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Abstract

Maximum pseudolikelihood estimation (MPLE) constitutes a computationally ef-
ficient and easily implemented alternative to maximum likelihood and simulation-
based methods. The MPLE has been shown to be consistent and asymptotically
normally distributed in a number of interesting cases. However, the coverage prob-
ability of the conventional confidence interval for the MPLE is biased downward.
We provide a bootstrap method for consistently estimating confidence intervals for
the MPLE. We then apply this method to the U.S. Supreme Court, where Justices’
votes on cases are characterized as a fully visible Boltzmann machine.

1 Modeling Dependent Discrete Data

Many problems involve training a model for a p-dimensional binary vector x ∈ {x−, x+}p, using a
sample of n vectors. A flexible probability model for such an application is given by

P({x1,x2, . . . ,xn},θθθ) =
n�

i=1

exp{θθθ� ΓΓΓ(xi)}�
all x∗∈X exp{θθθ� ΓΓΓ(x∗)} , (1)

where θθθ is a parameter in Rk and ΓΓΓ(·) is a function that maps {x−, x+}p into Rk. Special cases of
this distribution have been applied to social network analysis in the form of the temporal exponential
random graph model (TERGM) [7], fully visible Boltzmann machines [8], and spatially autoregres-
sive logistic regression [2]. The popularity of this distribution arises from the facts that (1) the ΓΓΓ(·)
can be specified to capture nearly any form of dependence among the dimensions of x or depen-
dence of x on exogenous covariates, and (2) many favorable statistical properties are implied by the
fact that it is a member of the exponential family [12].

A major obstacle is that the computation of the denominator in (1) requires a summation over 2p vec-
tors; a prohibitively large number even in moderate-sized applications. As such, the log-likelihood
must be approximated. Two general approximation methods exist. First, the denominator can be
approximated by summing over a series of x∗’s simulated by Markov Chain Monte Carlo [3]. The
second approach, Maximum Pseudolikelihood Estimation (MPLE), consists of replacing the joint
probability of x with the product over the p conditional probabilities of each element of x given the
rest of x. The simulation approach is generally more efficient than MPLE, but is much slower than
MPLE, can exhibit poor mixing properties in some cases [6], and is not accessible to all practition-
ers. Conversely, MPLE is fast and convenient in that the estimates can be computed using logistic
regression software. Additionally, given standard regularity conditions, the MPLE is consistent and
asymptotically normally distributed [1]. Consistency and asymptotic normality of the MPLE have
been proven in a number of interesting cases [2, 8, 11]. However, the conventional confidence in-
tervals for the MPLE, derived from the inverse of the observed Fisher information of the logistic
regression estimate (Logit CIs), exhibit low coverage probabilities, resulting in a high type-I error
rate [12].
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2 Consistent Bootstrap Confidence Intervals for Pseudolikeihood

We present a nonparametric bootstrap method that produces valid confidence intervals for the
MPLE. Let Θ̂t be a sample of t estimates of θ constructed by computing θ̂ on t samples of n vectors
drawn with replacement from {x1,x2, . . . ,xn}. It is important to note that vectors are resampled
without disturbing the configurations within the vectors. If θ̂ is an M-estimator with respect to the
vector-valued random variable x, computed by solving for the zeroes of the score of

�n
i=1 h(xi,θθθ),

then Θ̂t provides a consistent (in n) estimate of the sampling distribution of θ̂ [9]. We note that the
MPLE is such an M-estimator with h(x,θθθ) = log[

�p
j=1 P(xj |x−j , θ̂θθ)]. Thus, the bootstrap sample

of MPLEs provides a consistent estimate of confidence intervals for the MPLE.

We conduct a simulation to asses the applicability of the consistency result for the bootstrap method
in moderate sample sizes. The models used in the simulation are as follows: (1) a fully visible Boltz-
mann machine applied to n = 200 vectors in {−1, 1}10, with parameters drawn from a N (0, 0.25);
(2) a second-order autologistic model applied to n = 50 4×4 grids with an intercept, first and second
order autoregressive parameters and a standard normally distributed covariate with parameter values
of {−0.85, 1.0,−0.5, 0.5}; (3) a TERGM applied to a series of 25 networks, each with 25 nodes,
parametrized with edge, two-star, triangle, edgewise first-order autoregression, and a standard nor-
mal dyadic covariate with parameter values {−0.25,−0.2, 0.5, 1, 0}. In each case 1,000 re-samples
are used in the bootstrapping. For each model, the simulation study consists of 500 iterations.1

The results are presented in figure 1. We do not find evidence that the MPLE is biased in any of
the models under consideration. Also, the coverage probability of the 95% bootstrap confidence
intervals, given by the 2.5th and 97.5th percentiles of the bootstrap sample of MPLEs, is very close
to 0.95. In most cases the bootstrap technique offers an order-of-magnitude reduction in the bias
of the coverage probability relative to the logit CIs. These results provide evidence that, even with
moderate n and p, the bootstrap technique offers a way to take advantage of the consistency of the
MPLE, while not sacrificing the consistency of hypothesis tests.
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Figure 1: Monte Carlo Results. Box plots of the iteration-wise bias (θ̂ − θ) over the 500 iterations
in the Monte Carlo study are given in the first row. The second row gives the empirical coverage
probability of 95% confidence intervals. The dashed-grey lines in the coverage probability plots are
placed at the 0.05-level critical values of a two-sided binomial test of the null hypothesis that the
true coverage probability is 0.95.

