consensus (which
compensates for their smaller size) in spite of the parameter prior. Another phenomenon observed
in these clusters is the short length of the significant part of o, with ¢, values around 5. By contrast,
for many large clusters, the consensus reaches all the way to 1.

>The remaining 131 clusters were sizes 4, 3, 3,3, 3,3, 2, ...
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Figure 1: Right, top: heatmap for §; values (high values in red, low values in black) for the 33 largest clusters.
Right, bottom: points requirements (PR’s) for the same 33 clusters. The colorbar on the right distinguishes the
median and the minimum of the PR’s. For 19 courses out of 533 the PR’s are missing and shown as O (black).
Left, top: cluster size for each of the same 33 clusters. Left, bottom: quantiles (10% in blue, 30%, 50%, 70%,
90% in purple) of the PR’s at each rank of the (entire) applicant data.

Table 1: Summary of the structure of the clusters found using the DPM.

Cluster  Size Description  Male (%) Points Average (SD)
1 4536 CS & Engineering 772 369 (41)

2 4340 Applied Business 48.5 366 (40)

3 4077 Arts & Social Science 13.1 384 (42)

4 3898 Engineering (Ex-Dublin) 85.2 374 (39)

5 3814 Business (Ex-Dublin) 41.8 394 (32)

6 3106 Cork Based 48.9 397 (33)

33 9  Teaching (Home Economics) 0.0 417 (4)

Thus from the statistical point of view, our method was successful in finding detailed structure
in the data: very salient and strongly clustered groups, some large and some small. While other
algorithms in the literature [7, 2] have been or could have been applied to these data, none was able
to find so sharp a signal. This is a rather unexpected feature of this population. = We have also
fitted a GM model with 20 clusters by the EM algorithm, and an EBMS model [12]; the clusters
we obtained, although somewhat meaningful, had very weak consensus, with most 6;’s around
0.07. The GM model accommodates the changing strength of preferences as the applicant completes
their application, whereas a previous analysis [7] used a Plackett-Luce model [15] which does not
accommodate this appropriately [4, 16].

Finally, examining the PR’s along each o. (Figure 1, right, bottom), we note that these are not
monotonic with the rank in any of the clusters. This is not visible in the unclustered data (Figure 1,
left, bottom), where the PR very clearly decreases with j. Thus, clustering the data helps unravel a
Simpson’s paradox, whose significance we discuss in the next section.



4 What we learn about course applicants and the system

The CAO system is a subject of much debate in the Irish media and it makes the front page of most
newspapers annually. A much touted concern is that applicants may not be selecting courses based
on the subjects that they want to study, rather on the basis of PR (where higher PR courses may be
more prestigious than lower PR ones) or other factors.

Since we already found that the data contain clusters, we can examine the truncated central rankings
o, as “smoothed” expressions of each subpopulations preferences® (Table 14 summarizes some of
the findings). The degree subject is the most strongly defining characteristic in the clusters. For
example, science, business, arts, engineering and health sciences all characterize large clusters.

Another strong determinant of course choice is gender. The engineering clusters have a majority
of male members, whereas course in the social sciences have a majority of females, and business
courses tend to be gender balanced.

A further determinant of course choice is the geographical location. Three of the seven universities
in Ireland are located in Dublin, one is just outside Dublin and three are distant from Dublin. The
fourteen Institutes of Technology are geographically spread over the country and the smaller private
colleges tend to be Dublin-based. A number of clusters are defined by subject area and location. The
sixth largest cluster is characterized by courses in the two Cork-based institutions and other clusters
are characterized by courses in Dublin, Galway, Waterford and Athlone. In all of these cases, there
is considerable variation in the subject areas that characterize the clusters, indicating the geography
is an important factor in courses selection

We do also find evidence of “prestige” as a factor, as some clusters contain a mix of high PR courses
from different subject areas. Additionally, the aggregated data shows PR clearly decreasing with the
rank 7, as it would if the candidates were maximizing the PR. However, this hypothesis is in general
completely deconstructed by the clustered data (Figure 1, right, bottom), which shows that various
groups rank the courses non-monotonically, and strongly so, w.r.t PR. In fact, there is hardly any
group where the PR is monotonic.

The 6, parameters for each cluster facilitate the study of the strength of preferences for applicants
within each cluster and cluster coherence. In most clusters we observed that the 9_; values are
decreasing with choice levels and for the large clusters the decrease is quite slow. However, in some
of the smaller clusters the 6, values can drop dramatically after a small number of preferences. An
examination of the choices made by members of each cluster reveals a strong connection between
number of choices and 9_;. The rapid decrease in 9_; in small clusters indicates that the pool of
courses of interest is less than the maximum number of preferences allowed. One cluster with 119
members is strongly characterized by students who want to study for the Evening Arts degree in
UCD, which would suit people who want to study while remaining working; this is one of the only
degrees that fits the needs of these applicants. This is additional evidence that factors other than
simple “prestige” or PR have preponderent influence on the course choices.

5 Discussion

While we consider this analysis preliminary, the features we uncover are remarkably strong, and
unlikely to be wiped by a full posterior inference (which we are currently doing, using a large
subsample of our Gibbs iterations).

Thus, from the social perspective, we are satisfied to have discovered evidence that the Irish college
applications system is reasonably healthy, contrary to some voiced opinions, and to have uncovered
some possible factors that influence the applicants choices.

These important insights were possible using the model outlined in this paper. The flexibility of
the DPM to accommodate small clusters shows that structures that are missed by other approaches
can be revealed using the DPM. The clusters are easily interpretable by virtue of the fact that the

3We note that these preferences can be assumed to be truthful, due to the stable marriage algorithm used to
make the offers.

*Detailed  information for the 33 main clusters found by the DPM is at
http://www.stat.washington.edu/mmp/nips2010_CAO_dpmm_clusters.pdf; informa-
tion on the CAO system and PR’s in 2000 is at http://www.cao. ie.



parameter o for the GM which models each cluster is a ranking. The 6.’ provide a tool to estimate
the strength of lower ranked preferences. Finally, the careful Gibbs sampler implementation allows
one to put to use this model’s qualities in practice.
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