
With a Little Help from the Computer:
Hybrid Human-Machine Systems on Bandit Problems

Bryan R. Gibson, Kwang-Sung Jun, Xiaojin Zhu
Department of Computer Science

University of Wisconsin-Madison, Madison, WI 53703
{bgibson, deltakam, jerryzhu}@cs.wisc.edu

Abstract

A common task for learners, both human and machine, is to choose from a set of
actions with unknown reward distributions, with the objective of maximizing the
reward over time. There are algorithms proven to perform optimally on this Multi-
Arm Bandit task. A natural question is whether such algorithms can be used to
enhance human performance in a human-machine hybrid system. We design and
conduct a series of behavioral experiments to investigate this question.

1 Introduction

The process of choosing actions to maximize reward is a common task. Imagine a person sitting
before two slot machines with unknown payoff distributions. The person has to decide which of
them to put a coin into and play. This is known as a Multi-Arm Bandit (MAB) problem and has been
well studied in both machine learning and psychology [1, 3, 5]. It is an example of the exploration-
exploitation trade-off. If we reformulate the problem to one of minimizing regret, defined later,
algorithms such as UCB1 described below have been designed to solve the task optimally [2]. On
the other hand, humans are known to be suboptimal on MAB problems.

In many real world situations, it is the human that makes the final decision. Consider a setting where
the machine algorithm (running on a wearable computer, for example) observes a human solving a
MAB problem and gives suggestions to the human. However, thehuman can ignore the machine
suggestions. Is it possible that such machine-human hybridsystem performs better than humans
would on their own? We propose a study which looks at that question.

1.1 Machine Learning Solution

We first review the UCB1 algorithm [2]. In all of the followingwe restrict ourselves to the special
case of two arms with fixed but unknown distributions.

Let A andB be the unknown distributions belonging to two arms, withµA, µB their mean respec-
tively. Let the reward bex. The UCB1 algorithm operates by using past experience to findthe
distribution which has the highest expected upper bound. Atany iteration, it chooses arm
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to play, wheren is the total number of iterations,nj the number of iterations where armj has been
chosen, and̄xj the average reward from armj. We can now define ‘optimal’ as the action which
chooses armj corresponding tomax{µA, µB}.
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While the UCB1 algorithm has been proven optimal with regretO(lnn), a modified version known
as UCB1-Tuned (UCB1t) was found to work better empirically.The calculation used by UCB1t to
choose the next draw is
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which gives a new upper bound using sample variance for armj, which has been playeds times in
t iterations.

2 Human MAB Experiments

Participants were given two arms with differing distributions, each returning an integer rewardxi ∈
[1, 100]. The participant’s task was to maximize their reward over a set number of iterations, or
pulls. A UCB1t learner also detected which arm was pulled andthe reward received, but could not
pull arms itself. The only way the machine learner could affect the pulls was to communicate a
suggestion to the human, who might or might not follow the suggestion.

Due to the fact that the human might not agree with the machinesuggestion, the regret could still
be higher than optimal. One novel aspect of our machine-human hybrid system is the following. In
addition to learning the optimal pull, a machine learner could also learn to predict how likely the
participant will agree with its suggestion. LetGi be the event that the participant agrees with the
machine suggestion on iterationi, xi the reward ati, andSi the machine suggestion ati. The learner
tries to predict

P (Gi|G1:i−1, x1:i−1, S1:i−1) (4)
which is the probability of agreement given history. If the probability of agreement is lower than
1/2, the suggestion could be flipped in an attempt to manipulate the human into selecting the optimal
decision by disagreeing; i.e., a ‘reverse psychology’ strategy.

2.1 Participants

112 university undergraduates participated for partial course credit.

2.2 Materials

In our experiment, two distributions were designed to confuse the human learner into choosing a
suboptimal strategy (Figures 1(b), 1(c)). ArmA used a bell shaped distribution withµA = 35.2.
Arm B used a distribution with the majority of its mass near the boundaries of its range but a mean
value ofµB = 50.5. Draws from armA would more consistently be just below the midpoint of the
range while draws fromB would vary widely between high and low rewards. The hope was that
these low rewards would indicate to the participant that armB was suboptimal even though it is in
fact the optimal choice.

