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Abstract

Modelling and predicting the movement of people through different environments
offer important benefits to a wide range of applications from estimating intent
to security. The study of human motion patterns is also crucial for the develop-
ment of social robots that share their surroundings with people. Here we present
a methodology to learn socially informed trajectories by observing pedestrian po-
sitional traces and we apply it to enable a robot to navigate in complex environ-
ments. A continuous probabilistic function is determined using Gaussian process
learning and used to infer the direction a robot should take in different parts of
the environment. The approach learns and filters noise in the data producing a
smooth underlying function that yields more natural movements. Our method
combines prior conventional planning strategies with the most probable trajecto-
ries followed by people in a principled statistical manner, and adapts itself online
as more observations become available. The use of learning methods is automatic
and requires minimal tuning as compared to potential function or spline func-
tion regression. This approach has been tested against a cluttered office and an
open forum datasets using laser and vision sensing modalities. It yields interac-
tive paths that are similar to the expected behaviour of people (e.g., crossing a
street at a pedestrian crossing) without any a priori knowledge of the environment
or explicit programming.

1 Introduction

As robots start to share the environment with people, the study of human motion patterns becomes
increasingly important. In the robotics community, the social interaction between humans and robots
has been the object of numerous studies [1], [2], [3]. It presents significant challenges and has proved
vexing for numerous reasons — not least of which being that such interactions are often qualitative
and difficult to measure.

However, human locomotion is incredibly informative. Considering the paths people transit not only
informs how to navigate, but also improves interaction. Consider, for example, navigating around
spilled coffee. Trying to sense this is incredibly difficult, yet following the cues of people walking
around it is relatively much easier. That is, understanding and generalising peoples’ behaviour
is paramount to defining better decision making rules and improve safety of humans and robots.
This, however, can be difficult as the variability of human motion patterns is immense even in



structured environments such as offices and corridors. Also challenging is estimating and modelling
the uncertainty in these motions from noisy sensors, which are generally subject to occlusions and
misdetections.

In this work we study how preferred course trajectories can be learnt for an environment by ob-
serving the motion pattern of people and consider its use for navigation. Given a set of traces from
pedestrians walking in a populated area, we seek to learn a function that maps any arbitrary location
to a direction of travel — we call this the navigational map. This navigational map reflects people’s
behaviour in a statistical manner and helps the robot to understand the environment. For example,
people (almost) always avoid obstacles when walking. By learning how humans walk in a closed
area, a robot can avoid obstacles without relying solely on perception. Equally, assumed social
boundaries such as personal workspaces or the area between a television and a viewer often mean
that the shortest path is not always the optimum.

Traditionally, integrating such behaviour into the path planner is challenging as the definitions of
preferred spaces are mostly qualitative, hence making metrics (and sensing) difficult [4]. However,
learning the motion pattern can lead to trajectories that incorporate a very abstract level of reasoning
on the environment without explicitly understanding the underlying principles influencing them.

We rely on a machine learning technique to develop a model of how people traverse the environ-
ment. Using traditional path planning techniques as a prior, the resulting navigational map emulates
human-like motion trajectories in a sound, statistical manner. In order to learn this map from pedes-
trians’ traces, we explore the benefits of Bayesian learning and, in particular, a popular regression
technique known as a Gaussian process [5]. A key aspect of this approach is the manner in which
the problem is formulated. By modelling human motions as a deviation from a prior path plan, it
becomes possible to infer preferred areas (a subsequently areas of repulsion) all within the Bayesian
statistical framework.

2 Problem Formulation

Intuitively, the proposed approach seeks to produce a navigational map, a function which maps a
location to a normalized velocity in a manner that incorporates the motion patterns of people. This
would enable the trajectory taken by a person travelling to a destination to be estimated at any
location allowing the robot to navigate in a human-like manner. Essentially, this is achieved by
learning a continuous function that describes how people deviate from some prior belief on the path
to a destination. This deviation function, ¥, is combined with the prior navigational map to produce
a navigational map that captures the general trends of how humans traverse the environment.

2.1 Learning the Motion Patterns of People

Generally speaking, our technique can be divided into two main segments. Initially, the outputted
paths of a people tracking algorithm are used in an offline learning phase to estimate ¥ for a given
destination. Subsequently, an online algorithm uses the generated function to traverse the envi-
ronment in a way that reflects the tendencies of people. Fig. 1 shows the traces from simulated
data of people using a zebra-crossing that would be chosen, represented in blue, when generating a
navigational map for the indicated destination.

The training data’s target vector used for learning the underlying deviation function is obtained from
the selected raw data by initially approximating the trajectory of the pedestrians at each observed
location and subtracting it from some predetermined prior prediction, Fig. 1(b). A Gaussian process,
GP, is then trained to estimate a non-parametric probabilistic model of W. The predictive mean, Fig.
1(c), represents the model’s estimate of how much the human motion pattern deviates from the
expected direction of navigation (the prior). An associated variance function also exists to quantify
the model’s confidence in each prediction.