1All computations, in both the simulation study and the Supreme Court application, are performed in the R
statistical software. Code and data necessary to replicate our results are available upon request.
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3 Application: The U.S. Supreme Court as a Boltzmann Machine

A pressing problem in the study of the U.S. Supreme Court is the estimation of the unidimensional,
liberal-conservative ideologies of the Justices. The conventional method for deriving these estimates
is to posit that the votes cast by the nine Justices on a case are independent and driven by Justice
ideologies; item response theory is then used to estimate ideal points (ideologies) based on Justice-
vote data [10]. Alternatively, a Boltzmann machine can be used to represent the propensity of each
individual dimension in a binary vector, as well as the association between each pair of dimensions in
that vector [5]. An indicator that codes whether a justice voted in a liberal or conservative direction
on a case is available in The Supreme Court Database (http://scdb.wustl.edu/). We use
a Boltzmann machine to characterize voting on the Court in all 178 cases from the 2007 and 2008
terms in which a written opinion was issued. Each case is a vector (v) of nine votes coded either
1 (liberal) or -1 (conservative). Let β be the ideal points of the nine justices, and λ the 36 justice-
justice pairwise association parameters. The probability model we fit to the data is

P({v1,v2, . . . ,v178},β,λ) =
n�

i=1

exp{
�9

j=1 βjvij +
1
2

�
allj �=k λjkvijvik}

�
all v∗∈V exp{

�9
j=1 βjv∗j + 1

2

�
allj �=k λjkv∗j v

∗
k}

. (2)

This model allows us to asses the propensity of each Justice to vote liberal and to determine whether
the votes of the Justices are related or independent. The estimates are given in Table 3 and Figure
2. Both MLE and MPLE can be applied since 29 is only 512 and the normalizing constant can be
computed. The MLE and MPLE are very similar. The median value of |MPLE−MLE

MLE | is 0.102, mean-
ing the majority of the 45 MPLE estimates are within a 10% range around the MLE. Moreover, only
in 4 out of 36 instances do hypothesis tests at the 0.05 level for association between Justices differ
between the bootstrap CI’s and the asymptotic variance of the MLE. This divergence is balanced
with regards to the result of the test, with 2 instances where the bootstrap rejects the null and the
MLE does not, and 2 instances where the MLE rejects and the bootstrap does not. In contrast, tests
based on the logit CIs indicate significance 8 more times than does the MLE.

The results indicate that it is inappropriate to assume that the votes of Justices are independent. Both
the MLE and MPLE indicate that 11 associations are different from zero at the 0.05 level, and every
justice is significantly associated with at least one other. Both the Wald test for the MPLE [4] and the
likelihood ratio statistic using the MLE (262,151 and 738 respectively) reject the null hypothesis that
all association parameters should be constrained to zero. We can see the impact of interdependence
among the justices on the estimates of their ideal points. In panel (a) of figure 2 we see that, without
the association parameters, Justice Kennedy (a Reagan appointee) is estimated to be more liberal
than Chief Justice Roberts . However, once association is accounted for, Roberts appears more
liberal than Kennedy. Kennedy’s liberal voting is partly explained through his positive association
with the liberal Breyer. Similarly, Roberts’ conservatism is partly attributable to positive associations
with the conservatives Alito and Scalia and a negative association with the liberal Ginsburg.

Table 1: U.S. Supreme Court Boltzmann Machine: Association Parameters

Kenn. Scal. Thom. Sout. Rob. Stev. Gins. Alito Brey.
Kennedy 0.18 0.11 0.11 0.39× −0.03 0.26× 0.38× 0.56+×

Scalia 0.20 0.95+× 0.02 0.79+× −0.10 0.51+× 0.07 −0.27

Thomas 0.09 0.97+ 0.57+× −0.10 −0.11 −0.35+× 0.44× −0.19

Souter 0.10 0.02 0.51+ 0.37× 0.51+× 0.72+× −0.64× 0.26×
Roberts 0.38 0.80+ −0.14 0.34 0.16 −0.54× 0.90+× 0.15

Stevens −0.07 −0.07 −0.09 0.51+ 0.09 0.29× 0.14 0.57+×
Ginsburg 0.34 0.42 −0.33 0.72+ −0.54+ 0.27 0.15 0.24×

Alito 0.38 0.01 0.48+ −0.62+ 0.92+ 0.15 0.16 0.34×
Breyer 0.58+ −0.24 −0.21 0.24 0.11 0.58+ 0.20 0.31

The upper triangle consists of MPLE estimates, and the lower triangle MLEs. + indicates
significantly different from zero at the 0.05 level (two-sided) according to the bootstrap of
the MPLE and the estimate of the variance of the MLE, × indicates significance according
to the logistic regression covariance matrix.
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Figure 2: The bars in (a) span 95% confidence intervals. In (b) an edge is drawn if the association
parameter has the respective sign in at least 95% of the bootstrap samples.

4 Conclusions

The nonparametric bootstrap can be used to construct consistent confidence intervals for the MPLE.
In a Monte Carlo study, we show that this result applies at moderate finite sample sizes. Additionally,
we provide an application where inference with the bootstrapped MPLE and MLE lead to practically
equivalent conclusions about justices’ voting behavior on U.S. Supreme Court cases.
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