A computer interface was created to represent two arms, a display of total reward achieved and a
suggestion display, as shown in Figure 1(a).

Participant interaction with the interface differed slightly by condition. In conditions where sug-
gestions were given, a simple graphic of a person along with ‘Agree’ and ‘Disagree’ buttons were
presented in the suggestion area. Participants chose whicharm to play solely by clicking these
buttons.

When no suggestions were given the suggestion area remained empty. To activate an arm the par-
ticipant clicked on a representation of a ‘coin bucket’, followed by a click on one of the arms them-
selves. The ‘coin bucket’ click was implemented to keep participants from simply clicking the arm
the mouse was closest to.

Once an arm was activated the reward amount was displayed on the arm itself with the display of
total reward acquired updated as well.
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(a) Interface
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(c) µB = 50.5

Figure 1: The experimental interface and distributions.

2.3 Procedure

Each participant was given instructions indicating the range of reward, the fact that one arm might
give better results than the other, that they might or might not receive suggestions about which arm
to play, and the fact that their goal was to maximize their reward.

Participants then completed 150 iterations, each consisting of a single pull of an arm followed by
the display of a reward and possibly a new suggestion depending on condition.

2.4 Conditions

Four conditions were chosen as simple examples of possible suggestion regimes:

H : No suggestions given. Participants interacted directly with the arms.

S : A simple suggestion was given of the form “I suggest you playmachine A”.

S+ : A more authoritative suggestion was given which included the statistics used by UCB1t to
come to its decision. It took the form “You have played machine A (B respectively) 3 (5)
times, the sample mean is 45 (72), while the upper confidence bound of the true mean can
be as high as 87 (100). I suggest you play machine B.”

RP : Before a simple suggestion of the same form used inH was displayed, the probability that the
participant would agree with the suggestion given was calculated. A simple approximation
to the model discussed above was used, conditioned solely onthe agreement during the last
iteration:P (Gi|Gi−1). Let Mi be the true intention of the machine learner and¬Mi the
opposite. The suggestionSi given was

Si =

{

Mi if P (Gi|Gi−1) ≥ 1/2
¬Mi otherwise. (5)

In other words, if the probability of agreement on the current iteration was low, the machine
learner attempted a reverse psychology strategy.

In all conditions where a suggestion was given, the first two suggestions were to pull arms that had
not yet been played as the UCB1t learner is unable to make any predictions till at least one sample
has been taken from both distributions.

3 Results

Two metrics were used to measure performance, per-trial regret

µ∗ −
1

n

n
∑
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xi (6)

and a ‘best-arm’ percentage. Best-arm percentage is the percentage of total iterations where the
optimal arm was pulled. As a comparison, UCB1t was run on its own for 5000 sessions, each
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session consisting of 29 trials of 150 iterations. Figures 2(a) and 2(b) show the mean performance
in each condition. The number of participants per conditionsH, S, S+ andRP was 28, 27, 28 and 29
respectively.
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Figure 2: Result means per condition.

The differences between human conditions are not statistically significant, however the trend is
surprising in that suggestions do not seem to have helped and, in fact, have hurt inS. Performance
is at best equivalent to human performance without suggestions.

4 Discussion

It is interesting to see that humans are not helped by such machine suggestions, given that the sug-
gestions are optimal. Although it is a negative result, we believe our work is still valuable in that
it provides a novel perspective on solving MAB problems witha machine-human hybrid system,
where the machine plays the assistant but the human has the free will to choose. We speculate that
our machine assistant can be more successful, if it can give suggestions in a form that is easier for
humans to accept. For instance, it might suggest “You may want to try exploring different arms
more” instead of a concrete arm suggestion at each iteration. A more complex model of participant
agreement, taking into account the full history, might improve the performance of reverse psychol-
ogy as well. Additionally, it may be informative to compare these results to a similar experiment
using Gittins’ Dynamic Allocation Process on a direct maximization of the reward [4].
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