Once a model for ¥ has been trained, it becomes possible to predict the motion pattern of people
at any location in the environment. The robot can query the probabilistic model with its current
location and receives an estimate of the deviation angle. This is then added to the original prior to
produce a prediction of the direction that a human would take in that position. The robot moves
along the trajectory given by the navigational map until the destination is reached. Fig. 1(b) &
(d) compare the prior navigational map with the posterior map produced after incorporating the
information gathered from observing how people move through the environment. The social context
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Figure 1: (a) Plan view of zebra-crossing with the path traces of simulated pedestrians using it to get from one
sidewalk to another. (b) Prior navigational map. (c) Predictive mean of the deviation function. (d) Posterior
map with 3 sample trajectories generated from different starting locations. (e) Path traces with added jaywalker.
(f) Updated posterior navigational map. (g) Updated predictive mean. (h) Updated predictive variance.

of the zebra-crossing is reflected in the posterior map and it has the effect of channelling the flow
from left to right through the designated crossing zone.

2.2 Integrating New Observations into the Model

After the training phase, incorporating additional observations into the model can be done online by
updating the inverted covariance matrix of the GP. Fig. 1(f) illustrates the effects on the outputs of
our method when the observation of a jaywalker’s path trace is integrated into the map.

Interestingly, the direction of the updated navigational map’s normalised velocity vectors below the
zebra-crossing adapt to reflect the behaviour of a person walking in that region (i.e., to get to the
other side of the road as directly as possible) compared to the quiver plot in Fig. 1(d). Importantly,
however, the variance, Fig. 1(h), in this same region although lower than areas where no observations
were made, is still higher than the section over the zebra-crossing and the route preferred by the
majority of pedestrians. The variance could correspond directly to the level of caution that the
robot should exercise in each region and indicate how it should adjust its speed or perceptiveness
accordingly.

3 RESULTS

The proposed approach was tested on a number of different datasets. Here we present the results
from the UTS RobotAssist Project [6] in which the motion patterns of people were recorded in an
office environment over the course of three hours. Once again, a naive potential function was used
as the prior map, Fig. 2(d). Samples from the resulting predictive mean after learning are shown
in Fig. 2(c). The posterior navigational map, represented as a quiver plot in Fig. 2(e), merges
the observations of path traces into the prior map to generate more socially-informed routes to the
destination. Three typical starting locations were chosen and the resulting paths generated by the
posterior navigational map were plotted.

An important advantage to incorporating the motions of people into the navigational map is the
ability to indirectly sense obstacles that may be occluded or even undetectable to the robot’s sensors.
The large table on which one of the laser rangefinders used to track people is placed, seen in Fig.
2(a) close to the center of the image, is below the sensor’s plane and hence does not appear in the
laser returns plotted in Fig. 2(b) & (d). Observing that people avoid this area leads to trajectories
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Figure 2: (a) Occupancy grid of office area - positions of laser rangefinders marked in blue. (b) Path traces
of pedestrians detected by lasers. (c) Predictive mean function of W. Sparsely sampled quiver plot of the prior
(d) and posterior (e) navigational maps with examples of resulting routes to the destination taken from three
different starting locations using the latter. (f) 20 boundary (degrees) vs. fraction of route travelled for each
sample route.

like Path C which also circumvent the obstacle without ever requiring to reason about the boundaries
or type of the obstruction. Although in this case the obstacle is quite tangible, our approach would
just as easily handle more abstract obstructions such as a restricted area due to a slippery surface or
paths that may impinge on the work areas of other people.

A key feature of the Gaussian process is its capacity to infer the most likely value of the ¥ at any
point in the map based on the trends of observed motion patterns in the region. The benefit of this
is clearly illustrated in the region occluded to both rangefinders - around x, = [2,3.5] m in Fig. 2
(b). Despite a lack of path traces in this area, the GP correctly predicts the most likely trajectory of
pedestrians in the vicinity. Crucially, an associated variance is also produced for each prediction and
can be used as an indicator of the caution that should be exercised in each particular region. Fig. 2
(f) illustrates the 20 boundary for each of the sample paths. The area occluded from both sensors
is made apparent by the large peak in uncertainty approximately halfway along the curve of Path A.
Similarly, the variance associated with the planned trajectory of Path C is initially quite high due to
a low density of observations in the region as only 2 pedestrians were observed here. However as
the trajectory brings the robot into the more populated corridors, the uncertainty on the predicted
value of the deviation from the prior falls to within a 20 boundary of approximately 3 degrees.

4 CONCLUSIONS

We introduce a powerful tool for modelling the motion patterns and inherent preferences of people.
Incorporating this knowledge into the the path planners of robots helps to address several important
challenges currently facing robotic navigation such as perceiving obstacles that are traditionally
difficult to observe and motion planning in a manner that conforms to social assumptions. The
proposed approach is illustrated and tested on a variety of datasets which demonstrate the algorithm’s
capacity to encapsulate social context in navigation.

Handling this problem within the framework of the Gaussian process avoids the necessity to discre-
tise the world or the resulting trajectories. Crucially, an associated predictive variance exists along
each trajectory which can be used to dictate the the level of confidence the robot should have in
the model for each region of the map. An additional benefit of adopting a Bayesian approach is
the ability to learn the sensor noise levels and characteristics of the underlying function in tandem
through the optimisation of the marginal likelihood function without the requirement of hand-tuning
the model’s parameters We believe that this work is an initial step towards integrating conventional
decision making algorithms and path planning with the complex decision making processes in hu-
mans and their social behaviours.
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